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Abstract

Deep convolutional neural networks have led to breakthrough results in practical feature extraction

applications. The mathematical analysis of such networks was initiated by Mallat, 2012. Specifically,

Mallat considered so-called scattering networks based on semi-discrete shift-invariant wavelet frames and

modulus non-linearities in each network layer, and proved translation invariance (asymptotically in the

wavelet scale parameter) and deformation stability of the corresponding feature extractor. The purpose of

this paper is to develop Mallat’s theory further by allowing for general convolution kernels, or in more

technical parlance, general semi-discrete shift-invariant frames (including Weyl-Heisenberg, curvelet,

shearlet, ridgelet, and wavelet frames) and general Lipschitz-continuous non-linearities (e.g., rectified

linear units, shifted logistic sigmoids, hyperbolic tangents, and modulus functions), as well as pooling

through sub-sampling, all of which can be different in different network layers. The resulting generalized

network enables extraction of significantly wider classes of features than those resolved by Mallat’s

wavelet-modulus scattering network. We prove deformation stability for a larger class of deformations

than those considered by Mallat, and we establish a new translation invariance result which is of vertical

nature in the sense of the network depth determining the amount of invariance. Moreover, our results

establish that deformation stability and vertical translation invariance are guaranteed by the network

structure per se rather than the specific convolution kernels and non-linearities. This offers an explanation

for the tremendous success of deep convolutional neural networks in a wide variety of practical feature

extraction applications. The mathematical techniques we employ are based on continuous frame theory,

as developed by Ali et al., 1993, and Kaiser, 1994, and allow to completely detach our proofs from the

algebraic structures of the underlying frames and the particular form of the Lipschitz non-linearities.

Keywords: Deep convolutional neural networks, scattering networks, frame theory, feature extraction,

signal classification.

This paper was presented in part at the 2015 IEEE International Symposium on Information Theory (ISIT) [1].
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I. INTRODUCTION

A central task in signal classification is feature extraction [2]–[4]. For example, if the classification

task is to decide whether an image contains a certain handwritten digit [5], the features to be extracted

correspond, e.g., to the edges of the digit. The idea behind feature extraction is that feeding characteristic

features of signals to be classified—rather than the signals themselves—to a trainable classifier (such as,

e.g., a support vector machine (SVM) [6]) improves classification performance. Sticking to the example

of handwritten digits, we would, moreover, want the feature extractor to be invariant to the digits’ spatial

location within the image, which motivates the use of translation-invariant feature extractors. In addition,

we would also like the feature extractor to be robust with respect to (w.r.t.) handwriting styles. This can

be accomplished by demanding stability w.r.t. non-linear deformations.

Spectacular success in many practical classification tasks has been reported for feature extractors

generated by so-called deep convolutional neural networks [2], [7]–[11]. These networks are composed

of multiple layers, each of which computes convolutional transforms, followed by non-linearities and

pooling1 operations. While deep convolutional neural networks can be used to perform classification

directly [2], [7], [9]–[11], typically based on the output of the last network layer, they can also act as

stand-alone feature extractors [12]–[18] with the extracted features fed into a classifier such as, e.g., a

SVM. The present paper follows the latter philosophy and studies deep convolutional neural networks

as stand-alone feature extractors.

Deep convolutional neural network-based feature extractors are typically distinguished according to

whether the filters (i.e., the convolution kernels) employed are learned (i.e., determined from a training

data set through optimization) or pre-specified (i.e., chosen a priori, possibly taking into account structural

properties of the data set). While learning the filters, e.g., based on labeled data in a supervised fashion

[12], [13], leads to good classification performance for large data sets, in small data sets overfitting [14]

may result in performance limitations. Learning filters based on unlabeled data in an unsupervised fashion

[13]–[15] can sometimes be a remedy. Pre-specified filters [13], [14], [16]–[18] (including structured

filters such as wavelets2 [13], [16]–[18], and unstructured filters such as random filters [13], [14]), on

the other hand, have been found to work well on data sets of varying sizes.

The mathematical analysis of feature extractors generated by deep convolutional neural networks was

initiated by Mallat in [19]. Mallat’s theory applies to so-called scattering networks, where signals are

1In the literature “pooling” broadly refers to some form of combining “nearby” values of a signal (e.g., through averaging)
or picking one representative value (e.g, through maximization or sub-sampling).

2Here, the structure results from the filters being obtained from a mother wavelet through scaling (and rotation) operations.
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propagated through layers that compute semi-discrete wavelet transforms (i.e., convolutional transforms

with pre-specified filters that are obtained from a mother wavelet through scaling (and rotation) opera-

tions), followed by modulus non-linearities. The resulting feature extractor is shown to be translation-

invariant (asymptotically in the scale parameter of the underlying wavelet transform) and stable w.r.t.

certain non-linear deformations. Moreover, Mallat’s scattering networks lead to state-of-the-art results in

various classification tasks [20]–[22].

Contributions and relation to Mallat’s theory. The past two decades have seen extensive research

[23]–[32] devoted to developing structured transforms adapted to a variety of features, most prominently,

curvelet [28]–[30] and shearlet [31], [32] transforms, both of which are known to be very effective in

extracting features characterized by curved edges in images. It is thus natural to ask whether Mallat’s

theory of scattering networks can be extended to general semi-discrete transforms (i.e., convolutional

transforms with general filters that depend on some discrete indices), including curvelet and shearlet trans-

forms. Moreover, certain image [21], [33] and audio [22] classification problems suggest that scattering

networks with different semi-discrete transforms in different layers would be desirable. Furthermore,

deep neural network-based feature extractors that were found to work well in practice employ a wide

range of non-linearities, beyond the modulus function [13], [18], [19], namely, hyperbolic tangents [12]–

[14], rectified linear units [34], [35], and logistic sigmoids [36], [37]; in addition, these non-linearities

can be different in different network layers. Regarding translation invariance it was argued, e.g., in [12]–

[14], [17], [18], that in practice invariance of the extracted features is crucially governed by the network

depth and by pooling operations (such as, e.g., max-pooling [13], [14], [17], [18], average-pooling [12],

[13], or sub-sampling [16]). In contrast, Mallat’s translation invariance result [19] (in this paper referred

to as horizontal translation invariance) is asymptotic in wavelet scales. Another aspect that was found

to be desirable in practice [20], [33], but is not contained in Mallat’s theory [19], is sub-sampling to

reduce redundancy in the extracted features.

