Strategy for Testing Series

- 1. If the series is of the form $\sum \frac{1}{n^p}$, it is a *p*-series, which we know to be convergent if p > 1 and divergent if $p \le 1$.
- 2. If the series has the form $\sum ar^{n-1}$ or $\sum ar^n$, it is a **geometric series**, which converges if |r| < 1 and diverges if $|r| \ge 1$. Some preliminary algebraic manipulation may be required to bring the series into this form.
- 3. If the series has a form that is similar to a *p*-series or a geometric series, then one of the **comparison tests** (Theorems 10, 11) should be considered. In particular, if *a_n* is a rational function or an algebraic function of *n* (involving roots of polynomials), then the series should be compared with a *p*-series (The value of *p* should be chosen by keeping only the highest powers of *n* in the numerator and denominator). The comparison tests apply only to series with positive terms. If ∑ *a_n* has some negative terms, then we can apply the Comparison Test to ∑ |*a_n*| and test for **absolute convergence**.
- 4. If you can see at a glance that $\lim_{n\to\infty} a_n \neq 0$, then the *n*th Term Test for **Divergence** (equivalent to Theorem 7) should be used.
- 5. If the series is of the form $\sum (-1)^{n+1} u_n$ or $\sum (-1)^n u_n$, then the Alternating Series Test (Theorem 14) is an obvious possibility.
- 6. Series that involve factorial or other products (including a constant raised to the *n*th power) are often conveniently tested using the **Ratio Test** (Theorem 12). Bear in mind that \$\begin{bmatrix} a_{n+1} \\ a_n \end{bmatrix}\$ + 1 as \$n → ∞\$ for all *p*-series and therefore all rational or algebraic functions of *n*. Thus the Ratio Test should not be used for such series.
- 7. If a_n is of the form $(b_n)^n$, then the **Root Test** (Theorem 13) may be useful.
- 8. If $a_n = f(n)$, where $\int_1^{\infty} f(x) dx$ or $\int_N^{\infty} f(x) dx$ for some $N \in \mathbb{N}$. is easily evaluated, then the **Integral Test** (Theorem 9) is effective (assuming that the hypotheses of this test are satisfied).

In the following examples, I will simply indicate which tests should be used. Please work out the details yourself.

Example 1

$$\sum_{n=1}^{\infty} \frac{2n-1}{3n+1}$$

Since $a_n \rightarrow \frac{2}{3} \neq 0$ as $n \rightarrow \infty$, we should use the *n*th Term Test for Divergence.

Example 2

$$\sum_{n=1}^{\infty} \frac{\sqrt[4]{n^5 + 1}}{3n^3 + 4n^2 + 2}$$

Since a_n is an algebraic function of n, we compare the given series with a p-series. The comparison series $\sum b_n$ in the Limit Comparison Test has the following form:

$$b_n = \frac{\sqrt[4]{n^5}}{3n^3} = \frac{1}{3n^{7/4}}.$$

Example 3

$$\sum_{n=1}^{\infty} n \mathrm{e}^{-n^2}$$

Since the integral $\int_{1}^{\infty} xe^{-x^2} dx$ is easily evaluated, we use the Integral Test. The Ratio Test also works.

Example 4

$$\sum_{n=1}^{\infty} (-1)^n \frac{n^4}{n^5 + 1}$$

Since the series is alternating, we use the Alternating Series Test.

Example 5

$$\sum_{n=1}^{\infty} \frac{3^n}{n!}$$

Since the series involves n!, we use the Ratio Test.

Example 6

$$\sum_{n=1}^{\infty} \frac{1}{2^n + 1}$$

Since the series is closely related to the geometric series $\sum \frac{1}{2^n}$, we use the Comparison Test.