Math 21B-B - Homework Set 5

Section 6.1:

1. Let's consider the area of a cross-section of the solid when $-1 \leq x \leq 1$. The diameter of the circular cross-section at x is given by

$$
\text { DiAmeter }=\left(2-x^{2}\right)-x^{2}=2-2 x^{2}
$$

Thus, the area of the cross-section is given by

$$
\begin{aligned}
& \text { AREA }=\pi \cdot\left[\frac{1}{2}\left(2-2 x^{2}\right)\right]^{2}=\pi \cdot\left(1-x^{2}\right)^{2}=\pi \cdot\left(1-2 x^{2}+x^{4}\right) \\
& \qquad \begin{aligned}
\text { VOLUME } & =\int_{-1}^{1} \pi \cdot\left(1-2 x^{2}+x^{4}\right) d x \\
& =\pi \int_{-1}^{1}\left(1-2 x^{2}+x^{4}\right) d x \\
& =\left.\pi \cdot\left(x-\frac{2}{3} x^{3}+\frac{1}{5} x^{5}\right)\right|_{-1} ^{1} \\
& =\pi \cdot\left(1-\frac{2}{3}+\frac{1}{5}\right)-\pi \cdot\left(-1+\frac{2}{3}-\frac{1}{5}\right) \\
& =\pi \cdot\left(2-\frac{4}{3}+\frac{2}{5}\right) \\
& =\frac{16}{15} \pi
\end{aligned}
\end{aligned}
$$

2. a. Let's consider the area of a cross-section of the solid when $0 \leq x \leq \pi$. The base of the triangular cross-section at x is given by

$$
\mathrm{BASE}=2 \sqrt{\sin x}
$$

The height of the triangle is given by

$$
\text { HeIGht }=\sqrt{3} \cdot \sqrt{\sin x} . \quad(\text { Use properties of equilateral triangles })
$$

Therefore, the area of the cross-section is given by

$$
\text { AREA }=\left(\frac{1}{2}\right)(2 \sqrt{\sin x})(\sqrt{3} \sqrt{\sin x})=\sqrt{3} \sin x
$$

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{\pi} \sqrt{3} \sin x d x \\
& =-\left.\sqrt{3} \cos x\right|_{0} ^{\pi} \\
& =\sqrt{3}-(-\sqrt{3}) \\
& =2 \sqrt{3}
\end{aligned}
$$

b. Let's consider the area of a cross-section of the solid when $0 \leq x \leq \pi$. The base of the square cross-section at x is given by

$$
\text { BASE }=2 \sqrt{\sin x}
$$

Therefore, the area of the cross-section is given by

$$
\text { AREA }=(2 \sqrt{\sin x})^{2}=4 \sin x
$$

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{\pi} 4 \sin x d x \\
& =-\left.4 \cos x\right|_{0} ^{\pi} \\
& =4-(-4) \\
& =8
\end{aligned}
$$

3. We divide the pyramid into cross-sections parallel to the base. The crosssection at distance x from the tip of the pyramid is a square whose sides have length $3 x / 5$ and area

$$
A(x)=\left(\frac{3 x}{5}\right)^{2}=\frac{9}{25} x^{2}
$$

Hence the volume is

$$
\begin{aligned}
\int_{0}^{5} A(x) d x & =\int_{0}^{5} \frac{9}{25} x^{2} d x \\
& \left.=\frac{3}{25} x^{3}\right]_{0}^{5} \\
& =15
\end{aligned}
$$

4. We are rotating about the x-axis, so we want to take the integral with respect to x. We want $0 \leq x \leq 2$. The radius of a cross-section is given by

$$
\text { RADIUS }=-\frac{1}{2} x+1 \quad(\text { Between graph and } x \text {-axis })
$$

Therefore, the area of the cross-section is given by

$$
\begin{aligned}
& \text { AREA }=\pi \cdot\left(-\frac{1}{2} x+1\right)^{2}
\end{aligned}=\pi \cdot\left(\frac{1}{4} x^{2}-x+1\right) ~ \begin{aligned}
\text { VOLUME } & =\int_{0}^{2} \pi \cdot\left(\frac{1}{4} x^{2}-x+1\right) d x \\
& =\left.\pi \cdot\left(\frac{1}{12} x^{3}-\frac{1}{2} x^{2}+x\right)\right|_{0} ^{2} \\
& =\pi \cdot\left(\frac{8}{12}-2+2\right) \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