The goal of this paper is to develop a mathematical theory of deep convolutional neural networks

for feature extraction that addresses all the points raised above and contains Mallat’s wavelet-modulus

scattering networks as a special case. Specifically, we extend Mallat’s theory to allow for general semi-

discrete transforms (including Weyl-Heisenberg (Gabor), wavelet, curvelet, shearlet, and ridgelet trans-

forms), general Lipschitz-continuous non-linearities (e.g., rectified linear units, shifted logistic sigmoids,

hyperbolic tangents, and modulus operations), and pooling through sub-sampling. Moreover, in our theory

different network layers may be equipped with different semi-discrete transforms, different Lipschitz-
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continuous non-linearities, and different sub-sampling factors. We prove that the resulting generalized

feature extractor is translation-invariant and deformation-stable. More specifically, we obtain (i) a new

translation invariance result (referred to as vertical translation invariance) which shows that the depth

of the network determines the extent to which the feature extractor is translation-invariant, (ii) a new

deformation stability bound valid for a class of non-linear deformations that is larger than that in [19],

and (iii) an explicit and easy-to-verify condition on the signal transforms, the non-linearities’ Lipschitz

constants, and the sub-sampling factors to guarantee vertical translation invariance and deformation

stability. Particularizing our new translation invariance result to Mallat’s scattering networks, we find

that asymptotics in the wavelet scale parameter, as in [19], are not needed to ensure invariance. Perhaps

surprisingly, our results establish that deformation stability and vertical translation invariance are guaran-

teed by the network structure per se rather than the specific convolution kernels and non-linearities. This

offers an explanation for the tremendous success of deep convolutional neural networks in a wide variety

of practical feature extraction applications.

In terms of mathematical techniques, we note that the proofs in Mallat’s theory hinge critically on the

wavelet transform’s structural properties such as isotropic scaling3 and a constant number of wavelets

across scales, as well as on additional technical conditions such as the vanishing moment condition on

the mother wavelet. The mathematical tools employed in our theory, on the other hand, are completely

detached from the algebraic structures4 of the semi-discrete transforms, the nature of the non-linearities—

as long as they are Lipschitz—and the values of the sub-sampling factors. Moreover, we show that the

scattering admissibility condition [19, Theorem 2.6] is not needed for Mallat’s feature extractor to be

vertically translation-invariant and deformation-stable, where the latter is even w.r.t. the larger class of

deformations considered here. The mathematical engine behind our results is the theory of continuous

frames [38], [39].

Notation and preparatory material. The complex conjugate of z ∈ C is denoted by z. We write

Re(z) for the real, and Im(z) for the imaginary part of z ∈ C. The Euclidean inner product of x, y ∈

Cd is 〈x, y〉 :=
∑d

i=1 xiyi, with associated norm |x| :=
√
〈x, x〉. We denote the identity matrix by

E ∈ Rd×d. For the matrix M ∈ Rd×d, Mi,j designates the entry in its i-th row and j-th column, and

for a tensor T ∈ Rd×d×d, Ti,j,k refers to its (i, j, k)-th component. The supremum norm of a matrix

M ∈ Rd×d is defined as |M |∞ := supi,j |Mi,j |, and the supremum norm of a tensor T ∈ Rd×d×d is

3Isotropic scaling of multi-dimensional signals uses the same scaling factor in all directions.
4Algebraic structure here refers to the structural relationship between the convolution kernels in a given semi-discrete

transformation, i.e., scaling (and rotation) operations in the case of the wavelet transform as considered by Mallat in [19].
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|T |∞ := supi,j,k |Ti,j,k|. We write BR(x) ⊆ Rd for the open ball of radius R > 0 centered at x ∈ Rd.

O(d) stands for the orthogonal group of dimension d ∈ N, and SO(d) for the special orthogonal group.

For a Lebesgue-measurable function f : Rd → C, we write
∫
Rd f(x)dx for the integral of f w.r.t.

Lebesgue measure µL. For p ∈ [1,∞), Lp(Rd) stands for the space of Lebesgue-measurable functions

f : Rd → C satisfying ‖f‖p := (
∫
Rd |f(x)|pdx)1/p < ∞. L∞(Rd) denotes the space of Lebesgue-

measurable functions f : Rd → C such that ‖f‖∞ := inf{α > 0 | |f(x)| ≤ α for a.e.5 x ∈ Rd} < ∞.

For f, g ∈ L2(Rd) we set 〈f, g〉 :=
∫
Rd f(x)g(x)dx. The tensor product of functions f, g : Rd → C is

(f ⊗ g)(x, y) := f(x)g(y), (x, y) ∈ Rd × Rd. Id : Lp(Rd) → Lp(Rd) stands for the identity operator

on Lp(Rd). The operator norm of the bounded linear operator A : Lp(Rd) → Lq(Rd) is ‖A‖p,q :=

sup‖f‖p=1 ‖Af‖q. We denote the Fourier transform of f ∈ L1(Rd) by f̂(ω) :=
∫
Rd f(x)e−2πi〈x,ω〉dx

and extend it in the usual way to L2(Rd) [40, Theorem 7.9]. The convolution of f ∈ L2(Rd) and

g ∈ L1(Rd) is (f ∗ g)(y) :=
∫
Rd f(x)g(y − x)dx. We write (Ttf)(x) := f(x − t), t ∈ Rd, for the

translation operator, and (Mωf)(x) := e2πi〈x,ω〉f(x), ω ∈ Rd, for the modulation operator. Involution

is defined by (If)(x) := f(−x). For R > 0, the space of R-band-limited functions is denoted as

L2
R(Rd) := {f ∈ L2(Rd) | supp(f̂) ⊆ BR(0)}. For a countable set Q, (L2(Rd))Q denotes the space

of sets s := {sq}q∈Q, sq ∈ L2(Rd), for all q ∈ Q, satisfying |||s||| := (
∑

q∈Q ‖sq‖22)1/2 < ∞. A

multi-index α = (α1, . . . , αd) ∈ Nd0 is an ordered d-tupel of non-negative integers αi ∈ N0. For a

multi-index α ∈ Nd0, Dα denotes the differential operator Dα := (∂/∂x1)α1 . . . (∂/∂xd)
αd , with order

|α| :=
∑d

i=1 αi. If |α| = 0, Dαf := f , for f : Rd → C. The space of functions f : Rd → C whose

derivatives Dαf of order at most N ∈ N0 are continuous is designated by CN (Rd,C), and the space of

infinitely differentiable functions by C∞(Rd,C). S(Rd,C) stands for the Schwartz space, i.e., the space

of functions f ∈ C∞(Rd,C) whose derivatives Dαf along with the function itself are rapidly decaying

[40, Section 7.3] in the sense of sup|α|≤N supx∈Rd(1 + |x|2)N |(Dαf)(x)| < ∞, for all N ∈ N0. We

denote the gradient of a function f : Rd → C as ∇f . The space of continuous mappings v : Rp → Rq is

C(Rp,Rq), and for k, p, q ∈ N, the space of k-times continuously differentiable mappings v : Rp → Rq

is written as Ck(Rp,Rq). For a mapping v : Rd → Rd we let Dv be its Jacobian matrix, and D2v its

Jacobian tensor, with associated norms ‖v‖∞ := supx∈Rd |v(x)|, ‖Dv‖∞ := supx∈Rd |(Dv)(x)|∞, and

‖D2v‖∞ := supx∈Rd |(D2v)(x)|∞.

