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Abstract

An increasing number of applications require processing of signals defined on
weighted graphs. While wavelets provide a flexible tool for signal processing in
the classical setting of regular domains, the existing graph wavelet constructions
are less flexible – they are guided solely by the structure of the underlying graph
and do not take directly into consideration the particular class of signals to be
processed. This paper introduces a machine learning framework for constructing
graph wavelets that can sparsely represent a given class of signals. Our construction
uses the lifting scheme, and is based on the observation that the recurrent nature
of the lifting scheme gives rise to a structure resembling a deep auto-encoder
network. Particular properties that the resulting wavelets must satisfy determine the
training objective and the structure of the involved neural networks. The training is
unsupervised, and is conducted similarly to the greedy pre-training of a stack of
auto-encoders. After training is completed, we obtain a linear wavelet transform
that can be applied to any graph signal in time and memory linear in the size of the
graph. Improved sparsity of our wavelet transform for the test signals is confirmed
via experiments both on synthetic and real data.

1 Introduction

Processing of signals on graphs is emerging as a fundamental problem in an increasing number of
applications [22]. Indeed, in addition to providing a direct representation of a variety of networks
arising in practice, graphs serve as an overarching abstraction for many other types of data. High-
dimensional data clouds such as a collection of handwritten digit images, volumetric and connectivity
data in medical imaging, laser scanner acquired point clouds and triangle meshes in computer graphics
– all can be abstracted using weighted graphs. Given this generality, it is desirable to extend the
flexibility of classical tools such as wavelets to the processing of signals defined on weighted graphs.

A number of approaches for constructing wavelets on graphs have been proposed, including, but
not limited to the CKWT [7], Haar-like wavelets [24, 10], diffusion wavelets [6], spectral wavelets
[12], tree-based wavelets [19], average-interpolating wavelets [21], and separable filterbank wavelets
[17]. However, all of these constructions are guided solely by the structure of the underlying graph,
and do not take directly into consideration the particular class of signals to be processed. While
this information can be incorporated indirectly when building the underlying graph (e.g. [19, 17]),
such an approach does not fully exploit the degrees of freedom inherent in wavelet design. In
contrast, a variety of signal class specific and adaptive wavelet constructions exist on images and
multidimensional regular domains, see [9] and references therein. Bridging this gap is challenging
because obtaining graph wavelets, let alone adaptive ones, is complicated by the irregularity of the
underlying space. In addition, theoretical guidance for such adaptive constructions is lacking as it
remains largely unknown how the properties of the graph wavelet transforms, such as sparsity, relate
to the structural properties of graph signals and their underlying graphs [22].

The goal of our work is to provide a machine learning framework for constructing wavelets on
weighted graphs that can sparsely represent a given class of signals. Our construction uses the lifting
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scheme as applied to the Haar wavelets, and is based on the observation that the update and predict
steps of the lifting scheme are similar to the encode and decode steps of an auto-encoder. From this
point of view, the recurrent nature of the lifting scheme gives rise to a structure resembling a deep
auto-encoder network.

Particular properties that the resulting wavelets must satisfy, such as sparse representation of signals,
local support, and vanishing moments, determine the training objective and the structure of the
involved neural networks. The goal of achieving sparsity translates into minimizing a sparsity
surrogate of the auto-encoder reconstruction error. Vanishing moments and locality can be satisfied
by tying the weights of the auto-encoder in a special way and by restricting receptive fields of neurons
in a manner that incorporates the structure of the underlying graph. The training is unsupervised, and
is conducted similarly to the greedy (pre-)training [13, 14, 2, 20] of a stack of auto-encoders.

The advantages of our construction are three-fold. First, when no training functions are specified
by the application, we can impose a smoothness prior and obtain a novel general-purpose wavelet
construction on graphs. Second, our wavelets are adaptive to a class of signals and after training
we obtain a linear transform; this is in contrast to adapting to the input signal (e.g. by modifying
the underlying graph [19, 17]) which effectively renders those transforms non-linear. Third, our
construction provides efficient and exact analysis and synthesis operators and results in a critically
sampled basis that respects the multiscale structure imposed on the underlying graph.

The paper is organized as follows: in §2 we briefly overview the lifting scheme. Next, in §3 we
provide a general overview of our approach, and fill in the details in §4. Finally, we present a number
of experiments in §5.