5. We are rotating about the y-axis, so we want to take the integral with respect to y. We want $0 \leq y \leq 2$. The radius of the cross-section is given by

$$
\text { RADIUS }=\frac{3 y}{2} \quad(\text { Between the graph and the } y \text {-axis })
$$

Therefore, the area of the cross-section is given by

$$
\begin{aligned}
& \operatorname{AREA}=\pi \cdot\left(\frac{3 y}{2}\right)^{2}=\pi \cdot \frac{9 y^{2}}{4} \\
& \qquad \begin{aligned}
\text { VOLUME } & =\int_{0}^{2} \pi \cdot \frac{9 y^{2}}{4} d y \\
& =\left.\pi \cdot \frac{3 y^{3}}{4}\right|_{0} ^{2} \\
& =6 \pi
\end{aligned}
\end{aligned}
$$

6. We are rotating about the x-axis, so we want to take the integral with respect to y. We want $0 \leq x \leq 2$. The radius of the cross-section is given by

$$
\text { RADIUS }=x^{3}
$$

Therefore, the area of the cross-section is given by

$$
\mathrm{AREA}=\pi\left(x^{3}\right)^{2}=\pi \cdot x^{6}
$$

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{2} \pi \cdot x^{6} d x \\
& =\left.\frac{\pi}{7} x^{7}\right|_{0} ^{2} \\
& =\frac{128 \pi}{7}
\end{aligned}
$$

7. We are rotating about the line $y=\sqrt{2}$, so we want to take the integral with respect to x. We want $0 \leq x \leq \sqrt{2}$. The radius of the cross-section is given by

$$
\begin{aligned}
& \text { RADIUS }=\sqrt{2}-\sec x \tan x \quad(\text { Between } y=\sqrt{2} \text { and } y=\sec x \tan x) \\
& \\
& \begin{aligned}
\text { AREA } & =\pi \cdot(\sqrt{2}-\sec x \tan x)^{2}=\pi \cdot\left(2-2 \sqrt{2} \sec x \tan x+\sec ^{2} x \tan ^{2} x\right) \\
\text { VOLUME } & =\int_{0}^{\pi / 4} \pi \cdot\left(2-2 \sqrt{2} \sec x \tan x+\sec ^{2} x \tan ^{2} x\right) d x \\
& =\left.\pi \cdot\left(2 x-2 \sqrt{2} \sec x+\frac{1}{3} \tan ^{3} x\right)\right|_{0} ^{\pi / 4} \quad(\text { Use u-substitution }) \\
& =\pi \cdot\left(\frac{\pi}{2}-2 \sqrt{2} \cdot \sqrt{2}+\frac{1}{3}\right)-\pi \cdot(-2 \sqrt{2}) \\
& =\pi \cdot\left(\frac{\pi}{2}-4+\frac{1}{3}+2 \sqrt{2}\right) \\
& =\pi \cdot\left(\frac{\pi}{2}-\frac{11}{3}+2 \sqrt{2}\right)
\end{aligned}
\end{aligned}
$$

8. \quad RADIUS $=\sqrt{5} y^{2}$

$$
\mathrm{AREA}=\pi \cdot\left(\sqrt{5} y^{2}\right)^{2}=5 \pi y^{4}
$$

$$
\begin{aligned}
\text { VOLUME } & =\int_{-1}^{1} 5 \pi y^{4} d y \\
& =\left.\pi y^{5}\right|_{-1} ^{1} \\
& =\pi-(-\pi) \\
& =2 \pi
\end{aligned}
$$

9. \quad RADIUS $=\frac{\sqrt{2 y}}{y^{2}+1}$

$$
\begin{aligned}
& \operatorname{AREA}=\pi \cdot\left(\frac{\sqrt{2 y}}{y^{2}+1}\right)^{2}=\pi \cdot \frac{2 y}{\left(y^{2}+1\right)^{2}} \\
& \qquad \begin{aligned}
\text { VOLUME } & =\int_{0}^{1} \pi \cdot \frac{2 y}{\left(y^{2}+1\right)^{2}} d y \\
& =\int_{1}^{2} \pi \cdot \frac{1}{u^{2}} d u \\
& =\pi \cdot-\left.\frac{1}{u}\right|_{1} ^{2} \\
& =-\frac{\pi}{2}+\pi \\
& =\frac{\pi}{2}
\end{aligned}
\end{aligned}
$$

10. To find the volume of this solid, we are going to use the method of washers. We have outer radius $R(x)=1$ and inner radius $r(x)=x$.