5Throughout “a.e.” is w.r.t. Lebesgue measure.
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II. MALLAT’S WAVELET-MODULUS FEATURE EXTRACTOR

We set the stage by first reviewing Mallat’s feature extractor [19], the basis of which is a multi-stage

architecture that involves wavelet transforms followed by modulus non-linearities. Specifically, Mallat

[19, Definition 2.4] defines the extracted features ΦM (f) of a signal f ∈ L2(Rd) as the set of low-pass

filtered functions

ΦM (f) :=

∞⋃
n=0

Φn
M (f), (1)

where Φ0
M (f) := {f ∗ ψ(−J,0)}, and

Φn
M (f) :=

{
| · · · | |f ∗ ψλ(1) | ∗ ψλ(2) | · · · ∗ ψλ(n) | ∗ ψ(−J,0)

}
λ(1),...,λ(n)∈ΛDW \{(−J,0)}, (2)

for all n ∈ N. Here, the index set ΛDW :=
{

(−J, 0)
}
∪
{

(j, k) | j ∈ Z with j > −J, k ∈ {0, . . . ,K−1}
}

contains pairs of scales j and directions k, and

ψλ(x) := 2djψ(2jr−1
k x), λ = (j, k) ∈ ΛDW \{(−J, 0)}, (3)

are directional wavelets [23], [41], [42] with (complex-valued) mother wavelet ψ ∈ L1(Rd) ∩ L2(Rd).

The rk, k ∈ {0, . . . ,K − 1}, are elements of a finite rotation group G (if d is even, G is a subgroup

of SO(d); if d is odd, G is a subgroup of O(d)). The index (−J, 0) ∈ ΛDW is associated with the

low-pass filter ψ(−J,0) ∈ L1(Rd)∩L2(Rd), and J ∈ Z corresponds to the coarsest scale resolved by the

directional wavelets (3).

The functions {ψλ}λ∈ΛDW
are taken to form a semi-discrete shift-invariant Parseval frame ΨΛDW

:=

{TbIψλ}b∈Rd,λ∈ΛDW
for L2(Rd) [38], [39], [41] and hence satisfy

∑
λ∈ΛDW

∫
Rd

|〈f, TbIψλ〉|2db =
∑

λ∈ΛDW

‖f ∗ ψλ‖22 = ‖f‖22, ∀f ∈ L2(Rd),

where 〈f, TbIψλ〉 = (f ∗ ψλ)(b), (λ, b) ∈ ΛDW × Rd, are the underlying frame coefficients. Note that

for given λ ∈ ΛDW , we actually have a continuum of frame coefficients as the translation parameter

b ∈ Rd. In Appendix A, we give a brief review of the general theory of semi-discrete shift-invariant

frames, and in Appendices B and C we collect structured example frames in 1-D and 2-D, respectively.

The architecture corresponding to the feature extractor ΦM in (1), illustrated in Figure 1, is known

as scattering network [20], and employs the frame ΨΛDW
and the modulus non-linearity | · | in every

network layer. For given n ∈ N, the set Φn
M (f) in (2) corresponds to the features of the function f

generated in the n-th network layer, see Figure 1.
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f

|f ∗ ψλ(j) |

|f ∗ ψλ(j) | ∗ ψ(−J,0)

||f ∗ ψλ(j) | ∗ ψλ(l) |

||f ∗ ψλ(j) | ∗ ψλ(l) | ∗ ψ(−J,0)

|||f ∗ ψλ(j) | ∗ ψλ(l) | ∗ ψλ(m) |

|f ∗ ψλ(p) |

|f ∗ ψλ(p) | ∗ ψ(−J,0)

||f ∗ ψλ(p) | ∗ ψλ(r) |

||f ∗ ψλ(p) | ∗ ψλ(r) | ∗ ψ(−J,0)

|||f ∗ ψλ(p) | ∗ ψλ(r) | ∗ ψλ(s) |

f ∗ ψ(−J,0)

Fig. 1: Mallat’s scattering network architecture based on wavelet filtering and modulus non-linearities.
The features ΦM (f) in (1), here indicated at the tips of the arrows, are generated from outputs in all
layers of the network.

Remark 1. The function |f ∗ ψλ|, λ ∈ ΛDW \{(−J, 0)}, can be thought of as indicating the locations

of singularities of f ∈ L2(Rd). Specifically, with the relation of |f ∗ ψλ| to the Canny edge detector

[43] as described in [44], in dimension d = 2, we can think of |f ∗ ψλ| = |f ∗ ψ(j,k)|, λ = (j, k) ∈

ΛDW \{(−J, 0)}, as an image at scale j specifying the locations of edges of the image f that are oriented

in direction k. Furthermore, it was argued in [20], [22], [33] that the features Φ1
M (f) generated in

the first layer of the scattering network are very similar, in dimension d = 1, to mel frequency cepstral

coefficients [45], and in dimension d = 2 to SIFT-descriptors [46], [47].

It is shown in [19, Theorem 10] that the feature extractor ΦM is translation-invariant in the sense of

lim
J→∞

|||ΦM (Ttf)− ΦM (f)||| = 0, ∀f ∈ L2(Rd), ∀t ∈ Rd. (4)

Note that this invariance result is asymptotic in the scale parameter J ∈ Z, an aspect discussed in

more detail in Section V. Furthermore, Mallat proved in [19, Theorem 2.12] that ΦM is stable w.r.t.

deformations of the form

(Fτf)(x) := f(x− τ(x)).

