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CMAP, Ecole Polytechnique, 91128 Palaiseau

Proceedings of the IEEE CVPR 2011 conference

Abstract

A scattering vector is a local descriptor including mul-
tiscale and multi-direction co-occurrence information. It
is computed with a cascade of wavelet decompositions and
complex modulus. This scattering representation is locally
translation invariant and linearizes deformations. A su-
pervised classification algorithm is computed with a PCA
model selection on scattering vectors. State of the art re-
sults are obtained for handwritten digit recognition and tex-
ture classification.1

1. Introduction

Locally invariant image descriptors such as SIFT [9] pro-
vide efficient image representations for image classification
and registration [9]. These feature vectors as well as mul-
tiscale texture descriptors can be computed with a spatial
averaging of wavelet coefficient amplitudes. The averaging
reduces the feature variability and provides local translation
invariance, but it also reduces information.

Scattering operators recover the lost high frequencies
and retransform them into co-occurrence coefficients at
multiple scales and orientations. They provide much richer
descriptors of complex structures such as corners, junctions
and multiscale texture variations. These coefficients are lo-
cally translation invariant and they linearize small deforma-
tions. They are computed with a convolution network [6]
which cascades contractive wavelet transforms and modu-
lus operators [11]. Scattering operators provide new repre-
sentations of stationary image textures, which can discrim-
inate texture having the same power spectrum.

The scattering transform of a class of signals is approx-
imated by an affine space computed with a PCA. Images
are classified by selecting a best approximation space model
for their scattering transform. State of the art results are ob-
tained for hand-written digit recognition and for texture dis-
crimination, with important rotation and illumination vari-
ability, and small training sets.

1This work is funded by the ANR grant 0126 01.

Section 2.1 reviews the relations between wavelet trans-
forms and computer vision descriptors. Section 2.2 in-
troduces scattering image representations. Classification
by scattering model selection is introduced in Section
3, with numerical results. Softwares are available at
www.cmap.polytechnique.fr/scattering.

2. Scattering
A scattering transform computes local image descriptors

with a cascade of wavelet decompositions, complex mod-
ulus and a local averaging. The resulting scattering rep-
resentation is locally invariant to translations. It includes
coefficients which are similar to SIFT descriptors, together
with co-occurrences coefficients at multiple scales and ori-
entations.

2.1. From Wavelets to SIFT and Textons

Image feature vectors such as SIFT and multiscale Gabor
textons are obtained by averaging the amplitude of wavelet
coefficients, calculated with directional wavelets. Writing
these feature vectors as wavelet coefficients helps to under-
stand and to improve their properties.

Let Rγx be the rotation of x ∈ R2 by an angle γ. Direc-
tional wavelets are obtained by rotating a single ψ, along K
angles γ ∈ Γ. Scaling them by 2j yields

ψj,γ(x) = 2−2jψ(2−jRγx) .

The directional wavelet transform of f at a position x for
scales 2j < 2J is a vector of coefficients

WJf(x) =

(
f ? ψj,γ(x)
f ? φJ(x)

)
j<J,γ∈Γ

(1)

where φJ(x) = 2−2Jφ(2−Jx) is a low-pass filter which
carries the low frequencies of f above the scale 2J :∫
φ(x)dx = 1. Let |WJf(x)|2 be the Euclidean norm of

this vector which sums the square of its coordinates. Let
f̂(ω) be the Fourier transform of f . If wavelets satisfy

−1∑
j=−∞

∑
γ∈Γ

|ψ̂γ(2jω)|2 + |φ̂(ω)|2 ≤ 1 (2)
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then one can verify [11] that

‖WJf‖2 =

∫
|WJf(x)|2dx ≤ ‖f‖2 =

∫
|f(x)|2 dx

and this inequality is an equality if (2) is an equality. The
wavelet transform is then contractive and potentially uni-
tary.

