Math 21B-B - Homework Set 2

Section 5.3:

- 1. Express the following limits as definite integrals:
 - (a) $\lim_{\|P\|\to 0} \sum_{k=1}^{n} (c_k^2 3c_k) \Delta x_k$, where *P* is a partition of [-7, 5]
 - (b) $\lim_{\|P\|\to 0} \sum_{k=1}^n \sqrt{4-c_k^2} \Delta x_k$, where P is a partition of [0,1]
 - (c) $\lim_{\|P\|\to 0} \sum_{k=1}^{n} (\tan c_k) \Delta x_k$, where P is a partition of $[0, \pi/4]$
- 2. Suppose that f and g are integrable and that:

$$\int_{1}^{2} f(x) \, dx = -4, \qquad \int_{1}^{5} f(x) \, dx = 6, \qquad \int_{1}^{5} g(x) = 8$$

Use the rules in Table 5.4 to find:

(a)
$$\int_{2}^{2} g(x) dx$$

(b) $\int_{5}^{1} g(x) dx$
(c) $\int_{1}^{2} 3f(x) dx$
(d) $\int_{2}^{5} f(x) dx$
(e) $\int_{1}^{5} [f(x) - g(x)] dx$
(f) $\int_{1}^{5} [4f(x) - g(x)] dx$

3. Suppose that f and h are integrable and that:

$$\int_{1}^{9} f(x) \, dx = -1, \qquad \int_{7}^{9} f(x) \, dx = 5, \qquad \int_{7}^{9} h(x) \, dx = 4.$$

Use the rules in Table 5.4 to find

(a)
$$\int_{1}^{9} -2f(x) dx$$

(b) $\int_{7}^{9} [f(x) + h(x)] dx$

(c)
$$\int_{7}^{9} [2f(x) - 3h(x)] dx$$

(d) $\int_{9}^{1} f(x) dx$
(e) $\int_{1}^{7} f(x) dx$
(f) $\int_{9}^{7} [h(x) - f(x)] dx$
4. Find $\int_{-2}^{1} |x| dx$.
5. Find $\int_{-1}^{1} (1 + \sqrt{1 - x^2}) dx$.

- 6. Graph and find the average value of the following functions over the given interval
 - (a) $f(x) = x^2 1$ on $[0, \sqrt{3}]$. (b) h(x) = -|x| on i. [-1, 0]ii. [0, 1]iii. [-1, 1]
- 7. Use the method of example 4a to evaluate

(a)
$$\int_{a}^{b} x^{2} dx, a < b$$

(b) $\int_{-1}^{0} (x - x^{2}) dx$

8. Use the Max-Min Inequality to find upper and lower bounds for the value of

$$\int_0^1 \frac{1}{1+x^2} \, dx.$$

9. Use the Max-Min Inequality to find upper and lower bounds for the the value of

$$\int_0^{0.5} \frac{1}{1+x^2} \, dx \qquad \text{and} \qquad \int_{0.5}^1 \frac{1}{1+x^2} \, dx.$$

10. Use the inequality $\sin x \leq x$, which holds for $x \geq 0$, to find an upper bound for the value of $\int_0^1 \sin x \, dx$.

Section 5.4:

1. Evaluate the following integrals:

(a)
$$\int_{-2}^{0} (2x+5) dx$$

(b)
$$\int_{-3}^{4} \left(5 - \frac{x}{2}\right) dx$$

(c)
$$\int_{0}^{\pi} \sin x dx$$

(d)
$$\int_{0}^{\pi/3} 2 \sec^{2} x dx$$

(e)
$$\int_{1}^{-1} (r+1)^{2} dr$$

(f)
$$\int_{1}^{2} \left(\frac{1}{x} - e^{-x}\right) dx$$

(g)
$$\int_{0}^{1} \frac{4}{1+x^{2}} dx$$

(h)
$$\int_{2}^{5} \frac{x}{\sqrt{1+x^{2}}} dx$$

(i)
$$\int_{0}^{1} xe^{x^{2}} dx$$

(j)
$$\int_{1}^{2} \frac{\ln x}{x} dx$$

2. Find the derivatives of the following functions (i) by evaluating the integral and differentiating the result, and (ii) by differentiating the integral directly:

(a)
$$\frac{d}{dx} \int_0^{\sqrt{x}} \cos t \, dt$$

(b) $\frac{d}{d\theta} \int_0^{\tan \theta} \sec^2 y \, dy$

3. Find $\frac{dy}{dx}$ if $y = \int_{\sqrt{x}}^{0} \sin(t^2) dt$

4. In the exercises below, find the total area between the region and the x-axis:

(a)
$$y = -x^2 - 2x$$
, where $-3 \le x \le 2$
(b) $y = 3x^2 - 3$, where $-2 \le x \le 2$

(c)
$$y = x^{1/3} - x$$
, where $-1 \le x \le 8$

5. Suppose that f is the differentiable function shown in the accompanying graph and that the position at time t (sec) of a particle moving along a coordinate axis is

$$s = \int_0^t f(x) dx$$

meters. Use the graph to answer the following questions. Give reasons for your answers.

- (a) What is the particle's velocity at time t = 5?
- (b) Is the acceleration of the particle at time t = 5 positive or negative?
- (c) What is the particle's position at time t = 3?
- (d) At what time during the first 9 sec does s have its largest value?
- (e) Approximately when is the acceleration zero?
- (f) When is the particle moving toward the origin? Away from the origin?
- (g) On which side of the origin does the particle lie at time t = 9?
- 6. Find $\lim_{x \to 0} \frac{1}{x^3} \int_0^x \frac{t^2}{t^4 + 1} dt$.
- 7. Suppose $f'(x) \ge 0$ for all values of x, and that f(1) = 0. Which of the following statements must be true of the function

$$g(x) = \int_0^x f(t) \, dt?$$

Give reasons for your answers.

- (a) g is a differentiable function of x.
- (b) g is a continuous function of x.
- (c) The graph of g has a horizontal tangent at x = 1.
- (d) g has a local maximum at x = 1.
- (e) g has a local minimum at x = 1.

- (f) The graph of g has an inflection point at x = 1.
- (g) The graph of dg/dx crosses the x-axis at x = 1.