2 Lifting scheme

The goal of wavelet design is to obtain a multiresolution [16] ofL2(G) – the set of all functions/signals
on graph G. Namely, a nested sequence of approximation spaces from coarse to fine of the form
V1 ⊂ V2 ⊂ ... ⊂ V`max = L2(G) is constructed. Projecting a signal in the spaces V` provides
better and better approximations with increasing level `. Associated wavelet/detail spaces W`

satisfying V`+1 = V` ⊕W` are also obtained.

Scaling functions {φ`,k} provide a basis for approximation space V`, and similarly wavelet functions
{ψ`,k} for W`. As a result, for any signal f ∈ L2(G) on graph and any level `0 < `max, we have
the wavelet decomposition

f =
∑
k

a`0,kφ`0,k +

`max−1∑
`=`0

∑
k

d`,kψ`,k. (1)

The coefficients a`,k and d`,k appearing in this decomposition are called approximation (also, scaling)
and detail (also, wavelet) coefficients respectively. For simplicity, we use a` and d` to denote the
vectors of all approximation and detail coefficients at level `.

Our construction of wavelets is based on the lifting scheme [23]. Starting with a given wavelet
transform, which in our case is the Haar transform (HT ), one can obtain lifted wavelets by applying
the process illustrated in Figure 1(left) starting with ` = `max − 1, a`max

= f and iterating down
until ` = 1. At every level the lifted coefficients a` and d` are computed by augmenting the Haar

Figure 1: Lifting scheme: one step of forward (left) and backward (right) transform. Here, a` and d`
denote the vectors of all approximation and detail coefficients of the lifted transform at level `. U and
P are linear update and predict operators. HT and IHT are the Haar transform and its inverse.
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coefficients ā` and d̄` (of the lifted approximation coefficients a`+1) as follows

a` ← ā` + Ud̄`

d` ← d̄` − Pa`
where update (U ) and predict (P ) are linear operators (matrices). Note that in adaptive wavelet
designs the update and predict operators will vary from level to level, but for simplicity of notation
we do not indicate this explicitly.

This process is always invertible – the backward transform is depicted, with IHT being the inverse
Haar transform, in Figure 1(right) and allows obtaining perfect reconstruction of the original signal.
While the wavelets and scaling functions are not explicitly computed during either forward or
backward transform, it is possible to recover them using the expansion of Eq. (1). For example, to
obtain a specific scaling function φ`,k, one simply sets all of approximation and detail coefficients to
zero, except for a`,k = 1 and runs the backward transform.

3 Approach

For a given class of signals, our objective is to design wavelets that yield approximately sparse
expansions in Eq.(1) – i.e. the detail coefficients are mostly small with a tiny fraction of large
coefficients. Therefore, we learn the update and predict operators that minimize some sparsity
surrogate of the detail (wavelet) coefficients of given training functions {fn}nmax

n=1 .

For a fixed multiresolution level `, and a training function fn, let ān` and d̄n` be the Haar approximation
and detail coefficient vectors of fn received at level ` (i.e. applied to an`+1as in Figure 1(left)).
Consider the minimization problem

{U,P} = arg min
U,P

∑
n

s(dn` ) = arg min
U,P

∑
n

s(d̄n` − P (ān` + Ud̄n` )), (2)

where s is some sparse penalty function. This can be seen as optimizing a linear auto-encoder with
encoding step given by ān` + Ud̄n` , and decoding step given by multiplication with the matrix P .
Since we would like to obtain a linear wavelet transform, the linearity of the encode and decode steps
is of crucial importance. In addition to linearity and the special form of bias terms, our auto-encoders
differ from commonly used ones in that we enforce sparsity on the reconstruction error, rather than
the hidden representation – in our setting, the reconstruction errors correspond to detail coefficients.

The optimization problem of Eq. 2 suffers from a trivial solution: by choosing update matrix to have
large norm (e.g. a large coefficient times identity matrix), and predict operator equal to the inverse
of update, one can practically cancel the contribution of the bias terms, obtaining almost perfect
reconstruction. Trivial solutions are a well-known problem in the context of auto-encoders, and an
effective solution is to tie the weights of the encode and decode steps by setting U = P t. This also
has the benefit of decreasing the number of parameters to learn. We also follow a similar strategy and
tie the weights of update and predict steps, but the specific form of tying is dictated by the wavelet
properties and will be discussed in §4.2.