Many standard image feature vectors are obtained by av-
eraging wavelet coefficient amplitudes. SIFT coefficients
are obtained from histograms of image gradients calculated
at a fine scale 2j . A histogram bin indexed by γ ∈ Γ
stores the local sum of the amplitudes of all gradient vectors
whose orientations are close to γ. Several authors [15] ob-
served that approximate SIFT feature vectors are computed
more efficiently by averaging directly the partial derivative
amplitudes of f along the K directions γ ∈ Γ, with a low-
pass filter φJ . These averaged partial derivative amplitudes
can be written as averaged wavelet coefficients

|f ? ψj,γ | ? φJ(x) ,

with a partial derivative wavelet ψ(x) = ∂g(x)/∂x1, with
g(x) = e−|x|

2/2 and x = (x1, x2). These averaged wavelet
coefficients are nearly invariant to translations or deforma-
tions which are small relatively to 2J .

Partial derivative wavelets are well adapted to detect
edge type elements, but these wavelets do not have enough
frequency and directional resolution to discriminate more
complex structures appearing in textures. For texture anal-
ysis, wavelets with a better frequency localization are often
used [7]. Complex Gabor functions are examples of such di-
rectional wavelets obtained by modulating a Gaussian win-
dow at a frequency ξ:

ψ(x) = eiξx1 e−|x|
2/2 . (3)

For stationary textures, |f ? ψj,γ | ? φJ(x) has a reduced
stochastic variability because of the averaging kernel φJ .

2.2. Scattering Coefficients

The local translation invariance and variability reduction
of SIFT descriptors and multiscale textons is obtained by
averaging. Scattering operators restore part of the informa-
tion lost by this averaging with co-occurrence coefficients
having similar invariance properties.

The wavelet transform (1) shows that high frequencies
eliminated in |f ?ψj1,γ1 |?φJ by the convolution with φJ are
recovered by convolutions with wavelets |f ?ψj1,γ1 |?ψj2,γ2

at scales 2j2 < 2J . To become insensitive to local transla-
tion and reduce the variability of these coefficients, their
complex phase is removed by a modulus, and it is averaged
by φJ :

||f ? ψj1,γ1
| ? ψj2,γ2

| ? φJ .

These are called scattering coefficients because they result
from all interferences of f with two wavelets [12]. They
give co-occurrence information in f for any pair of scales
2j1 , 2j2 and any two directions γ1 and γ2. This can dis-
tinguish corners and junctions from edges and it character-
izes texture structures. Coefficients are only calculated for
2j2 < 2j1 because one can show [11] that |f?ψj1,γ1

|?ψj2,γ2

is negligible at scales 2j2 ≥ 2j1 .
The convolution with φJ removes high frequencies and

thus yields second order coefficients that are locally trans-
lation invariant. High frequencies can again be restored by
finer scale wavelet coefficients, which are regularized by av-
eraging their amplitude with φJ . Applying iteratively this
procedure q times yields a vector of coefficients at each x:

Sq,Jf(x) =
(
|||f?ψj1,γ1

|?...?|ψjq,γq |?φJ(x)
)
j1<...<jq<J

(γ1,...,γq)∈Γq

This vector has Kq
(
J
q

)
scattering coefficients, comput-

ing interactions between f and the successive wavelets
ψj1,γ1 ...ψjq,γq . A scattering vector aggregates all these co-
efficients up to a maximum order q ≤ m:

SJf(x) =
(
Sq,Jf(x)

)
0≤q≤m

,

and the first coefficient is the signal average S0,Jf(x) =

f ? φJ(x). The scattering vector size is
∑m
q=0K

q
(
J
q

)
. Af-

ter convolution with φJ the output is subsampled at inter-
vals 2J . If f(n) is an image of N pixels, this uniform sam-
pling yields a scattering representation SJf(2Jn) including
a total of NJ = 2−2JN

∑m
q=0K

q
(
J
q

)
coefficients.