More formally, for the normed function space (HM , ‖ · ‖HM
) defined in (23) below, Mallat established
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that there exists a constant C > 0 such that for all f ∈ HM , and all τ ∈ C1(Rd,Rd) with6 ‖Dτ‖∞ ≤ 1
2d ,

the deformation error satisfies

|||ΦM (Fτf)− ΦM (f)||| ≤ C
(
2−J‖τ‖∞ + J‖Dτ‖∞ + ‖D2τ‖∞

)
‖f‖HM

. (5)

The following technical condition on the mother wavelet ψ, referred to as the scattering admissibility

condition in [19, Theorem 2.6], is of crucial importance in Mallat’s proofs of translation invariance (4)

and deformation stability (5): The mother wavelet ψ is said to be scattering-admissible if there exists a

function ρ : Rd → R+ with |ρ̂(2Jω)| ≤ |ψ̂(−J,0)(2ω)|, ω ∈ Rd, ρ̂(0) = 1, and a ν ∈ Rd, such that

inf
1≤ω≤2

∞∑
j=−∞

K−1∑
k=0

|ψ̂(2−jr−1
k ω)|2∆(2−jr−1

k ω) > 0, (6)

where

∆(ω) := |ρ̂(ω − ν)|2 −
∞∑
k=1

k
(
1− |ρ̂(2−k(ω − ν))|2

)
.

We refer the reader to Section V for an in-depth discussion of Mallat’s scattering admissibility condition.

Here, we conclude by noting that, to the best of our knowledge, no mother wavelet ψ ∈ L1(Rd)∩L2(Rd),

for d ≥ 2, satisfying the scattering admissibility condition has been reported in the literature.

In practice signal classification based on Mallat’s feature extractor is performed as follows. First,

the function f and the wavelet frame atoms {ψλ}λ∈ΛDW
are discretized to finite-dimensional vectors.

The resulting scattering network then computes the finite-dimensional feature vector ΦM (f), whose

dimension is typically reduced through an orthogonal least squares step [48], and feeds the result into a

supervised classifier such as, e.g., a SVM. State-of-the-art results were reported for various classification

tasks such as handwritten digit recognition [20], texture discrimination [20], [21], and musical genre

classification [22].

III. GENERALIZED FEATURE EXTRACTOR

As already mentioned, scattering networks follow the architecture of deep convolutional neural net-

works [2], [7]–[18] in the sense of cascading convolutions (with atoms {ψλ}λ∈ΛDW
of the wavelet frame

ΨΛDW
) and non-linearities, namely, the modulus function. On the other hand, general deep convolutional

neural networks as studied in the literature exhibit a number of additional features:

6It is actually the assumption ‖Dτ‖∞ ≤ 1
2d

, rather than ‖Dτ‖∞ ≤ 1
2

as stated in [19, Theorem 2.12], that is needed in
[19, p. 1390] to establish that |det(E − (Dτ)(x))| ≥ 1− d‖Dτ‖∞ ≥ 1/2.
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• a wide variety of filters are employed, namely pre-specified unstructured filters such as random

filters [13], [14], and filters that are learned in a supervised [12], [13] or an unsupervised [13]–[15]

fashion.

• a wide variety of non-linearities are employed such as, e.g., hyperbolic tangents [12]–[14], rectified

linear units [34], [35], and logistic sigmoids [36], [37].

• convolution and the application of a non-linearity is typically followed by a pooling operation

such as, e.g., max-pooling [13], [14], [17], [18], average-pooling [12], [13], or sub-sampling [16].

• the filters, non-linearities, and pooling operations are allowed to be different in different network

layers.

The purpose of this paper is to develop a mathematical theory of deep convolutional neural networks

for feature extraction that encompasses all of the aspects above, apart from max-pooling and average-

pooling. Formally, we generalize Mallat’s feature extractor ΦM as follows. In the n-th network layer,

we replace the wavelet-modulus convolution operation |f ∗ ψλ| by a convolution with the atoms gλn
∈

L1(Rd)∩L2(Rd) of a general semi-discrete shift-invariant frame Ψn := {TbIgλn
}b∈Rd,λn∈Λn

for L2(Rd)

with countable index set Λn (see Appendix A for a brief overview of the theory of semi-discrete shift-

invariant frames), followed by a non-linearity Mn : L2(Rd) → L2(Rd) that satisfies the Lipschitz

property ‖Mnf −Mnh‖2 ≤ Ln‖f − h‖2, for all f, h ∈ L2(Rd), with Mnf = 0 for f = 0. The output

of this non-linearity, Mn(f ∗ gλn
), is then sub-sampled by a factor of Rn ≥ 1 according to

(Mn(f ∗ gλn
))(Rn·).

The operation f 7→ f(Rn·), for Rn ≥ 1, emulates sub-sampling or decimation as used in multi-rate

signal processing [49] where sub-sampling by a factor of R amounts to retaining only every R-th sample.

As the atoms gλn
are arbitrary in our generalization, they can, of course, also be taken to be structured,

e.g., Weyl-Heisenberg functions, curvelets, shearlets, ridgelets, or wavelets as considered by Mallat in [19]

(where the atoms gλn
are obtained from a mother wavelet through scaling (and rotation) operations, see

Section II). These signal transforms have been employed successfully in various feature extraction tasks

[50]–[58], see Appendices B and C, but their use—apart from wavelets—in deep convolutional neural

networks appears to be new. Furthermore, our generalization comprises Mallat-type feature extractors

based on general (i.e., not necessarily tight) wavelet frames [20]–[22], [33], and allows for different

mother wavelets in different layers [22].

We refer the reader to Appendix D for a detailed discussion of several relevant example non-linearities
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(e.g., rectified linear units, shifted logistic sigmoids, hyperbolic tangents, and, of course, the modulus)

that fit into our framework. Another novel aspect of our theory is a translation invariance result that

formalizes the idea of the features becoming more translation-invariant with increasing network depth

(see, e.g., [12]–[14], [17], [18]). This notion of translation invariance is in stark contrast to that used by

Mallat (4), which is asymptotic in the scale parameter J , and does not depend on the network depth.

We honor this difference by referring to Mallat’s result as horizontal translation invariance and to ours

as vertical translation invariance.

Finally, on a methodological level, we systematically introduce frame theory and the theory of

Lipschitz-continuous operators into the field of deep learning. Specifically, the conditions on the atoms

gλn
for the network to be deformation-stable and vertically translation-invariant are so mild as to easily

be satisfied by learned filters. In essence, this shows that deformation stability and vertical translation

invariance are induced by the network structure per se rather than the filter characteristics and the

specific nature of the non-linearities. We feel that this insight offers an explanation for the impressive

performance of deep convolutional neural networks in a wide variety of practical classification tasks.

Although it may seem that our generalizations require more sophisticated mathematical techniques

than those employed in [19], it actually turns out that our approach leads to significantly simpler and,

in particular, shorter proofs. We hasten to add, however, that the notion of translation invariance we

consider, namely vertical translation invariance, is fundamentally different from horizontal translation

invariance as used by Mallat. Specifically, by letting J → ∞ Mallat guarantees translation invariance

in every network layer, whereas vertical translation invariance only builds up with increasing network

depth.