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{1} \pi \cdot\left[R(x)^{2}-r(x)^{2}\right] d x \\
& =\int_{0}^{1} \pi \cdot\left(1-x^{2}\right) d x \\
& =\left.\pi \cdot\left(x-\frac{1}{3} x^{3}\right)\right|_{0} ^{1} \\
& =\pi \cdot\left(1-\frac{1}{3}\right)-\pi \cdot\left(0-\frac{1}{3} \cdot 0\right) \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

11. We have the outer radius $R(x)=\sec x$ and inner radius $r(x)=\tan x$.

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{1} \pi \cdot\left(\sec ^{2} x-\tan ^{2} x\right) d x \\
& =\int_{0}^{1} \pi d x \\
& =\left.(\pi x)\right|_{0} ^{1} \\
& =\pi
\end{aligned}
$$

12. a. Rotating about the x-axis

To find the volume of the solid, we will use the method of washers. The outer radius $R=2$ and the inner radius $r=\sqrt{x}$.

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{4} \pi \cdot\left(2^{2}-(\sqrt{x})^{2}\right) d x \\
& =\pi \int_{0}^{4} 4-x d x \\
& =\left.\pi \cdot\left(4 x-\frac{1}{2} x^{2}\right)\right|_{0} ^{4} \\
& =\pi \cdot\left(16-\frac{1}{2} \cdot 16\right) \\
& =8 \pi
\end{aligned}
$$

b. Rotating about the y-axis

In this case we will want to integrate with respect to y. Therefore we need to rewrite the the functions with y as the variable. This gives $0 \leq y \leq 2$ and the radius $r=y^{2}$.

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{2} \pi \cdot\left(y^{2}\right)^{2} d y \\
& =\pi \int_{0}^{2} y^{4} d y \\
& =\left.\frac{\pi}{5} y^{5}\right|_{0} ^{2} \\
& =\frac{32 \pi}{5}
\end{aligned}
$$

c. Rotating about the line $y=2$

In this case, we are integrating with respect to x. We have $0 \leq x \leq 4$. The radius is the distance between the line $y=2$ and the graph $y=\sqrt{x}$. Therefore, the radius is given by $r=2-\sqrt{x}$.

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{4} \pi \cdot(2-\sqrt{x})^{2} d x \\
& =\pi \int_{0}^{4} 4-4 \sqrt{x}+x d x \\
& =\left.\pi \cdot\left(4 x-\frac{8}{3} x^{3 / 2}+\frac{1}{2} x^{2}\right)\right|_{0} ^{4} \\
& =\pi \cdot\left(16-\frac{8}{3} \cdot 8+\frac{1}{2} \cdot 16\right) \\
& =\frac{8 \pi}{3}
\end{aligned}
$$

d. Rotating about the line $x=4$

In this case we are going to use the washer method, and we will integrate with respect to y. We have $0 \leq y \leq 2$. The outer radius is $R=4$ and the inner radius is $r=4-y^{2}$.

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{2} \pi \cdot\left[4^{2}-\left(4-y^{2}\right)\right] d y \\
& =\pi \int_{0}^{2} 16-\left(16-8 y^{2}+y^{4}\right) d y \\
& =\pi \int_{0}^{2} 8 y^{2}-y^{4} d y \\
& =\left.\pi \cdot\left(\frac{8}{3} y^{3}-\frac{1}{5} y^{5}\right)\right|_{0} ^{2} \\
& =\pi \cdot\left(\frac{64}{3}-\frac{32}{5}\right) \\
& =\frac{224 \pi}{15}
\end{aligned}
$$

13. We start with the disc given by $x^{2}+y^{2} \leq a^{2}$, and we want to revolve it around the line $x=b$ for $b>a$. We will use the method of washers, integrating with respect to y where $-a \leq y \leq a$. The outer radius is $R=b-\left(-\sqrt{a^{2}-y^{2}}\right)=b+\sqrt{a^{2}-y^{2}}$ and the inner radius is given by $r=b-\sqrt{a^{2}-y^{2}}$.