A scattering vector is computed with a cascade of con-
volutions and modulus operators over m + 1 layers, like in
convolution network architectures [6, 1]:

f(n) → f ? φJ(2Jn)
↓

|f ? ψj1,γ1
| → |f ? ψj1,γ1

| ? φJ(2Jn)
↓

||f ? ψj1,γ1 | ? ψj2,γ2 | → ||f ? ψj1,γ1 | ? ψj2,γ2 | ? φJ(2Jn)
↓
...

To reduce computations, wavelet convolutions are subsam-
pled at intervals proportional to the last scale 2jq , with an
oversampling factor of 2:

|||f ? ψj1,γ1 | ? ... ? |ψjq,γq (2jq−1n)| .

A final low-pass filtering and subsampling yields

|||f ? ψj1,γ1
| ? ... ? |ψjq,γq | ? φJ(2Jn)

With an FFT, the overall computational complexity is then
O(N logN).
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2.3. Scattering Distance and Deformation Stability

The scattering transform defines a distance between two
images f and g. This distance has important invariance and
stability properties that are briefly reviewed. Let |SJf(x)|2
be the squared Euclidean norm of the vector SJf(x). The
scattering distance of f and g is

‖SJf − SJg‖2 =

∫
|SJf(x)− SJg(x)|2 dx. (4)

For discrete images, the integral is replaced by a discrete
sum. The scattering operator SJ is contractive because it is
a cascade of wavelet transformsWJ and modulus operators,
which are both contractive [8]:

‖SJf − SJg‖2 ≤ ‖f − g‖2 =

∫
|f(x)− g(x)|2 dx .

In particular ‖SJf‖2 ≤ ‖f‖2. If the maximum order
is m = ∞ then one can prove [11] that if the wavelet
transform is unitary then for appropriate complex wavelets
‖SJf‖2 = ‖f‖2. The energy of f is thus spread across
scattering coefficients of multiple orders, but this energy
has a fast decay as the co-occurrence order q increases. In
the Caltech101 image database, 98% of the energy ‖SJf‖2
is carried by scattering coefficients of order 0, 1 and 2.
In applications, we shall thus limit the scattering order to
m = 2. The energy of all scattering coefficients of order 2,
||f ? ψj1,γ1

| ? ψj2,γ2
| ? φJ , is about 20% of the energy of

all order 1 coefficients |f ? ψj1,γ1
| ? φJ , which is not negli-

gible. We shall see that order 2 coefficients have indeed an
important impact on classification results.

The efficiency of a scattering representation comes from
its invariance to local translations due to convolutions with
φJ , and from its ability to linearize deformations. Let
Dτf(x) = f(x − τ(x)) be a deformation of f with a reg-
ular displacement field τ(x). It is a pure translation only if
∇τ = 0. We write |τ |∞ = supx |τ(x)| the maximum trans-
lation amplitude, and |∇τ |∞ = supx |∇τ(x)| the maxi-
mum deformation amplitude, where |∇τ(x)| is the matrix
sup norm of ∇τ(x). The sup-norm of the Hessian of τ is
also written |Hτ |∞. It is shown in [11] that the scattering
metric satisfies

‖SJ(Dτf)−SJf‖ ≤ Cm‖f‖
(

2−J |τ |∞+J(|∇τ |∞+|Hτ |∞)
)
.

(5)
The first term 2−J |τ |∞ is the translation error which is
small if 2J � |τ |∞. The other terms are dominated by the
deformation amplitude |∇τ |∞. If 2J ≥ |τ |∞/|∇τ |∞ then
two deformed signals have a scattering distance essentially
proportional to the deformation amplitude |∇τ |∞.

3. Classification by Affine Model Selection
A scattering representation SJf is invariant to small

translations relatively to 2J . It linearizes deformations and

provides co-occurence descriptors. A classifier is obtained
by selecting an affine space model which best approximates
SJf .

Each signal class is represented by a random vector Fi
whose realizations are images ofN pixels in the class. Scat-
tering vectors SJFi(2Jn) define an image representation
with a total of NJ = 2−2JN

∑m
q=0K

q
(
J
q

)
coefficients.

