MSRI SUMMER SCHOOL: LECTURE OUTLINE

1. Lecture 1: Intro to 4-manifolds

Basic examples: $S^{4}, S^{2} \times S^{2}, \Sigma_{1} \times \Sigma_{2}, \mathbb{C P}^{2}, \overline{\mathbb{C P}}^{2}, S^{1} \times S^{3}$, connected sums
Algebraic topology invariants: π_{1}, homology, Poincaré duality, Betti numbers, Euler characteristic Intersection form:

- Via cup product
- Via intersections of surfaces
- Example: $S^{2} \times S^{2}, \mathbb{C P}^{2}$ (partially left as an exercise), $\overline{\mathbb{C P}}^{2}$
- b_{2}^{+}, b_{2}^{-}, signature
- Unimodularity
- Even versus odd forms

Freedman's Theorem: statement of topological classification in simply connected case, contrast to Donaldson diagonalization, contrast to existence of exotica
Blow-up:

- Definition from algebraic equations
- Definition as connected sum with $\overline{\mathbb{C P}}^{2}$
- Exceptional divisor
- Total and proper transforms, self-intersections

2. Lecture 2: First constructions and Seiberg-Witten formulas

Elliptic fibrations

- $E(1)$ as a blow-up of the cubic pencil
- Singular fibers in generic $E(1)$

Fiber sum:

- Define operation
- Define $E(n)$
- Surfaces in $E(n)$, homotopy invariants (exercise)

Seiberg-Witten invariants for $E(n)$

- narrow down possible basic classes with adjunction
- state Fintushel-Stern formula for invariants

Blow-up formula

Connected sum vanishing theorem

First exotic example: $E(2) \# \overline{\mathbb{C P}}^{2}$ exotic to $\# 3 \mathbb{C P}^{2} \# 20 \overline{\mathbb{C P}}^{2}$

3. Lecture 3: Rational blow-down

Rational blow down operation:

- Plumbings and B_{p}
- Rational homology balls and C_{p}
- $\partial B_{p} \cong \partial C_{p}$, cut and paste

Effect on topological invariants:

- Effect on π_{1}
- Effect on H_{2}

Effect on Seiberg-Witten invariants:

- Relating characteristic classes
- Statement of Seiberg-Witten rational blow-down formula

Exotic example:

- Blow-up a nodal fiber of $E(2)(p-1)$ times to get an embedding of C_{p} and then rationally blow-down to get $E(2)_{p}$.
- Calculate basic classes.

4. Lecture 4: Knot surgery

Knot surgery operation:

- definition from gluing $S^{1} \times$ knot complement
- as a fiber sum with $S^{1} \times 0$-surgery - comment on fibered knot case (symplectic)

Effect on homeomorphism type
Alexander polynomial of a knot (via Skein relations)
Seiberg-Witten formula for knot surgery
Ideas in the proof

5. Lecture 5: Generalizations

Combining constructive techniques
Finding exotica when $b_{2}^{+}=1$
Generalizations of rational blow-down
Geography and botany state of the art