We next state definitions and collect preliminary results needed for the mathematical analysis of our

generalized feature extraction network. The basic building blocks of the network we consider are the

triplets (Ψn,Mn, Rn) associated with individual network layers and referred to as modules.

Definition 1. For n ∈ N, let Ψn = {TbIgλn
}b∈Rd,λn∈Λn

be a semi-discrete shift-invariant frame for

L2(Rd), let Mn : L2(Rd)→ L2(Rd) be a Lipschitz-continuous operator with Mnf = 0 for f = 0, and

let Rn ≥ 1 be a sub-sampling factor. Then, the sequence of triplets

Ω :=
(
(Ψn,Mn, Rn)

)
n∈N

is referred to as a module-sequence.
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The following definition introduces the concept of paths on index sets, which will prove helpful in

characterizing the generalized feature extraction network. The idea for this formalism is due to Mallat

[19, Definition 2.2].

Definition 2. Let Ω =
(
(Ψn,Mn, Rn)

)
n∈N be a module-sequence, and let {gλn

}λn∈Λn
be the atoms of the

frame Ψn. Define the operator Un associated with the n-th layer of the network as Un : Λn×L2(Rd)→

L2(Rd),

Un(λn, f) := Un[λn]f := (Mn(f ∗ gλn
))(Rn·). (7)

For 1 ≤ n <∞, define the set Λn1 := Λ1×Λ2×· · ·×Λn. An ordered sequence q = (λ1, λ2, . . . , λn) ∈ Λn1

is called a path. For the empty path e := ∅ we set Λ0
1 := {e} and U0[e]f := f , for all f ∈ L2(Rd).

The operator Un is well-defined, i.e., Un[λn]f ∈ L2(Rd), for all (λn, f) ∈ Λn × L2(Rd), thanks to

‖Un[λn]f‖22 =

∫
Rd

|(Mn(f ∗ gλn
))(Rnx)|2dx = R−dn

∫
Rd

|(Mn(f ∗ gλn
))(y)|2dy

= R−dn ‖Mn(f ∗ gλn
)‖22 ≤ R−dn L2

n‖f ∗ gλn
‖22 ≤ BnR−dn L2

n‖f‖22. (8)

Here, we used the Lipschitz continuity of Mn according to ‖Mnf −Mnh‖22 ≤ L2
n‖f − h‖22, together

with Mnh = 0 for h = 0 to get ‖Mnf‖22 ≤ L2
n‖f‖22. The last step in (8) is thanks to

‖f ∗ gλn
‖22 ≤

∑
λ′n∈Λn

‖f ∗ gλ′n‖
2
2 ≤ Bn‖f‖22,

which follows from the frame condition (24) on Ψn. We will also need the extension of the operator

Un to paths q ∈ Λn1 according to

U [q]f = U [(λ1, λ2, . . . , λn)]f := Un[λn] · · ·U2[λ2]U1[λ1]f, (9)

with U [e]f := U0[e]f = f . Note that the multi-stage operation (9) is again well-defined as

‖U [q]f‖22 ≤

(
n∏
k=1

BkR
−d
k L2

k

)
‖f‖22, ∀q ∈ Λn1 , ∀f ∈ L2(Rd), (10)

which follows by repeated application of (8).

In Mallat’s construction one atom ψλ, λ ∈ ΛDW , in the frame ΨΛDW
, namely the low-pass filter

ψ(−J,0), is singled out to generate the extracted features according to (2), see also Figure 1. We

follow Mallat’s construction and designate one of the atoms in each frame in the module-sequence
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U [e]f = f

U
[
λ

(j)
1

]
f

(
U
[
λ

(j)
1

]
f
)
∗ χ1

U
[(
λ

(j)
1 , λ

(l)
2

)]
f

(
U
[(
λ

(j)
1 , λ

(l)
2

)]
f
)
∗ χ2

U
[(
λ

(j)
1 , λ

(l)
2 , λ

(m)
3

)]
f

U
[
λ

(p)
1

]
f

(
U
[
λ

(p)
1

]
f
)
∗ χ1

U
[(
λ

(p)
1 , λ

(r)
2

)]
f

(
U
[(
λ

(p)
1 , λ

(r)
2

)]
f
)
∗ χ2

U
[(
λ

(p)
1 , λ

(r)
2 , λ

(s)
3

)]
f

f ∗ χ0

Fig. 2: Network architecture underlying the generalized feature extractor (11). The index λ(k)
n corresponds

to the k-th atom gλ(k)
n

of the frame Ψn associated with the n-th network layer. The function χn is the
output-generating atom of the n-th layer, where n = 0 corresponds to the root of the network.

Ω =
(
(Ψn,Mn, Rn)

)
n∈N as the output-generating atom χn−1 := gλ∗n , λ∗n ∈ Λn, of the (n− 1)-th layer.

The atoms {gλn
}λn∈Λn\{λ∗n} ∪ {χn−1} in Ψn are thus used across two consecutive layers in the sense

of χn−1 generating the output in the (n − 1)-th layer, and the {gλn
}λn∈Λn\{λ∗n} propagating signals

to the n-th layer according to (7), see Figure 2. Note, however, that our theory does not require the

output-generating atoms to be low-pass filters7 (as is the case for Mallat’s feature extractor (1)), rather a

very mild decay condition is needed only, see Theorem 2. From now on, with slight abuse of notation,

we shall write Λn for Λn\{λ∗n} as well.

We are now ready to define the generalized feature extractor ΦΩ based on the module-sequence Ω.

Definition 3. Let Ω =
(
(Ψn,Mn, Rn)

)
n∈N be a module-sequence. The generalized feature extractor ΦΩ

based on Ω maps f ∈ L2(Rd) to its features

ΦΩ(f) :=

∞⋃
n=0

{(U [q]f) ∗ χn}q∈Λn
1
. (11)

For q ∈ Λn1 , the feature (U [q]f) ∗ χn is generated in the n-th layer of the network. The collection of

7It is evident, though, that the actual choices of the output-generating atoms will have an impact on practical classification
performance.
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features generated in the n-th network layer is denoted by Φn
Ω, i.e.,

Φn
Ω(f) := {(U [q]f) ∗ χn}q∈Λn

1
,

and the overall features are given by

ΦΩ(f) =

∞⋃
n=0

Φn
Ω(f).

The feature extractor ΦΩ : L2(Rd)→ (L2(Rd))Q, where Q :=
⋃∞
n=0 Λn1 , is well-defined, i.e., ΦΩ(f) ∈

(L2(Rd))Q, for all f ∈ L2(Rd), under a technical condition on the module-sequence Ω formalized as

follows.

