MSRI SUMMER SCHOOL: LECTURE OUTLINE

1. Lecture 1: Intro to 4-manifolds

Basic examples: S^4 , $S^2 \times S^2$, $\Sigma_1 \times \Sigma_2$, \mathbb{CP}^2 , $\overline{\mathbb{CP}}^2$, $S^1 \times S^3$, connected sums

Algebraic topology invariants: π_1 , homology, Poincaré duality, Betti numbers, Euler characteristic Intersection form:

- Via cup product
- Via intersections of surfaces
- Example: $S^2 \times S^2$, \mathbb{CP}^2 (partially left as an exercise), $\overline{\mathbb{CP}}^2$
- b_2^+ , b_2^- , signature
- Unimodularity
- Even versus odd forms

Freedman's Theorem: statement of topological classification in simply connected case, contrast to Donaldson diagonalization, contrast to existence of exotica

Blow-up:

- Definition from algebraic equations
- Definition as connected sum with $\overline{\mathbb{CP}}^2$
- Exceptional divisor
- Total and proper transforms, self-intersections

2. Lecture 2: First constructions and Seiberg-Witten formulas

Elliptic fibrations

- E(1) as a blow-up of the cubic pencil
- Singular fibers in generic E(1)

Fiber sum:

- Define operation
- Define E(n)
- Surfaces in E(n), homotopy invariants (exercise)

Seiberg-Witten invariants for E(n)

- narrow down possible basic classes with adjunction
- state Fintushel-Stern formula for invariants

Blow-up formula

Connected sum vanishing theorem

First exotic example: $E(2)\#\overline{\mathbb{CP}}^2$ exotic to $\#3\mathbb{CP}^2\#20\overline{\mathbb{CP}}^2$

3. Lecture 3: Rational blow-down

Rational blow down operation:

- Plumbings and B_p
- Rational homology balls and C_p
- $\partial B_p \cong \partial C_p$, cut and paste

Effect on topological invariants:

- Effect on π_1
- Effect on H_2

Effect on Seiberg-Witten invariants:

- Relating characteristic classes
- Statement of Seiberg-Witten rational blow-down formula

Exotic example:

- Blow-up a nodal fiber of E(2) (p-1) times to get an embedding of C_p and then rationally blow-down to get $E(2)_p$.
- Calculate basic classes.

4. Lecture 4: Knot surgery

Knot surgery operation:

- definition from gluing $S^1 \times$ knot complement as a fiber sum with $S^1 \times$ 0-surgery comment on fibered knot case (symplectic)

Effect on homeomorphism type Alexander polynomial of a knot (via Skein relations) Seiberg-Witten formula for knot surgery Ideas in the proof

5. Lecture 5: Generalizations

Combining constructive techniques Finding exotica when $b_2^+ = 1$ Generalizations of rational blow-down Geography and botany state of the art