Math 21B-B - Homework Set 5

Section 6.1:

1. Find the volume of the solid that lies between planes perpendicular to the x-axis at x = -1 and x = 1. The cross-sections perpendicular to the x-axis are circular disks whose diameters run from the parabola $y = x^2$ to the parabola $y = 2 - x^2$.

2. Find the volume of the following solid: the base of a solid is the region between the curve $y = 2\sqrt{\sin(x)}$ and the interval $[0, \pi]$ on the x-axis. The cross-sections perpendicular to the x-axis are

(a) equilateral triangles with bases running from the x-axis to the curve as shown in the accompanying figure.

- (b) squares with bases running from the x-axis to the curve.
- 3. Find the volume of the given pyramid, which has a square base of area 9 and height 5.

4-5. (See Figures 15 and 16 below.) In each case, find the volume of the solid generated by revolving the shaded region about the given axis.

- 6. Find the volume of the solid generated by revolving the region bounded by $y = x^3$, y = 0, and x = 2 about the x-axis.
- 7. Find the volume of the solid generated by revolving the region about the given line where the region is the region in the first quadrant bounded above by the line $y = \sqrt{2}$, below by the curve $y = \sec(x)\tan(x)$, and on the left by the y-axis, about the line $y = \sqrt{2}$.
- 8. Find the volume of the solid generated by revolving the region bounded by $x = \sqrt{5y^2}$, x = 0, y = -1, y = 1 about the y-axis.
- 9. Find the volume of the solid generated by revolving the region bounded by $x = \sqrt{2y}/(y^2 + 1)$, x = 0, y = 1 about the y-axis.
- 10. Find the volume of the solid generated by revolving the region bounded by y = x, y = 1, x = 0 about the x-axis.
- 11. Find the volume of the solid generated by revolving the region bounded by $y = \sec(x)$, $y = \tan(x)$, x = 0, x = 1 about the x-axis.

- 12. Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y = 2 and x = 0 about
 - (a) the x-axis.
 - (b) the y-axis.
 - (c) the line y = 2.
 - (d) the line x = 4.
- 13. The volume of a torus The disk $x^2 + y^2 \leq a^2$ is revolved about the line x = b (b > a) to generate a solid shaped like a doughnut and called a *torus*. Find its volume. (*Hint:* $\int_{-a}^{a} \sqrt{a^2 y^2} dy = \pi a^2/2$, since it is the area of a semicircle of radius a.)

Section 6.2

In exercises 1-2, use the shell method to find the volumes of the solids generated by revolving the shaded region about the indicated axis.

1.

- 3. Use the shell method to find the volume of the solid generated by revolving the region y = 2x, y = x/2, x = 1 about the y-axis.
- 4. Let

$$f(x) = \begin{cases} \frac{\sin(x)}{x} & 0 < x \le \pi\\ 1 & x = 0 \end{cases}$$

- (a) Show that $xf(x) = \sin(x), 0 \le x \le \pi$.
- (b) Find the volume of the solid generated by revolving the shaded region about the y-axis in the accompanying figure.

For problems 5-6, use the shell method to find the volumes of the solids generated by revolving the regions bounded by the curves and lines about the x-axis.

5. $x = y^2$, x = -y, y = 2, $y \ge 0$.

- 6. y = |x|, y = 1.
- 7. Use the shell method to find the volumes of the solids generated by revolving the shaded regions about the indicated axes.
 - (a) The x-axis
 - (b) The line y = 1

- (c) The line y = 8/5
- (d) The line y = -2/5

8. Find the volume of the solid generated by revolving the region enclosed by the graphs of $y = e^{x/2}$, y = 1, and $x = \ln(3)$ about the x-axis.

Section 6.3

- 1. Find the length of the curve $y = \frac{1}{3}(x^2 + 2)^{3/2}$ from x = 0 to x = 3.
- 2. Find the length of the curve $x = \frac{y^3}{6} + \frac{1}{2y}$ from y = 2 to y = 3.
- 3. Find the length of the curve $x = \int_0^y \sqrt{\sec^4 t 1} dt$ for $-\frac{\pi}{4} \le y \le \frac{\pi}{4}$.