LetE{SJFi(2Jn)} be their expected values. Deformations
of Fi are mostly linearized by SJ and thus produce a vari-
ability SJFi − E{SJFi} which is well approximated in a
linear space of low dimension d. This linear space is com-
puted with a PCA by diagonalizing the covariance of SJFi.
We denote by Vd,i the space generated by the d covariance
eigenvectors of largest variance. The dimension d is ad-
justed so that SJFi is closely approximated by its projection
in the affine space

Ad,i = E{SJFi}+ Vd,i .

in comparison with the error produced by the affine spaces
Ad,i′ , i′ 6= i, corresponding to the other classes.

A signal f will be associated to the class ı̂ which yields
the best affine space approximation:

ı̂(f) = argmin
i≤I

‖SJf − PAd,i
(SJf)‖ . (6)

Observe that

‖SJf − PAd,i
(SJf)‖ = ‖PV⊥

d,i
(SJf − E{SJFi})‖

where V⊥d,i is the orthogonal complement of Vd,i. Mini-
mizing the affine space approximation error is thus equiv-
alent to minimize the distance between SJf and the class
centroid E{SJFi}, without taking into account the first d
principal variability directions. A cross-validation proce-
dure finds the dimension d and the scale 2J which yields
the smallest classification error. This error is computed on
a subset of the training images that is not used for the PCA
calculations.

Affine space scattering models can be interpreted as gen-
erative models computed independently for each class. As
opposed to discriminative classifiers such as an SVM, no in-
teraction between classes is taken into account, besides the
choice of the model dimensionality d.

Classification results are given for hand-written digits
and textures that are deformed, rotated, scaled and have il-
lumination variations. Scattering descriptors are computed
with the complex Gabor wavelet (3) for ξ = 3π/4, rotated
along angles kπ/K with 0 ≤ k < K = 6. The lowpass fil-
ter is the Gaussian φJ(x) = λJ exp(−(3x/2J+1)2/2) with∫
φJ(x)dx = 1.

3.1. Handwritten digit recognition

The MNIST database of hand-written digits is an exam-
ple of structured pattern classification, where most of the
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Table 1. Percentage of error as a function of the training size for
MNIST, for a Convolution Network [14], an SVM over scattering
coefficient for m = 2, a PCA for m = 1, 2, 3. Minimum errors
are in bold.

Training Conv. SVM PCA PCA PCA
size Net. m = 2 m = 1 m = 2 m = 3
300 7.18 21.5 7.03 6.05 5.97

1000 3.21 3.06 2.99 2.39 2.37
2000 2.53 1.87 2.11 1.71 1.71
5000 1.52 1.54 1.85 1.57 1.22

10000 0.85 1.15 1.61 1.17 0.99
20000 0.76 0.92 1.4 0.96 0.82
40000 0.65 0.85 1.32 0.78 0.79
60000 0.53 0.7 1.4 0.77 0.72

Table 2. Values of the dimension d of affine approximation models,
of the intra class normalized approximation error σ2

d, and of the
ratio λd between inter class and intra class approximation errors,
as a function of the training size.

Training d σ2
d λd

300 24 2 · 10−2 2.4
5000 40 5 · 10−3 3.6

40000 180 6 · 10−4 4.3

intra-class variability is due to local translations and defor-
mations. It comprises at most 60000 training samples and
10000 test samples. The state of the art is achieved with
deep-learning convolutional networks [14] and dictionary
learning [10].

Table 1 compares the scattering PCA classifier at max-
imum orders m = 1, m = 2 and m = 3. Cross valida-
tion finds an optimal scattering scale 2J = 23. This value
is compatible with observed deformations of digits whose
amplitude is typically at most 8 pixels. For J = 3, there
areN/64 second order scattering vectors SJf of dimension
127 each.