$$
\begin{aligned}
\text { VOLUME } & =\int_{-a}^{a} \pi \cdot\left[\left(b+\sqrt{a^{2}-y^{2}}\right)^{2}-\left(b-\sqrt{a^{2}-y^{2}}\right)^{2}\right] d y \\
& =\pi \int_{-a}^{a}\left[\left(b^{2}+2 b \sqrt{a^{2}-y^{2}}+\left(a^{2}-y^{2}\right)\right)-\left(b^{2}-2 b \sqrt{a^{2}-y^{2}}+\left(a^{2}-y^{2}\right)\right)\right] d y \\
& =\pi \int_{-a}^{a} 4 b \sqrt{a^{2}-y^{2}} d y \\
& =4 b \pi \int_{-a}^{a} \sqrt{a^{2}-y^{2}} d y \\
& =4 b \pi \cdot \frac{\pi a^{2}}{2} \\
& =2 a^{2} b \pi^{2}
\end{aligned}
$$

Section 6.2

1. We are going to integrate with respect to x where $0 \leq x \leq 2$. We have the shell radius $r=x$ and the shell height $h=1+\frac{x^{2}}{4}$.

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{2} 2 \pi r h d x \\
& =2 \pi \int_{0}^{2} x\left(1+\frac{x^{2}}{4}\right) d x \\
& =2 \pi \int_{0}^{2} x+\frac{x^{3}}{4} d x \\
& =\left.2 \pi \cdot\left(\frac{1}{2} x^{2}+\frac{x^{4}}{16}\right)\right|_{0} ^{2} \\
& =2 \pi \cdot\left(\frac{1}{2} \cdot 4+\frac{1}{16} \cdot 16\right) \\
& =6 \pi
\end{aligned}
$$

2. We are going to integrate with respect to y where $0 \leq y \leq \sqrt{3}$. We have the shell radius $r=y$ and the shell height $h=3-\left(3-y^{2}\right)=y^{2}$.

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{\sqrt{3}} 2 \pi \cdot y \cdot y^{2} d y \\
& =2 \pi \int_{0}^{\sqrt{3}} y^{3} d y \\
& =\left.2 \pi \cdot \frac{1}{4} y^{4}\right|_{0} ^{\sqrt{3}} \\
& =2 \pi \cdot \frac{9}{4} \\
& =\frac{9 \pi}{2}
\end{aligned}
$$

3. We are going to integrate with respect to x where $0 \leq x \leq 1$. We have the shell radius $r=x$ and the shell height $h=2 x-\frac{x}{2}=\frac{3 x}{2}$.

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{1} 2 \pi x\left(\frac{3 x}{2}\right) d x \\
& =2 \pi \int_{0}^{1} \frac{3 x^{2}}{2} d x \\
& =\left.2 \pi \cdot \frac{x^{3}}{2}\right|_{0} ^{1} \\
& =2 \pi \cdot \frac{1}{2} \\
& =\pi
\end{aligned}
$$

4. Let $f(x)=\left\{\begin{array}{lr}(\sin x) / x & 0<x \leq \pi \\ 1 & x=0\end{array}\right.$
a. Show that $x f(x)=\sin (x)$ for $0 \leq x \leq \pi$.

Begin by looking at $x f(x)=\left\{\begin{array}{lr}\sin x & 0<x \leq \pi \\ x & x=0\end{array}\right.$.
Notice that $\sin x=x$ when $x=0$.
Thus $x f(x)=\left\{\begin{array}{ll}\sin x & 0<x \leq \pi \\ \sin x & x=0\end{array}=\sin x\right.$
b. We are going to integrate with respect to x where $0 \leq x \leq \pi$. We have the shell radius $r=x$ and the shell height is given by $h=f(x)$.

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{\pi} 2 \pi x f(x) d x \\
& =2 \pi \int_{0}^{\pi} \sin x d x \quad(\text { by part a) } \\
& =\left.2 \pi \cdot(-\cos x)\right|_{0} ^{\pi} \\
& =2 \pi[-1-(-1)] \\
& =4 \pi
\end{aligned}
$$

5. We are going to integrate with respect to y where $0 \leq y \leq 2$. We have the shell radius $r=y$ and the shell height is given by $h=y^{2}-(-y)=y^{2}+y$.

