Problem Sheet 6

- 1) a) Show that if $\lim_{n\to\infty} s_n = \infty$, then $\lim_{n\to\infty} \frac{1}{s_n} = 0$.
 - b) Show that if $\lim_{n\to\infty} s_n = 0$ and $s_n > 0$ for all n, then $\lim_{n\to\infty} \frac{1}{s_n} = \infty$.
- 2) Prove that if $\lim_{n\to\infty} s_n = s$ and $\lim_{n\to\infty} t_n = t$, then $\lim_{n\to\infty} s_n t_n = st$ by citing the justification for each of the following steps:
 - a) $\lim_{n\to\infty} (s_n s) = 0$ and $\lim_{n\to\infty} (t_n t) = 0$.
 - b) $\lim_{n \to \infty} (s_n s)(t_n t) = 0$, and so $\lim_{n \to \infty} (s_n t_n s t_n s_n t + s t) = 0$.
 - c) $\lim_{n \to \infty} s_n t_n = \lim_{n \to \infty} \left[\left(s_n t_n s t_n s_n t + s t \right) + s t_n + s_n t s t \right] = \lim_{n \to \infty} \left(s_n t_n s t_n s_n t + s t \right) + \lim_{n \to \infty} s t_n + \lim_{n \to \infty} s_n t \lim_{n \to \infty} s t.$
 - d) $\lim_{n \to \infty} s_n t_n = 0 + st + st st = st$.
- 3) If s_n is bounded, show that $\lim_{n\to\infty} \frac{s_n}{n} = 0$ using
 - a) a problem from the previous sheet.
 - b) the Squeeze Theorem.
- 4) Prove that if $s_n \leq t_n$ for all n and $\lim_{n \to \infty} s_n = \infty$, then $\lim_{n \to \infty} t_n = \infty$.
- 5) Use the Squeeze Theorem to find $\lim_{n\to\infty} (4^n + 5^n)^{\frac{1}{n}}$.
- 6) Prove that $\lim_{n\to\infty} a_n = 0$ iff $\lim_{n\to\infty} |a_n| = 0$ using the following steps:
 - a) Show that if $\lim_{n\to\infty} a_n = 0$, then $\lim_{n\to\infty} |a_n| = 0$ using a problem from the previous problem sheet.
 - b) Show that if $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$ using the Squeeze Theorem.

(We proved this result previously using the definition of the limit.)

1

- 7) Define $\{s_n\}$ by $s_{n+1} = \sqrt{5 + s_n}$ for $n \ge 1$ and $s_1 = \sqrt{5}$.
 - a) Show that $\{s_n\}$ converges.
 - b) Find $\lim_{n\to\infty} s_n$.
- 8) Define $\{s_n\}$ by $s_{n+1} = \frac{1}{4}s_n + 15$ for $n \ge 1$ and $s_1 = 2$.
 - a) Show that $\{s_n\}$ converges.
 - b) Find $\lim_{n\to\infty} s_n$.