Below 5 103 training samples, the scattering PCA clas-
sifier improves results of deep-learning convolutional net-
works. For m = 2, second order scattering coefficients
improve classification results obtained with m = 1, but a
third orderm = 3 scattering yields marginal improvements.
An SVM classifier is also applied on scattering vectors for
m = 2, with a polynomial kernel whose degree was opti-
mized. Minimum errors are obtained with a degree 4. The
SVM error is well above the PCA model selection error up
to 60000 samples. For small training sets, it was indeed
shown [13] that generative models, which do not estimate
cross terms between classes, can outperform discriminative
classifiers such as SVM.

Table 3. Percentage of errors on an MNIST rotated dataset [5].

PCA PCA PCA Conv.
m = 1 m = 2 m = 3 Net.

6.3 3 2.8 8.8

Table 4. Percentage of errors for the whole USPS database.
Tang. SVM PCA PCA PCA
Kern. m = 2 m = 1 m = 2 m = 3
2.4 2.64 3.24 2.74 2.74

Table 2 gives the dimension d of affine approximation
spaces calculated by cross validation, for m = 2. The nor-
malized approximation error σ2

d is the expected approxima-
tion error E{‖SJFi − PAi,d

(SJFi)‖2} in a class i divided
by the squared norm of SJFi, averaged over all i and all Fi
in the test set. Table 2 shows that the cross-validation calcu-
lation of d yields small approximation errors. Table 2 also
gives the relative approximation error

λd =
E{mini′ 6=i ‖SJFi − PAi′,d(SJFi)‖2}

E{‖SJFi − PAi,d
(SJFi)‖2}

produced by the closest affine model of a different class than
that of Fi, averaged over all classes. As expected, when
the training set increases, the dimension d increases so σ2

d

decreases and the relative approximation error λd increases,
which reduces the error rate.

Rotation invariance in the MNIST database is studied in
the same setting as in [5]. The authors have constructed
a transformed database with 12000 training samples and
50000 test images, where samples are rotated versions of
the digits using a uniform distribution in [0, 2π]. The PCA
incorporates rotation invariance by increasing the dimen-
sion d of the affine space Ai,d. It removes the main variabil-
ity directions of SJf due to rotations. Error rates in Table
3 are smaller with a scattering PCA than with a convolu-
tion network [5]. Better results are obtained with m = 2
than with m = 1 because second order coefficients main-
tain enough discriminability despite the removal of a larger
number d of principal directions.

The US-Postal Service dataset is another handwritten
digit dataset, with 7291 training samples and 2007 test im-
ages 16 × 16 pixels. The state of the art is obtained with
tangent distance kernels [2]. Table 4 gives results obtained
with the PCA classifier and a polynomial kernel SVM clas-
sifier applied to scattering coefficients. The scattering scale
was also set to J = 3 by cross-validation.

3.2. Scattering Texture Classification

Scattering coefficients provide new texture descriptors,
carrying co-occurrence information at different scales and

4



orientations. A texture can be modeled as a realization of
a stationary process F (x). Scattering coefficients SJF (x)
are obtained with successive convolutions and modulus op-
erators which preserve stationarity. Averaging by φJ does
not modify expected values so E{SJF (x)} is a vector
whose coefficients do not depend upon x and φJ . The con-
volution with φJ reduces the coefficient variability and for
a large class of ergodic processes, the variance of SJF (x)
decreases exponentially to zero as J increases. As a result,
SJF (x) is a good estimator of E{SJF (x)} when J is suf-
ficiently large. Figure 1 shows an example of such vector
for a textured image with m = 3.

Figure 1. The right plot gives scattering coefficients, ordered ac-
cording to their scattering order q. Blue coefficients correspond to
q = 1, green coefficients correspond to q = 2 and red coefficients
to q = 3. Notice the exponential amplitude decay as the order
increases.

Textures having same mean and same power spectrum
have nearly the same scattering coefficients of order q = 0
and q = 1. However, different textures typically have co-
occurence coefficients of order q ≥ 2 which are different.
Let Sq,JFi be the vector of scattering coefficients of order q
for a texture Fi. The distance of scattering vectors of order
q for two textures F1 and F2 is normalized by their variance
σ2(Sq,JFi):

ρq(F1, F2) =
|E{Sq,JF1} − E{Sq,JF2}|2

σ2(Sq,JF1) + σ2(Sq,JF2)
.