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{2} 2 \pi \cdot y\left(y^{2}+y\right) d y \\
& =2 \pi \int_{0}^{2} y^{3}+y^{2} d y \\
& =\left.2 \pi \cdot\left(\frac{1}{4} y^{4}+\frac{1}{3} y^{3}\right)\right|_{0} ^{2} \\
& =2 \pi \cdot\left(4+\frac{8}{3}\right) \\
& =\frac{40 \pi}{3}
\end{aligned}
$$

6. We are going to integrate with respect to y where $0 \leq y \leq 1$. We have the shell radius $r=y$ and the shell height is given by $h=y-(-y)=2 y$.

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{1} 2 \pi \cdot(y)(2 y) d y \\
& =2 \pi \int_{0}^{1} 2 y^{2} d y \\
& =\left.2 \pi \cdot \frac{2}{3} y^{3}\right|_{0} ^{1} \\
& =2 \pi \cdot \frac{2}{3} \\
& =\frac{4 \pi}{3}
\end{aligned}
$$

7. In each part, we are going to integrate with respect to y where $0 \leq y \leq 1$. The shell height will always be $h=12 y^{2}-12 y^{3}$, and the shell radius will change depending on which horizontal line we use.
a. In this case we have the shell radius $r=y$
(the distance between y and the x-axis).

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{1} 2 \pi \cdot y\left(12 y^{2}-12 y^{3}\right) d y \\
& =2 \pi \int_{0}^{1} 12 y^{3}-12 y^{4} d y \\
& =\left.2 \pi \cdot\left(3 y^{4}-\frac{12}{5} y^{5}\right)\right|_{0} ^{1} \\
& =2 \pi\left(3-\frac{12}{5}\right) \\
& =\frac{6 \pi}{5}
\end{aligned}
$$

b. In this case we have the shell radius $r=1-y$ (the distance between the line $y=1$ and y).

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{1} 2 \pi(1-y)\left(12 y^{2}-12 y^{3}\right) d y \\
& =2 \pi \int_{0}^{1} 12 y^{2}-24 y^{3}+12 y^{4} d y \\
& =\left.2 \pi \cdot\left(4 y^{3}-6 y^{4}+\frac{12}{5} y^{5}\right)\right|_{0} ^{1} \\
& =2 \pi \cdot\left(4-6+\frac{12}{5}\right) \\
& =\frac{4 \pi}{5}
\end{aligned}
$$

c. In this case we have the shell radius $r=\frac{8}{5}-y$ (the distance between the line $y=\frac{8}{5}$ and y).

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{1} 2 \pi\left(\frac{8}{5}-y\right)\left(12 y^{2}-12 y^{3}\right) d y \\
& =2 \pi \int_{0}^{1} \frac{96}{5} y^{2}-\frac{156}{5} y^{3}+12 y^{4} d y \\
& =\left.2 \pi\left(\frac{32}{5} y^{3}-\frac{39}{5} y^{4}+\frac{12}{5} y^{5}\right)\right|_{0} ^{1} \\
& =2 \pi\left(\frac{32}{5}-\frac{39}{5}+\frac{12}{5}\right) \\
& =2 \pi
\end{aligned}
$$

d. In this case we have the shell radius $r=y-\left(-\frac{2}{5}\right)=y+\frac{2}{5}$ (the distance between y and the line $y=-\frac{2}{5}$)

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{1} 2 \pi\left(y+\frac{2}{5}\right)\left(12 y^{2}-12 y^{3}\right) d y \\
& =2 \pi \int_{0}^{1} \frac{24}{5} y^{2}+\frac{36}{5} y^{3}-12 y^{4} d y \\
& =\left.2 \pi\left(\frac{8}{5} y^{3}+\frac{9}{5} y^{4}-\frac{12}{5} y^{5}\right)\right|_{0} ^{1} \\
& =2 \pi\left(\frac{8}{5}+\frac{9}{5}-\frac{12}{5}\right) \\
& =2 \pi
\end{aligned}
$$

8. Suppose we try to use the method of shells. We would want to integrate with respect to y where $1 \leq y \leq \sqrt{3}$. The shell radius $r=y$ and the shell height $h=\ln 3-\ln y^{2}=\ln \left(3-y^{2}\right)$.

$$
\begin{aligned}
\mathrm{VOLUME} & =\int_{1}^{\sqrt{3}} 2 \pi y \ln \left(3-y^{2}\right) d y \\
& =\int_{2}^{0}-\pi \ln u d u \\
& =\int_{0}^{2} \pi \ln u d u
\end{aligned}
$$

Notice, that we do not want to take the integral of $\ln x$, so let's rethink our choice of method.