Proposition 1. Let Ω =
(
(Ψn,Mn, Rn)

)
n∈N be a module-sequence, denote the frame upper bounds of

Ψn by Bn > 0, the Lipschitz constants of the operators Mn by Ln > 0, and the sub-sampling factors

by Rn ≥ 1. If

max{Bn, BnR−dn L2
n} ≤ 1, ∀n ∈ N, (12)

then the feature extractor ΦΩ : L2(Rd)→ (L2(Rd))Q is well-defined, i.e., ΦΩ(f) ∈ (L2(Rd))Q, for all

f ∈ L2(Rd).

Proof. The proof is given in Appendix E.

As condition (12) is of central importance, we formalize it as follows.

Definition 4. Let Ω =
(
(Ψn,Mn, Rn)

)
n∈N be a module-sequence with frame upper bounds Bn > 0,

Lipschitz constants Ln > 0, and sub-sampling factors Rn ≥ 1. The condition

max{Bn, BnR−dn L2
n} ≤ 1, ∀n ∈ N, (13)

is referred to as weak admissibility condition. Module-sequences that satisfy (13) are called weakly

admissible.

We chose the qualifier weak in Definition 4 to indicate that the admissibility condition (13) is easily

met in practice. To see this, first note that Ln is set through the non-linearity Mn (e.g., the modulus

non-linearity Mn = | · | has Ln = 1, for all n ∈ N, see Appendix D), and Bn is determined through

the frame Ψn (e.g., the directional wavelet frame introduced in Section II has Bn = 1, for all n ∈ N).

Depending on the desired amount of translation invariance of the features Φn
Ω generated in the n-th
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network layer (see Section IV-B for details), we fix the sub-sampling factor Rn ≥ 1 (e.g., Rn = 2, for

all n ∈ N). Obviously, condition (13) is met if

Bn ≤ min{1, RdnL−2
n }, ∀n ∈ N,

which can be satisfied by simply normalizing the frame elements of Ψn accordingly. We refer to

Proposition 3 in Appendix A for corresponding normalization techniques, which, as explained in Section

IV, do not affect our deformation stability and translation invariance results.

IV. PROPERTIES OF THE GENERALIZED FEATURE EXTRACTOR

A. Deformation stability

The following theorem states that the generalized feature extractor ΦΩ defined in (11) is stable w.r.t.

time-frequency deformations of the form

(Fτ,ωf)(x) := e2πiω(x)f(x− τ(x)).

This class of deformations is wider than that considered in Mallat’s theory, which deals with translation-

like deformations of the form f(x− τ(x)) only. Modulation-like deformations e2πiω(x)f(x) occur, e.g.,

if the signal is subject to an unwanted modulation, and we therefore have access to a bandpass version

of f ∈ L2(Rd) only.

Theorem 1. Let Ω =
(
(Ψn,Mn, Rn)

)
n∈N be a weakly admissible module-sequence. The corresponding

feature extractor ΦΩ is stable on the space of R-band-limited functions L2
R(Rd) w.r.t. deformations

(Fτ,ωf)(x) = e2πiω(x)f(x − τ(x)), i.e., there exists a universal constant C > 0 (that does not depend

on Ω) such that for all f ∈ L2
R(Rd), all ω ∈ C(Rd,R), and all τ ∈ C1(Rd,Rd) with ‖Dτ‖∞ ≤ 1

2d , it

holds that

|||ΦΩ(Fτ,ωf)− ΦΩ(f)||| ≤ C
(
R‖τ‖∞ + ‖ω‖∞

)
‖f‖2. (14)

Proof. The proof is given in Appendix F.

Theorem 1 shows that deformation stability in the sense of (5) is retained for the generalized feature

extractor ΦΩ. Similarly to Mallat’s deformation stability bound (5), the bound in (14) holds for defor-

mations τ with sufficiently “small” Jacobian matrix, i.e., as long as ‖Dτ‖∞ ≤ 1
2d . Note, however, that

(5) depends on the scale parameter J . This is problematic as Mallat’s horizontal translation invariance

result (4) requires J → ∞, and the upper bound in (5) goes to infinity for J → ∞ as a consequence
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of J‖Dτ‖∞ →∞. The deformation stability bound (14), in contrast, is completely decoupled from the

vertical translation invariance result stated in Theorem 2 in Section IV-B.

The strength of the deformation stability result in Theorem 1 derives itself from the fact that the only

condition on the underlying module-sequence Ω for (14) to hold is the weak admissibility condition

(13), which as outlined in Section III, can easily be met by normalizing the frame elements of Ψn, for

all n ∈ N, appropriately. This normalization does not have an impact on the constant C in (14). More

specifically, C is shown in (86) to be completely independent of Ω. All this is thanks to the technique

we use for proving Theorem 1 being completely independent of the algebraic structures of the frames

Ψn, of the particular form of the operators Mn, and of the specific sub-sampling factors Rn. This is

accomplished through a generalization8 of [19, Proposition 2.5] stated in Proposition 4 in Appendix F,

and the upper bound on ‖Fτ,ωf−f‖2 for R-band-limited functions detailed in Proposition 5 in Appendix

F.

B. Vertical translation invariance

The next result states that under very mild decay conditions on the Fourier transforms χ̂n of the

output-generating atoms χn, the network exhibits vertical translation invariance in the sense of the

features becoming more translation-invariant with increasing network depth. This result is in line with

observations made in the deep learning literature, e.g., in [12]–[14], [17], [18], where it is informally

argued that the network’s outputs generated at deeper layers tend to be more translation-invariant. Before

presenting formal statements, we note that the vertical nature of our translation invariance result is in

stark contrast to the horizontal nature of Mallat’s result (4), where translation invariance is achieved

asymptotically in the scale parameter J . We hasten to add, that J →∞ in Mallat’s scattering network

yields, however, translation invariance for the features in each network layer.

Theorem 2. Let Ω =
(
(Ψn,Mn, Rn)

)
n∈N be a weakly admissible module-sequence, and assume that

the operators Mn : L2(Rd)→ L2(Rd) commute with the translation operator Tt, i.e.,

MnTtf = TtMnf, ∀f ∈ L2(Rd), ∀t ∈ Rd, ∀n ∈ N. (15)

i) The features Φn
Ω(f) generated in the n-th network layer satisfy

Φn
Ω(Ttf) = T t

R1R2...Rn

Φn
Ω(f), ∀f ∈ L2(Rd), ∀t ∈ Rd, ∀n ∈ N, (16)

8This generalization is in the sense of allowing for general semi-discrete shift-invariant frames, general Lipschitz-continuous
operators, and sub-sampling.
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where TtΦn
Ω(f) refers to element-wise application of Tt, i.e., TtΦn

Ω(f) := {Tth | ∀h ∈ Φn
Ω(f)}.

ii) If, in addition, there exists a constant K > 0 (that does not depend on n) such that the Fourier

transforms χ̂n of the output-generating atoms χn satisfy the decay condition

|χ̂n(ω)||ω| ≤ K, a.e. ω ∈ Rd, ∀n ∈ N0, (17)

then

|||Φn
Ω(Ttf)− Φn

Ω(f)||| ≤ 2π|t|K
R1 . . . Rn

‖f‖2, ∀f ∈ L2(Rd), ∀t ∈ Rd. (18)

Proof. The proof is given in Appendix I.

