Problem Sheet 6

1) a) Show that if $\lim _{n \rightarrow \infty} s_{n}=\infty$, then $\lim _{n \rightarrow \infty} \frac{1}{s_{n}}=0$.
b) Show that if $\lim _{n \rightarrow \infty} s_{n}=0$ and $s_{n}>0$ for all n , then $\lim _{n \rightarrow \infty} \frac{1}{s_{n}}=\infty$.
2) Prove that if $\lim _{n \rightarrow \infty} s_{n}=s$ and $\lim _{n \rightarrow \infty} t_{n}=t$, then $\lim _{n \rightarrow \infty} s_{n} t_{n}=s t$ by citing the justification for each of the following steps:
a) $\lim _{n \rightarrow \infty}\left(s_{n}-s\right)=0$ and $\lim _{n \rightarrow \infty}\left(t_{n}-t\right)=0$.
b) $\lim _{n \rightarrow \infty}\left(s_{n}-s\right)\left(t_{n}-t\right)=0$, and so $\lim _{n \rightarrow \infty}\left(s_{n} t_{n}-s t_{n}-s_{n} t+s t\right)=0$.
c) $\lim _{n \rightarrow \infty} s_{n} t_{n}=\lim _{n \rightarrow \infty}\left[\left(s_{n} t_{n}-s t_{n}-s_{n} t+s t\right)+s t_{n}+s_{n} t-s t\right]=$ $\lim _{n \rightarrow \infty}\left(s_{n} t_{n}-s t_{n}-s_{n} t+s t\right)+\lim _{n \rightarrow \infty} s t_{n}+\lim _{n \rightarrow \infty} s_{n} t-\lim _{n \rightarrow \infty} s t$.
d) $\lim _{n \rightarrow \infty} s_{n} t_{n}=0+s t+s t-s t=s t$.
3) If s_{n} is bounded, show that $\lim _{n \rightarrow \infty} \frac{s_{n}}{n}=0$ using
a) a problem from the previous sheet.
b) the Squeeze Theorem.
4) Prove that if $s_{n} \leq t_{n}$ for all n and $\lim _{n \rightarrow \infty} s_{n}=\infty$, then $\lim _{n \rightarrow \infty} t_{n}=\infty$.
5) Use the Squeeze Theorem to find $\lim _{n \rightarrow \infty}\left(4^{n}+5^{n}\right)^{\frac{1}{n}}$.
6) Prove that $\lim _{n \rightarrow \infty} a_{n}=0$ iff $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ using the following steps:
a) Show that if $\lim _{n \rightarrow \infty} a_{n}=0$, then $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ using a problem from the previous problem sheet.
b) Show that if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$ using the Squeeze Theorem.
(We proved this result previously using the definition of the limit.)
7) Define $\left\{s_{n}\right\}$ by $s_{n+1}=\sqrt{5+s_{n}}$ for $n \geq 1$ and $s_{1}=\sqrt{5}$.
a) Show that $\left\{s_{n}\right\}$ converges.
b) Find $\lim _{n \rightarrow \infty} s_{n}$.
8) Define $\left\{s_{n}\right\}$ by $s_{n+1}=\frac{1}{4} s_{n}+15$ for $n \geq 1$ and $s_{1}=2$.
a) Show that $\left\{s_{n}\right\}$ converges.
b) Find $\lim _{n \rightarrow \infty} s_{n}$.