Suppose we try the method of washers. In this case we will integrate with respect to x where $0 \leq x \leq \ln 3$. The outer radius $R=e^{x / 2}$ and the inner radius $r=1$.

$$
\begin{aligned}
\text { VOLUME } & =\int_{0}^{\ln 3} \pi\left(\left(e^{x / 2}\right)^{2}-1^{2}\right) d x \\
& =\pi \int_{0}^{\ln 3} e^{x}-1 d x \\
& =\left.\pi\left(e^{x}-x\right)\right|_{0} ^{\ln 3} \\
& =\pi[(3-\ln 3)-(1-0)] \\
& =\pi(2-\ln 3)
\end{aligned}
$$

Section 6.3

1. $y=\frac{1}{3}\left(x^{2}+2\right)^{3 / 2}$ from $x=0$ to $x=3$.

$$
\begin{aligned}
\frac{d y}{d t}=\frac{1}{3} & \cdot \frac{3}{2}\left(x^{2}+2\right)^{1 / 2} \cdot 2 x=x \sqrt{x^{2}+2} \\
L & =\int_{0}^{3} \sqrt{1+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{0}^{3} \sqrt{1+\left(x \sqrt{x^{2}+2}\right)^{2}} d t \\
& =\int_{0}^{3} \sqrt{1+x^{2}\left(x^{2}+2\right)} d t \\
& =\int_{0}^{3} \sqrt{x^{4}+2 x^{2}+1} d t \\
& =\int_{0}^{3} \sqrt{\left(x^{2}+1\right)^{2}} d t \\
& =\int_{0}^{3} x^{2}+1 d t \\
& =\left.\left(\frac{1}{3} x^{3}+x\right)\right|_{0} ^{3} \\
& =9+3 \\
& =12
\end{aligned}
$$

2. $x=\frac{y^{3}}{6}+\frac{1}{2 y}$ from $y=2$ to $y=3$.

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{y^{2}}{2}-\frac{1}{2 y^{2}}=\frac{y^{4}-1}{2 y^{2}} \\
L & =\int_{2}^{3} \sqrt{1+\left(\frac{d x}{d t}\right)^{2}} d t \\
& =\int_{2}^{3} \sqrt{1+\left(\frac{y^{4}-1}{2 y^{2}}\right)^{2}} d t \\
& =\int_{2}^{3} \sqrt{1+\frac{y^{8}-2 y^{4}+1}{4 y^{4}}} d t \\
& =\int_{2}^{3} \sqrt{\frac{y^{8}+2 y^{4}+1}{4 y^{4}}} d t \\
& =\int_{2}^{3} \sqrt{\left(\frac{y^{4}+1}{2 y^{2}}\right)^{2}} d t \\
& =\int_{2}^{3} \frac{y^{4}+1}{2 y^{2}} d t \\
& =\int_{2}^{3} \frac{y^{2}}{2}+\frac{1}{2 y^{2}} d t \\
& =\left.\left(\frac{y^{3}}{6}-\frac{1}{2 y}\right)\right|_{2} ^{3} \\
& =\left(\frac{9}{2}-\frac{1}{6}\right)-\left(\frac{4}{3}-\frac{1}{4}\right) \\
& =\frac{13}{4}
\end{aligned}
$$

18. $x=\int_{0}^{y} \sqrt{\sec ^{4} t-1} d t \quad$ for $\quad-\frac{\pi}{4} \leq y \leq \frac{\pi}{4}$.

$$
\frac{d x}{d y}=\sqrt{\sec ^{4} y-1}
$$

$$
\begin{aligned}
L & =\int_{-\pi / 4}^{\pi / 4} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \\
& =\int_{-\pi / 4}^{\pi / 4} \sqrt{1+\sec ^{4} y-1} d y \\
& =\int_{-\pi / 4}^{\pi / 4} \sqrt{\sec ^{4} y} d y \\
& =\int_{-\pi / 4}^{\pi / 4} \sec ^{2} y d y \\
& =\left.\tan y\right|_{-\pi / 4} ^{\pi / 4} \\
& =1-(-1) \\
& =2
\end{aligned}
$$