We first note that all pointwise (i.e., memoryless) non-linearities Mn : L2(Rd)→ L2(Rd) satisfy the

commutation condition (15). A large class of non-linearities widely used in the deep learning literature,

such as rectified linear units, hyperbolic tangents, shifted logistic sigmoids, and the modulus as employed

by Mallat in [19], are, indeed, pointwise and hence covered by Theorem 2. We refer the reader to

Appendix D for a brief review of corresponding example non-linearities. Moreover, note that (17) can

easily be met by taking the output-generating atoms {χn}n∈N0
either to satisfy

sup
n∈N0

{‖χn‖1 + ‖∇χn‖1} <∞, (19)

see, e.g., [40, Ch. 7], or to be uniformly band-limited in the sense of supp(χ̂n) ⊆ BR(0), for all n ∈ N0,

with an R independent of n (see, e.g., [41, Ch. 2.3]). The inequality (18) shows that we can explicitly

control the amount of translation invariance via the sub-sampling factors Rn. Furthermore, the condition

lim
n→∞

R1 · R2 · . . . · Rn = ∞ (easily met by taking Rn > 1, for all n ∈ N) yields, thanks to (18),

asymptotically exact translation invariance according to

lim
n→∞

|||Φn
Ω(Ttf)− Φn

Ω(f)||| = 0, ∀f ∈ L2(Rd), ∀t ∈ Rd. (20)

Finally, we note that in practice, translation covariance in the sense of Φn
Ω(Ttf) = TtΦ

n
Ω(f), for all

f ∈ L2(Rd), and all t ∈ Rd, may also be desirable, e.g., in face pose estimation where translations of

a given image correspond to different poses which the feature extractor ΦΩ should reflect.

Corollary 1. Let Ω =
(
(Ψn,Mn, Rn)

)
n∈N be a weakly admissible module-sequence, and assume that

the operators Mn : L2(Rd)→ L2(Rd) commute with the translation operator Tt in the sense of (15). If,

in addition, there exists a constant K > 0 (that does not depend on n) such that the Fourier transforms
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χ̂n of the output-generating atoms χn satisfy the decay condition (17), then

|||Φn
Ω(Ttf)− TtΦn

Ω(f)||| ≤ 2π|t|K
∣∣1/(R1 . . . Rn)− 1

∣∣‖f‖2, ∀f ∈ L2(Rd), ∀t ∈ Rd.

Proof. The proof is given in Appendix J.

Theorem 2 and Corollary 1 nicely show that having 1/(R1 . . . Rn) large yields more translation

invariance but less translation covariance and vice versa.

Remark 2. It is interesting to note that the frame lower bounds An > 0 of the semi-discrete shift-

invariant frames Ψn affect neither the deformation stability result Theorem 1 nor the vertical trans-

lation invariance result Theorem 2. In fact, our entire theory carries through as long as the Ψn =

{TbIgλn
}b∈Rd,λn∈Λn

satisfy the Bessel property

∑
λn∈Λn

∫
Rd

|〈f, TbIgλn
〉|2db =

∑
λn∈Λn

‖f ∗ gλn
‖22 ≤ Bn‖f‖22, ∀f ∈ L2(Rd),

for some Bn > 0, which is equivalent to

∑
λn∈Λn

|ĝλn
(ω)|2 ≤ Bn, a.e. ω ∈ Rd, (21)

see Proposition 2. Pre-specified unstructured filters [13], [14] and learned filters [12]–[15] are therefore

covered by our theory as long as (21) is satisfied. We emphasize that (21) is a simple boundedness

condition in the frequency domain. In classical frame theory An > 0 guarantees completeness of the

set Ψn = {TbIgλn
}b∈Rd,λn∈Λn

for the signal space under consideration, here L2(Rd). The absence of

a frame lower bound An > 0 therefore translates into a lack of completeness of Ψn, which may result

in ΦΩ(f) not containing all essential features of the signal f . This will, in general, have a (possibly

significant) impact on classification performance in practice, which is why ensuring the entire frame

property (24) is prudent.

V. RELATION TO MALLAT’S RESULTS

To see how Mallat’s wavelet-modulus feature extractor ΦM defined in (1) is covered by our generalized

framework, simply note that ΦM is a feature extractor ΦΩ based on the module-sequence

ΩM =
(
(ΨΛDW

, | · |, 1)
)
n∈N, (22)
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where each layer is associated with the same module (ΨΛDW
, |·|, 1) and thus with the same semi-discrete

shift-invariant directional wavelet frame ΨΛDW
= {TbIψλ}b∈Rd,λ∈ΛDW

and the modulus non-linearity

| · |. Since ΦM does not involve sub-sampling, we have Rn = 1, for all n ∈ N, and the output-generating

atom for all layers is taken to be the low-pass filter ψ(−J,0), i.e., χn = ψ(−J,0), for all n ∈ N0. Owing

to [19, Eq. 2.7], the set {ψλ}λ∈ΛDW
satisfies the equivalent frame condition (26) with A = B = 1,

and ΨΛDW
therefore forms a semi-discrete shift-invariant Parseval frame for L2(Rd), which implies

An = Bn = 1, for all n ∈ N. The modulus non-linearity Mn = | · | is Lipschitz-continuous with

Lipschitz constant Ln = 1, satisfies Mnf = |f | = 0 for f = 0, and, as a pointwise (memoryless)

operator, trivially commutes with the translation operator Tt in the sense of (15), see Appendix D for

the corresponding formal arguments. The weak admissibility condition (13) is met according to

max{Bn, BnR−dn L2
n} = max{1, 1} = 1 ≤ 1, ∀n ∈ N,

so that all the conditions required by Theorems 1 and 2 and Corollary 1 are satisfied.

Translation invariance. Mallat’s horizontal translation invariance result (4),

lim
J→∞

|||ΦM (Ttf)− ΦM (f)||| = lim
J→∞

( ∞∑
n=0

|||Φn
M (Ttf)− Φn

M (f)|||2
)1/2

= 0,

is asymptotic in the wavelet scale parameter J , and guarantees translation invariance in every network

layer in the sense of

lim
J→∞

|||Φn
M (Ttf)− Φn

M (f)||| = 0, ∀f ∈ L2(Rd), ∀t ∈ Rd, ∀n ∈ N0.

