Math 21B-B - Homework Set 4

Section 5.6:

- 1. Evaluate the following integrals.
 - (a) $\int_{0}^{\frac{\pi}{4}} \tan x \sec^{2} x \, dx$ (b) $\int_{-\frac{\pi}{4}}^{0} \tan x \sec^{2} x \, dx$
- 2. Evaluate the following integrals.

(a)
$$\int_{0}^{\sqrt{7}} t (t^2 + 1)^{1/3} dt$$

(b) $\int_{-\sqrt{7}}^{0} t (t^2 + 1)^{1/3} dt$

3. Evaluate the following integrals.

(a)
$$\int_{0}^{1} \frac{x^{3}}{\sqrt{x^{4}+9}} dx$$

(b) $\int_{-1}^{0} \frac{x^{3}}{\sqrt{x^{4}+9}} dx$

4. Evaluate the following integrals.

(a)
$$\int_{0}^{\sqrt[3]{\pi^2}} \sqrt{\theta} \cos^2\left(\theta^{3/2}\right) d\theta$$

(b)
$$\int_{-1}^{-1/2} t^{-2} \sin^2\left(1 + \frac{1}{t}\right) dt$$

5. Find
$$\int_{2}^{4} \frac{dx}{x \ln x}.$$

- 6. Find $\int_0^{\ln\sqrt{3}} \frac{e^x \, dx}{1 + e^{2x}}$.
- 7. Find the area between the graph of $y = x\sqrt{4-x^2}$ and the *x*-axis.

8. Find the total area of the shaded region:

9. Find the total area of the shaded region:

10. Find the total area of the shaded region:

- 11. Find the area between the graphs of $y = 2x x^2$ and y = -3.
- 12. Find the area between the graphs of $y = \sqrt{|x|}$ and 5y = x + 6 (How many intersection points are there?).
- 13. Find the area between the graphs of $y = 3 x^2$ and y = -1.
- 14. Suppose that F(x) is an antiderivative of $f(x) = (\sin x)/x$, x > 0. Express

$$\int_{1}^{3} \frac{\sin(2x)}{x} \, dx$$

in terms of F.

- 15. (a) Show that if f is odd on [-a, a] then $\int_{-a}^{a} f(x) dx = 0$.
 - (b) Test the result in part (a) with $f(x) = \sin x$ and $a = \pi/2$.
- 16. A basic property of definite integrals is their invariance under translation, as expressed by the equation

$$\int_{a}^{b} f(x) \, dx = \int_{a-c}^{b-c} f(x+c) \, dx. \tag{1}$$

Use a substitution to verify Equation (1).