The training is conducted in a manner similar to the greedy pre-training of a stack of auto-encoders
[13, 14, 2, 20]. Namely, we first train the the update and predict operators at the finest level: here
the input to the lifting step are the original training functions – this corresponds to ` = `max − 1
and ∀n, an`+1 = fn in Figure 1(left). After training of this finest level is completed, we obtain new
approximation coefficients an` which are passed to the next level as the training functions, and this
process is repeated until one reaches the coarsest level.

The use of tied auto-encoders is motivated by their success in deep learning revealing their capability
to learn useful features from the data under a variety of circumstances. The choice of the lifting
scheme as the backbone of our construction is motivated by several observations. First, every
invertible 1D discrete wavelet transform can be factored into lifting steps [8], which makes lifting
a universal tool for constructing multiresolutions. Second, lifting scheme is always invertible, and
provides exact reconstruction of signals. Third, it affords fast (linear time) and memory efficient
(in-place) implementation after the update and predict operators are specified. We choose to apply
lifting to Haar wavelets specifically because Haar wavelets are easy to define on any underlying space
provided that it can be hierarchically partitioned [24, 10]. Our use of update-first scheme mirrors its
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common use for adaptive wavelet constructions in image processing literature, which is motivated by
its stability; see [4] for a thorough discussion.

4 Construction details

We consider a simple connected weighted graph G with vertex set V of size N . A signal on
the graph is represented by a vector f ∈ RN . Let W be the N × N edge weight matrix (since
there are no self-loops, Wii = 0), and let S be the diagonal N × N matrix of vertex weights;
if no vertex weights are given, we set Sii =

∑
j Wij . For

a graph signal f , we define its integral over the graph as a
weighted sum,

´
G
f =

∑
i Siif(i). We define the volume of

a subset R of vertices of the graph by V ol(R) =
´
R

1 =∑
i∈R Sii.

We assume that a hierarchical partitioning (not necessarily
dyadic) of the underlying graph into connected regions is pro-
vided. We denote the regions at level ` = 1, ..., `max by R`,k;
see the inset where the three coarsest partition levels of a dataset
are shown. For each region at levels ` = 1, ..., `max − 1, we
designate arbitrarily all except one of its children (i.e. regions at
level `+1) as active regions. As will become clear, our wavelet construction yields one approximation
coefficient a`,k for each region R`,k, and one detail coefficient d`,k for each active region R`+1,k at
level `+ 1. Note that if the partition is not dyadic, at a given level ` the number of scaling coefficients
(equal to number of regions at level `) will not be the same as the number of detail coefficients (equal
to number of active regions at level `+ 1). We collect all of the coefficients at the same level into
vectors denoted by a` and d`; to keep our notation lightweight, we refrain from using boldface for
vectors.

4.1 Haar wavelets

Usually, the (unnormalized) Haar approximation and detail coefficients of a signal f are computed as
follows. The coefficient ā`,k corresponding to region R`,k equals to the average of the function f on
that region: ā`,k = V ol(R`,k)−1

´
R`,k

f . The detail coefficient d̄`,k corresponding to an active region
R`+1,k is the difference between averages at the regionR`+1,k and its parent regionR`,par(k), namely
d̄`,k = ā`+1,k − ā`,par(k). For perfect reconstruction there is no need to keep detail coefficients for
inactive regions, because these can be recovered from the scaling coefficient of the parent region and
the detail coefficients of the sibling regions.

In our setting, Haar wavelets are a part of the lifting scheme, and so the coefficient vectors ā` and d̄`
at level ` need to be computed from the augmented coefficient vector a`+1 at level `+ 1 (c.f. Figure
1(left)). This is equivalent to computing a function’s average at a given region from its averages at the
children regions. As a result, we obtain the following formula:

ā`,k = V ol(R`,k)−1
∑

j,par(j)=k

a`+1,jV ol(R`+1,j),

where the summation is over all the children regions of R`,k. As before, the detail coefficient
corresponding to an active region R`+1,k is given by d̄`,k = a`+1,k − ā`,par(k). The resulting Haar
wavelets are not normalized; when sorting wavelet/scaling coefficients we will multiply coefficients
coming from level ` by 2−`/2.

4.2 Auto-encoder setup

The choice of the update and predict operators and their tying scheme is guided by a number of
properties that wavelets need to satisfy. We discuss these requirements under separate headings.

