Math 21B - Homework Set 6

Section 6.5:

1. A force of $90 N$ stretches a spring 1 m beyond its natural length. We can find the spring constant k by using Hooke's Law:

$$
90=k
$$

Thus we know that the force it takes to move the spring x meters beyond its natural length is given by $F(x)=90 x$. To find the work it takes to stretch the spring 5 m beyond its natural length we take the following integral:

$$
\begin{aligned}
W & =\int_{0}^{5} F(x) d x \\
& =\int_{0}^{5} 90 x d x \\
& =\left.45 x^{2}\right|_{0} ^{5} \\
& =1125 J
\end{aligned}
$$

2. Note that since the force is acting toward the origin, $F(x)=-\frac{k}{x^{2}}$. To find the work done as the particle moves from point b to point a, we can use the following integral:

$$
\begin{aligned}
W & =\int_{b}^{a}-\frac{k}{x^{2}} d x \\
& =\left.\frac{k}{x}\right|_{b} ^{a} \\
& =\frac{k}{a}-\frac{k}{b} \\
& =\frac{k(b-a)}{a b}
\end{aligned}
$$

3. a. Work to empty the tank by pumping the water back to ground level.

Consider a horizontal "slab" of water at level y with width Δy. The force $F_{\text {slab }}$ to lift the slab is given by:

$$
\begin{aligned}
F_{\text {slab }} & =62.4 \cdot V_{\text {slab }} \\
& =62.4 \cdot \Delta y \cdot 10 \cdot 12 \\
& =62.4 \cdot 120 \Delta y l b
\end{aligned}
$$

To compute the work needed to pump this slab out of the tank, we recall that $F_{\text {slab }}$ must act over a distance of $y \mathrm{ft}$. Thus we have:

$$
W_{\text {slab }}=F_{\text {slab }} \cdot d=62.4 \cdot 120 y \Delta y f t \cdot l b
$$

To approximate the total work W necessary to empty the tank, we could use a Riemann sum $f(y)=7488 y$ over the interval $0 \leq y \leq 20$.

$$
W=\sum_{0}^{20} 64.2 \cdot 120 y \Delta y f t \cdot l b
$$

To find the exact value, we take the limit of the this sum over progressively finer partitions.

$$
\begin{aligned}
W & =\int_{0}^{20} 64.2 \cdot 120 y d y \\
& =\int_{0}^{20} 7488 y d y \\
& =\left.3744 y^{2}\right|_{0} ^{20} \\
& =3744 \cdot 400 \\
& =1497600 \mathrm{ft} \cdot \mathrm{lb}
\end{aligned}
$$

b. The pump moves $250 \mathrm{ft}-\mathrm{lb} / \mathrm{sec}$, the time it will take to empty the tank is:

$$
\text { time }=\frac{1497600 \mathrm{ft} \cdot \mathrm{lb}}{250 \mathrm{ft}-\mathrm{lb} / \mathrm{sec}}=5990.4 \mathrm{sec} \approx 1 \mathrm{hr} 40 \mathrm{~min}
$$

c. The amount of work it takes to empty out the first half of the tank is given by:

$$
\begin{aligned}
\text { Work } & =\int_{0}^{10} 7488 y d y \\
& =\left.3744 y^{2}\right|_{0} ^{10} \\
& =3744 \cdot 100 \\
& =374400 \mathrm{ft}-\mathrm{lb}
\end{aligned}
$$

To see how much time this amount of work will take we use:

$$
t=\frac{374400}{250}=1497.6 \mathrm{sec}
$$

The last thing to note is that $1497.6 \mathrm{sec} \approx 25 \mathrm{~min}$.
d. i. If water weighs $62.26 \mathrm{lb} / \mathrm{ft}^{3}$

$$
\begin{aligned}
W & =\int_{0}^{20} 62.26 \cdot 120 y d y \\
& =\int_{0}^{20} 7471.2 y d y \\
& =\left.3735.2 y^{2}\right|_{0} ^{20} \\
& =3735.6 \cdot 400 \\
& =1494240 \mathrm{ft}-\mathrm{lb} \\
t & =\frac{1494240}{250} \\
& =5976.96 \mathrm{sec} \\
& \approx 1 \mathrm{hr} 40 \mathrm{~min}
\end{aligned}
$$

ii. If water weighs $62.59 \mathrm{lb} / \mathrm{ft}^{3}$

$$
\begin{aligned}
W & =\int_{0}^{20} 62.59 \cdot 120 y d y \\
& =\int_{0}^{20} 7510.8 y d y \\
& =\left.3755.4 y^{2}\right|_{0} ^{20} \\
& =3755.4 \cdot 400 \\
& =1502160 \mathrm{ft}-\mathrm{lb} \\
t & =\frac{1502160}{250} \\
& =6008.64 \mathrm{sec} \\
& \approx 1 \mathrm{hr} 40 \mathrm{~min}
\end{aligned}
$$

4. a. Let ρ be the x-coordinate of the second electron. Then $r^{2}=(\rho-1)^{2}$.

$$
\begin{aligned}
W & =\int_{-1}^{0} F(r) d r \\
& =\int_{-1}^{0} \frac{23 \times 10^{-29}}{(\rho-1)^{2}} d \rho \\
& =\left(23 \times 10^{-29}\right) \cdot-\left.\frac{1}{\rho-1}\right|_{-1} ^{0} \\
& =\frac{1}{2}\left(23 \times 10^{-29}\right) \\
& =11.5 \times 10^{-29}
\end{aligned}
$$

b. We will use the fact that $W=W_{1}+W_{2}$ where W_{1} is the work against the fixed electron $(-1,0)$ and W_{2} is the work against the second fixed electron $(1,0)$. We will let ρ be the x-coordinate of the third electron. Then $r_{1}^{2}=(\rho+1)^{2}$ and $r_{2}^{2}=(\rho-1)^{2}$.

