Math 21B-B - Homework Set 4

Section 5.6:

1. Evaluate the following integrals.
(a) $\int_{0}^{\frac{\pi}{4}} \tan x \sec ^{2} x d x$
(b) $\int_{-\frac{\pi}{4}}^{0} \tan x \sec ^{2} x d x$
2. Evaluate the following integrals.
(a) $\int_{0}^{\sqrt{7}} t\left(t^{2}+1\right)^{1 / 3} d t$
(b) $\int_{-\sqrt{7}}^{0} t\left(t^{2}+1\right)^{1 / 3} d t$
3. Evaluate the following integrals.
(a) $\int_{0}^{1} \frac{x^{3}}{\sqrt{x^{4}+9}} d x$
(b) $\int_{-1}^{0} \frac{x^{3}}{\sqrt{x^{4}+9}} d x$
4. Evaluate the following integrals.
(a) $\int_{0}^{\sqrt[3]{\pi^{2}}} \sqrt{\theta} \cos ^{2}\left(\theta^{3 / 2}\right) d \theta$
(b) $\int_{-1}^{-1 / 2} t^{-2} \sin ^{2}\left(1+\frac{1}{t}\right) d t$
5. Find $\int_{2}^{4} \frac{d x}{x \ln x}$.
6. Find $\int_{0}^{\ln \sqrt{3}} \frac{e^{x} d x}{1+e^{2 x}}$.
7. Find the area between the graph of $y=x \sqrt{4-x^{2}}$ and the x-axis.
8. Find the total area of the shaded region:

9. Find the total area of the shaded region:
10.

10. Find the total area of the shaded region:
58.

11. Find the area between the graphs of $y=2 x-x^{2}$ and $y=-3$.
12. Find the area between the graphs of $y=\sqrt{|x|}$ and $5 y=x+6$ (How many intersection points are there?).
13. Find the area between the graphs of $y=3-x^{2}$ and $y=-1$.
14. Suppose that $F(x)$ is an antiderivative of $f(x)=(\sin x) / x, x>0$. Express

$$
\int_{1}^{3} \frac{\sin (2 x)}{x} d x
$$

in terms of F.
15. (a) Show that if f is odd on $[-a, a]$ then $\int_{-a}^{a} f(x) d x=0$.
(b) Test the result in part (a) with $f(x)=\sin x$ and $a=\pi / 2$.
16. A basic property of definite integrals is their invariance under translation, as expressed by the equation

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\int_{a-c}^{b-c} f(x+c) d x \tag{1}
\end{equation*}
$$

Use a substitution to verify Equation (1).