Vanishing moments: The wavelets should have vanishing dual and primal moments – two inde-
pendent conditions due to biorthogonality of our wavelets. In terms of the approximation and detail
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coefficients these can be expressed as follows: a) all of the detail coefficients of a constant function
should be zero and b) the integral of the approximation at any level of multiresolution should be the
same as the integral of the original function.

Since these conditions are already satisfied by the Haar wavelets, we need to ensure that the update
and predict operators preserve them. To be more precise, if a`+1 is a constant vector, then we have
for Haar coefficients that ā` = c~1 and d̄` = ~0; here c is some constant and ~1 is a column-vector of all
ones. To satisfy a) after lifting, we need to ensure that d` = d̄`−P (ā`+Ud̄`) = −P ā` = −cP~1 = ~0.
Therefore, the rows of predict operator should sum to zero: P~1 = ~0.

To satisfy b), we need to preserve the first order moment at every level ` by requiring∑
k a`+1,kV ol(R`+1,k) =

∑
k ā`,kV ol(R`,k) =

∑
k a`,kV ol(R`,k). The first equality is al-

ready satisfied (due to the use of Haar wavelets), so we need to constrain our update opera-
tor. Introducing the diagonal matrix Ac of the region volumes at level `, we can write 0 =∑

k a`,kV ol(R`,k) −
∑

k ā`,kV ol(R`,k) =
∑

k Ud̄`V ol(R`,k) = ~1tAcUd̄`. Since this should
be satisfied for all d̄`, we must have ~1tAcU = ~0t.

Taking these two requirements into consideration, we impose the following constraints on predict and
update weights:

P~1 = ~0 and U = A−1c P tAf

where Af is the diagonal matrix of the active region volumes at level `+ 1. It is easy to check that
~1tAcU = ~1tAcA

−1
c P tAf = ~1tP tAf = (P~1)tAf = ~0tAf = ~0t as required. We have introduced

the volume matrix Af of regions at the finer level to make the update/predict matrices dimensionless
(i.e. insensitive to whether the volume is measured in any particular units).

Locality: To make our wavelets and scaling functions localized on the graph, we need to constrain
update and predict operators in a way that would disallow distant regions from updating or predicting
the approximation/detail coefficients of each other.

Since the update is tied to the predict operator, we can limit ourselves to the latter operator. For a
detail coefficient d`,k corresponding to the active region R`+1,k, we only allow predictions that come
from the parent region R`,par(k) and the immediate neighbors of this parent region. Two regions of
graph are considered neighboring if their union is a connected graph. This can be seen as enforcing a
sparsity structure on the matrix P or as limiting the interconnections between the layers of neurons.

As a result of this choice, it is not difficult to see that the resulting scaling functions φ`,k and wavelets
ψ`,k will be supported in the vicinity of the region R`,k. Larger supports can be obtained by allowing
the use of second and higher order neighbors of the parent for prediction.

4.3 Optimization

A variety of ways for optimizing auto-encoders are available, we refer the reader to the recent paper
[15] and references therein. In our setting, due to the relatively small size of the training set and sparse
inter-connectivity between the layers, an off-the-shelf L-BFGS1 unconstrained smooth optimization
package works very well. In order to make our problem unconstrained, we avoid imposing the
equation P~1 = ~0 as a hard constraint, but in each row of P (which corresponds to some active region),
the weight corresponding to the parent is eliminated. To obtain a smooth objective, we use L1 norm
with soft absolute value s(x) =

√
ε+ x2 ≈ |x|, where we set ε = 10−4. The initialization is done by

setting all of the weights equal to zero. This is meaningful, because it corresponds to no lifting at all,
and would reproduce the original Haar wavelets.

4.4 Training functions

When training functions are available we directly use them. However, our construction can be applied
even if training functions are not specified. In this case we choose smoothness as our prior, and train
the wavelets with a set of smooth functions on the graph – namely, we use scaled eigenvectors of
graph Laplacian corresponding to the smallest eigenvalues. More precisely, let D be the diagonal

1Mark Schmidt, http://www.di.ens.fr/˜mschmidt/Software/minFunc.html
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matrix with entriesDii =
∑

j Wij . The graph Laplacian L is defined as L = S−1(D−W ).We solve
the symmetric generalized eigenvalue problem (D−W )ξ = λSξ to compute the smallest eigen-pairs
{λn, ξn}nmax

n=0 .We discard the 0-th eigen-pair which corresponds to the constant eigenvector, and use
functions {ξn/λn}nmax

n=1 as our training set. The inverse scaling by the eigenvalue is included because
eigenvectors corresponding to larger eigenvalues are less smooth (cf. [1]), and so should be assigned
smaller weights to achieve a smooth prior.