Table 5 gives ρq(F1, F2) for two Brodatz textures in Figure
2, which have different power spectrum. Their expected
scattering vectors E{SJFq,i} have a relatively large dis-
tance ρq(F1, F2) at all orders q ≥ 1. The texture F̃1 in Fig-
ure 2 has same power spectrum as F2. When q = 1, equal-
izing the power spectrum reduces ρq(F̃1, F2) to 0 (up to es-
timation errors) but ρq(F̃1, F2) remains well above zero for
q > 1. Textures having same power spectrum can thus be
discriminated from scattering coefficients of order q > 1.

Texture classification is tested on the CUReT texture
database [7, 16], which includes 61 classes of image tex-
tures of N = 2002 pixels. Each texture class gives images
of the same material with different pose and illumination
conditions. Specularities, shadowing and surface normal
variations make it challenging for classification. Pose varia-
tions require global rotation invariance. Figure 3 illustrates
the large intra class variability, and also shows that the vari-
ability across classes is not always important.

Figure 2. Left and right Brodatz textures F1and F2 have different
power spectrum. The middle texture F̃1 is obtained by filtering F1

to equalize its power spectrum with F2.

Table 5. Normalized distance ρq of expected scattering vectors of
order q, for textures in Figure 2.

q ρq(F1, F2) ρq(F̃1, F2)
1 12 0
2 12 1
3 6 2
4 3 2

State of the art on this database achieves a 2.46% error
rate, obtained in [16] with an optimized Markov Random
Field model. The scattering PCA classifier has a 0.09%
error rate, which is a factor 25 improvement, as shown in
Table 6. The database is randomly split into a training and a
testing set, which either comprises 46 training images each
as in [16], or contains 23 training images as in [3]. Results
are averaged over 10 different splits.

The cross-validation adjusts the scattering scale 2J = 27

which is the maximum value. Indeed, these textures are
fully stationary and increasing the scale reduces the vari-

Figure 3. Examples of textures from the CUReT database. Each
row shows a different class, showing intra-class variability in the
form of stochastic variability and changes in pose and illumina-
tion.
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Table 6. Percentage of errors on CUReT for different training
sizes.

Training PCA SVM LBP Mark.
size m = 2 m = 2 [3] Rand. 8
23 0.9± 0.1 3.3 18.23 22.43
46 0.09± 0.05 1.1 3.96 2.46

ance of the scattering coefficients variability across realiza-
tions. Global invariance to rotation and illumination is pro-
vided by the PCA affine space models. They include the
main variation directions of scattering vectors due to rota-
tions or illumination variations.

The dimension of affine approximation space models is
adjusted by cross validation to d = 6 and d = 22 respec-
tively for 23 and 46 training samples. The resulting error
rates are respectively 0.9% and 0.09%. With an SVM using
a polynomial kernel, the classification error for 46 training
samples per class increases to 1.1%. For 46 training sam-
ples, the intra class normalized approximation error σ2

d is
only 2.5 · 10−3, about half of the error produced in the case
of 23 training samples, in which σ2

d is 5.3 · 10−3. The esti-
mated separation ratio is λd = 8 and λd = 5 respectively.
Such low approximation errors are possible thanks to the
fast variance decay of scattering coefficients as the scale in-
creases and to the global invariance properties provided by
the affine spaces.

4. Conclusion
A scattering transform provides a locally translation in-

variant representation, which linearizes small deformations,
and provides co-occurrence coefficients which character-
ize textures. For handwritten digit recognition and texture
discrimination with small training size sequences, a PCA
model selection classifier yields state of the art results.

Besides translations, invariance can be extended to any
compact Lie group G, by combining another scattering
transform defined on G. The cascade of wavelet transforms
in L2(R2) is then replaced by a cascade of wavelet trans-
forms in L2(G) [11].
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