$$
\begin{aligned}
W_{1} & =\int_{3}^{5} \frac{23 \times 10^{-29}}{(\rho+1)^{2}} d \rho \\
& =-\left.\frac{23 \times 10^{-29}}{\rho+1}\right|_{3} ^{5} \\
& =-\left(23 \times 10^{-29}\right)\left(\frac{1}{6}-\frac{1}{4}\right) \\
& =\frac{23}{12} \times 10^{-29} \\
W_{2} & =\int_{3}^{5} \frac{23 \times 10^{-29}}{(\rho-1)^{2}} d \rho \\
& =-\left.\frac{23 \times 10^{-29}}{\rho-1}\right|_{3} ^{5} \\
& =-\left(23 \times 10^{-29}\right)\left(\frac{1}{4}-\frac{1}{2}\right) \\
& =\frac{23}{4} \times 10^{-29}
\end{aligned}
$$

$$
W=W_{1}+W_{2}
$$

$$
=\frac{23}{12} \times 10^{-29}+\frac{23}{4} \times 10^{-29}
$$

$$
=\frac{23}{3} \times 10^{-29}
$$

Mass Problems:

1. Find the mass of the triangular region below. All lengths are in meters, and the density of the region is given by $\delta(x)=x$ grams $/ \mathrm{m}^{2}$. (Note that since the object is 2 -dimensional, its density is its mass per unit area.)

Solution. Since the density is a function of x, we divide the region into thin vertical strips of thickness $d x$ as shown in the following figure:

(Question: What kind of strips would we use if the density were a function of y ?)
Since the height of the strip is $1-x$, its area is $(1-x) d x$, and hence its mass is

$$
\begin{aligned}
d M & =(\text { density of strip }) \times(\text { area of strip }) \\
& =x(1-x) d x
\end{aligned}
$$

Hence the total mass of the triangle is

$$
\begin{aligned}
M & =\int d m \\
& =\int_{0}^{1} x(1-x) d x \\
& =\left[\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{0}^{1} \\
& =\frac{1}{6} \text { grams }
\end{aligned}
$$

2. Find the mass of the triangular region below. All lengths are in meters, and the density of the region is given by $\delta(x, y)=e^{(x+y)^{2}}$ grams $/ \mathrm{m}^{2}$.

Solution. Note that we can write the density as $\delta(r)=e^{r}$, where $r=x+y$. For r in $[0,1]$, the graph of $x+y=r$ is a diagonal line that passes through the point $(r, 0)$. This suggests dividing the triangle into thin diagonal strips as shown in the following figure:

In the picture above, the strip is bounded by coordinate axes and the lines $x+y=r$ and $x+y=r+d r$. Its area is $r d r$, which can be seen from the following calculation:
Let $A(r)=\frac{1}{2} r^{2}$ be the area of a triangle whose base and height are both r, and let $d A=A(r+d r)-A(r)$. Then

$$
\begin{aligned}
\text { area strip } & =d A \\
& =r d r,
\end{aligned}
$$

where the last line follows from differentiation. It follows that the mass of the strip is

$$
\begin{aligned}
d M & =(\text { density of strip }) \times(\text { area of strip }) \\
& =e^{r^{2} r} d r .
\end{aligned}
$$

Hence the total mass of the triangle is

$$
\begin{aligned}
M & =\int d m \\
& =\int_{0}^{1} e^{r^{2} r} d r \\
& =\left.\frac{1}{2} e^{r^{2}}\right|_{0} ^{1} \\
& =\frac{1}{2}(e-1) \text { grams. }
\end{aligned}
$$

3. A thin plate occupies the region of the plane bounded by the circle $x^{2}+$ $y^{2}=1$. Find the total mass if the density at the point (x, y) is given by
$\delta(x, y)=1 / \sqrt{x^{2}+y^{2}}$. (Hint: divide the region into thin circular rings centered at the origin.)

Solution. Note that we can write the density as $\delta(r)=1 / r$, where $r=\sqrt{x^{2}+y^{2}}$. For r in $[0,1]$, the graph of $r=\sqrt{x^{2}+y^{2}}$ is a thin circular ring centered at the origin with radius r and thickness $d r$, as shown in the figure. We want to derive an expression for its area. The area formula for a circle as a function of radius r is

$$
A=\pi r^{2}
$$

so the area for a circular ring, by differentiating the above formula, is

$$
d A=2 \pi r d r
$$

Its mass

$$
\begin{aligned}
d M & =\delta d A \\
& =2 \pi d r
\end{aligned}
$$

Now we take the integral and find the mass for the disk

$$
\begin{aligned}
M & =\int_{0}^{1} 2 \pi d r \\
& =2 \pi
\end{aligned}
$$

4. The region bounded by the graph of $y=x^{2}$ and the x -axis, between 0 and 1 , is revolved about the x-axis. The resulting solid has density given by $\delta(x)=x$. (Here the object is 3-dimensional, so its density is its mass per unit volume.) Find the total mass.

Solution. After the revolution, a typical vertical strip forms a circular disk with radius $y=x^{2}$ and thickness $d x$. Its volume

$$
\begin{aligned}
d V & =\pi y^{2} d x \\
& =\pi x^{4} d x
\end{aligned}
$$

and mass

$$
\begin{aligned}
d M & =\delta d V \\
& =\pi x^{5} d x
\end{aligned}
$$

The mass for the whole solid is therefore

$$
\begin{aligned}
M & =\int_{0}^{1} \pi x^{5} d x \\
& =\frac{\pi}{6} .
\end{aligned}
$$