4.5 Partitioning

Since our construction is based on improving upon the Haar wavelets, their quality will have
an effect on the final wavelets. As proved in [10], the quality of Haar wavelets depends on
the quality (balance) of the graph partitioning. From practical standpoint, it is hard to achieve
high quality partitions on all types of graphs using a single algorithm. However, for the datasets
presented in this paper we find that the following approach based on spectral clustering algo-
rithm of [18] works well. Namely, we first embed the graph vertices into Rnmax as follows:
i → (ξ1(i)/λ1, ξ2(i)/λ2, ..., ξnmax(i)/λnmax),∀i ∈ V , where {λn, ξn}nmax

n=0 are the eigen-pairs
of the Laplacian as in §4.4, and ξ·(i) is the value of the eigenvector at the i-th vertex of the graph.
To obtain a hierarchical tree of partitions, we start with the graph itself as the root. At every step, a
given region (a subset of the vertex set) of graph G is split into two children partitions by running
the 2-means clustering algorithm (k-means with k = 2) on the above embedding restricted to the
vertices of the given partition [24]. This process is continued in recursion at every obtained region.
This results in a dyadic partitioning except at the finest level `max.

4.6 Graph construction for point clouds

Our problem setup started with a weighted graph and arrived to the Laplacian matrix L in §4.4. It is
also possible o reverse this process whereby one starts with the Laplacian matrix L and infers from it
the weighted graph. This is a natural way of dealing with point clouds sampled from low-dimensional
manifolds, a setting common in manifold learning. There is a number of ways for computing
Laplacians on point clouds, see [5]; almost all of them fit into the above form L = S−1(D −W ),
and so, they can be used to infer a weighted graph that can be plugged into our construction.

5 Experiments

Our goal is to experimentally investigate the constructed wavelets for multiscale behavior, mean-
ingful adaptation to training signals, and sparse representation that generalizes to testing signals.

Figure 2: Scaling (left) and wavelet
(right) functions on periodic interval.

For the first two objectives we visualize the scaling func-
tions at different levels ` because they provide insight
about the signal approximation spaces V`. The general-
ization performance can be deduced from comparison to
Haar wavelets, because during training we modify Haar
wavelets so as to achieve a sparser representation of train-
ing signals.

We start with the case of a periodic interval, which is
discretized as a cycle graph; 32 scaled eigenvectors (sines
and cosines) are used for training. Figure 2 shows the resulting scaling and wavelet functions at level
` = 4. Up to discretization errors, the wavelets and scaling functions at the same level are shifts of
each other – showing that our construction is able to learn shift invariance from training functions.

Figure 3(a) depicts a graph representing the road network of Minnesota, with edges showing the
major roads and vertices being their intersections. In our construction we employ unit weights on
edges and use 32 scaled eigenvectors of graph Laplacian as training functions. The resulting scaling
functions for regions containing the red vertex in Figure 3(a) are shown at different levels in Figure
3(b,c,d,e,f). The function values at graph vertices are color coded from smallest (dark blue) to largest
(dark red). Note that the scaling functions are continuous and show multiscale spatial behavior.

To test whether the learned wavelets provide a sparse representation of smooth signals, we syntheti-
cally generated 100 continuous functions using the xy-coordinates (the coordinates have not been
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(a) Road network (b) Scaling ` = 2 (c) Scaling ` = 4 (d) Scaling ` = 6

(e) Scaling ` = 8 (f) Scaling ` = 10 (g) Sample function (h) Reconstruction error
Figure 3: Our construction trained with smooth prior on the network (a), yields the scaling func-
tions (b,c,d,e,f). A sample continuous function (g) out of 100 total test functions. Better average
reconstruction results (h) for our wavelets (Wav-smooth) indicate a good generalization performance.

seen by the algorithm so far) of the vertices; Figure 3(g) shows one of such functions. Figure 3(h)
shows the average error of reconstruction from expansion Eq. (1) with `0 = 1 by keeping a specified
fraction of largest detail coefficients. The improvement over the Haar wavelets shows that our model
generalizes well to unseen signals.

Next, we apply our approach to real-world graph signals. We use a dataset of average daily tempera-
ture measurements2 from meteorological stations located on the mainland US. The longitudes and
latitudes of stations are treated as coordinates of a point cloud, from which a weighted Laplacian is
constructed using [5] with 5-nearest neighbors; the resulting graph is shown in Figure 4(a).

The daily temperature data for the year of 2012 gives us 366 signals on the graph; Figure 4(b) depicts
one such signal. We use the signals from the first half of the year to train the wavelets, and test
for sparse reconstruction quality on the second half of the year (and vice versa). Figure 4(c,d,e,f,g)
depicts some of the scaling functions at a number of levels; note that the depicted scaling function at
level ` = 2 captures the rough temperature distribution pattern of the US. The average reconstruction
error from a specified fraction of largest detail coefficients is shown in Figure 4(g).

As an application, we employ our wavelets for semi-supervised learning of the temperature distribution
for a day from the temperatures at a subset of labeled graph vertices. The sought temperature

(a) GSOD network (b) April 9, 2012 (c) Scaling ` = 2 (d) Scaling ` = 4

(e) Scaling ` = 6 (f) Scaling ` = 8 (g) Reconstruction error (h) Learning error
Figure 4: Our construction on the station network (a) trained with daily temperature data (e.g. (b)),
yields the scaling functions (c,d,e,f). Reconstruction results (g) using our wavelets trained on data
(Wav-data) and with smooth prior (Wav-smooth). Results of semi-supervised learning (h).

2National Climatic Data Center, ftp://ftp.ncdc.noaa.gov/pub/data/gsod/2012/
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(a) Scaling functions (b) PSNR (c) SSIM
Figure 5: The scaling functions (a) resulting from training on a face images dataset. These wavelets
(Wav-data) provide better sparse reconstruction quality than the CDF9/7 wavelet filterbanks (b,c).

distribution is expanded as in Eq. (1) with `0 = 1, and the coefficients are found by solving a least
squares problem using temperature values at labeled vertices. Since we expect the detail coefficients
to be sparse, we impose a lasso penalty on them; to make the problem smaller, all detail coefficients
for levels ` ≥ 7 are set to zero. We compare to the Laplacian regularized least squares [1] and
harmonic interpolation approach [26]. A hold-out set of 25 random vertices is used to assign all the
regularization parameters. The experiment is repeated for each of the days (not used to learn the
wavelets) with the number of labeled vertices ranging from 10 to 200. Figure 4(h) shows the errors
averaged over all days; our approach achieves lower error rates than the competitors.

Our final example serves two purposes – showing the benefits of our construction in a standard image
processing application and better demonstrating the nature of learned scaling functions. Images
can be seen as signals on a graph – pixels are the vertices and each pixel is connected to its 8
nearest neighbors. We consider all of the Extended Yale Face Database B [11] images (cropped and
down-sampled to 32 × 32) as a collection of signals on a single underlying graph. We randomly
split the collection into half for training our wavelets, and test their reconstruction quality on the
remaining half. Figure 5(a) depicts a number of obtained scaling functions at different levels (the
rows correspond to levels ` = 4, 5, 6, 7, 8) in various locations (columns). The scaling functions have
a face-like appearance at coarser levels, and capture more detailed facial features at finer levels. Note
that the scaling functions show controllable multiscale spatial behavior.

The quality of reconstruction from a sparse set of detail coefficients is plotted in Figure 5(b,c).
Here again we consider the expansion of Eq. (1) with `0 = 1, and reconstruct using a specified
proportion of largest detail coefficients. We also make a comparison to reconstruction using the
standard separable CDF 9/7 wavelet filterbanks from bottom-most level; for both of quality metrics,
our wavelets trained on data perform better than CDF 9/7. The smoothly trained wavelets do not
improve over the Haar wavelets, because the smoothness assumption does not hold for face images.

6 Conclusion

We have introduced an approach to constructing wavelets that take into consideration structural
properties of both graph signals and their underlying graphs. An interesting direction for future
research would be to randomize the graph partitioning process or to use bagging over training
functions in order to obtain a family of wavelet constructions on the same graph – leading to over-
complete dictionaries like in [25]. One can also introduce multiple lifting steps at each level or
even add non-linearities as common with neural networks. Our wavelets are obtained by training a
structure similar to a deep neural network; interestingly, the recent work of Mallat and collaborators
(e.g. [3]) goes in the other direction and provides a wavelet interpretation of deep neural networks.
Therefore, we believe that there are ample opportunities for future work in the interface between
wavelets and deep neural networks.
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