In contrast, our vertical translation invariance result (20) is asymptotic in the network depth n and is

in line with observations made in the deep learning literature, e.g., in [12]–[14], [17], [18], where it is

found that the network’s outputs generated at deeper layers tend to be more translation-invariant.

We can easily render Mallat’s feature extractor ΦM vertically translation-invariant by substituting the

module sequence (22) by

Ω̃M :=
(
(ΨΛDW

, | · |, Rn)
)
n∈N,

and choosing the sub-sampling factors such that lim
n→∞

R1 · . . . · Rn = ∞. First, the weak admissibility

condition (13) is met on account of

max{Bn, BnR−dn L2
n} = max{1, R−dn } = 1 ≤ 1, ∀n ∈ N,
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where we used the Lipschitz continuity of Mn = | · | with Ln = 1. Furthermore, Mn = | · | satisfies

the commutation property (15), as explained above, and, by |ψ(−J,0)(x)| ≤ C1(1 + |x|)−d−2 and

|∇ψ(−J,0)(x)| ≤ C2(1+|x|)−d−2 for some C1, C2 > 0, see [19, p. 1336], it follows that ‖ψ(−J,0)‖1 <∞

and ‖∇ψ(−J,0)‖1 < ∞ [59, Ch. 2.2.], and thus ‖ψ(−J,0)‖1 + ‖∇ψ(−J,0)‖1 < ∞. By (19) the output-

generating atoms χn = ψ(−J,0), n ∈ N0, therefore satisfy the decay condition (17).

Deformation stability. Mallat’s deformation stability bound (5) applies to translation-like deformations

of the form f(x−τ(x)), while our corresponding bound (14) pertains to the larger class of time-frequency

deformations of the form e2πiω(x)f(x− τ(x)).

Furthermore, Mallat’s deformation stability bound (5) depends on the scale parameter J . This is prob-

lematic as Mallat’s horizontal translation invariance result (4) requires J →∞, which, by J‖Dτ‖∞ →∞

for J →∞, renders the deformation stability upper bound (5) void as it goes to ∞. In contrast, in our

framework, the deformation stability bound and the conditions for vertical translation invariance are

completely decoupled.

Finally, Mallat’s deformation stability bound (5) applies to the space

HM :=
{
f ∈ L2(Rd)

∣∣∣ ‖f‖HM
:=

∞∑
n=0

( ∑
q∈(ΛDW )n1

‖U [q]f‖22
)1/2

<∞
}
, (23)

where (ΛDW )n1 denotes the set of paths q = (λ1, . . . , λn) of length n with λk ∈ ΛDW , k = 1, . . . , n

(see Definition 2). While [19, p. 1350] cites numerical evidence on the series
∑

q∈(ΛDW )n1
‖U [q]f‖22

being finite (for some n ∈ N) for a large class of signals f ∈ L2(Rd), it seems difficult to establish

this analytically, let alone to show that
∑∞

n=0

(∑
q∈(ΛDW )n1

‖U [q]f‖22
)1/2

is finite. In contrast, our

deformation stability bound (14) applies provably to the space of R-band-limited functions L2
R(Rd).

Finally, the space HM in (23) depends on the wavelet frame atoms {ψλ}λ∈ΛDW
, and thereby on the

underlying signal transform, whereas L2
R(Rd) is, of course, completely independent of the module-

sequence Ω.

Proof techniques. The techniques used in [19] to prove the deformation stability bound (5) and the

horizontal translation invariance result (4) make heavy use of structural specifics of the wavelet transform,

namely, isotropic scaling (see, e.g., [19, Appendix A]), a constant number K ∈ N of directional wavelets

across scales (see, e.g., [19, Eq. E.1]), and several technical conditions such as a vanishing moment

condition on the mother wavelet ψ (see, e.g., [19, p. 1391]). In addition, Mallat imposes the scattering

admissibility condition (6). First of all, this condition depends on the underlying signal transform, more

precisely on the mother wavelet ψ, whereas our weak admissibility condition (13) is in terms of the frame
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upper bounds Bn, the Lipschitz constants Ln, and the sub-sampling factors Rn. As the frame upper

bounds Bn can be adjusted by simply normalizing the frame elements, and this normalization affects

neither vertical translation invariance nor deformation stability, we can argue that our weak admissibility

condition is independent of the signal transforms underlying the network. Second, Mallat’s scattering

admissibility condition plays a critical role in the proof of the horizontal translation invariance result

(4) (see, e.g., [19, p. 1347]), as well as in the proof of the deformation stability bound (5) (see, e.g.,

[19, Eq. 2.51]). It is therefore unclear how Mallat’s proof techniques could be generalized to arbitrary

convolutional transforms. Third, to the best of our knowledge, no mother wavelet ψ ∈ L1(Rd)∩L2(Rd),

for d ≥ 2, satisfying the scattering admissibility condition (6) has been reported in the literature. In

contrast, our proof techniques are completely detached from the algebraic structures of the frames Ψn

in the module-sequence Ω =
(
(Ψn,Mn, Rn)

)
n∈N. Rather, it suffices to employ (i) a module-sequence

Ω that satisfies the weak admissibility condition (13), (ii) non-linearities Mn that commute with the

translation operator Tt, (iii) output-generating atoms χn that satisfy the decay condition (17), and (iv)

sub-sampling factors Rn such that lim
n→∞

R1 ·R2 · . . . ·Rn =∞. All these conditions were shown above

to be easily satisfied in practice.

APPENDIX

A. Appendix: Semi-discrete shift-invariant frames

This appendix gives a brief review of the theory of semi-discrete shift-invariant frames [41, Section

5.1.5]. A list of structured example frames that are of interest in the context of this paper is provided in

Appendix B for the 1-D case, and in Appendix C for the 2-D case. Semi-discrete shift-invariant frames are

instances of continuous frames [38], [39], and appear in the literature, e.g., in the context of translation-

covariant signal decompositions [44], [53], [60], and as an intermediate step in the construction of various

fully-discrete frames [29], [61], [62]. We first collect some basic results on semi-discrete shift-invariant

frames.

Definition 5. Let {gλ}λ∈Λ ⊆ L1(Rd)∩L2(Rd) be a set of functions indexed by a countable set Λ. The

collection

ΨΛ := {TbIgλ}(λ,b)∈Λ×Rd
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is a semi-discrete shift-invariant frame for L2(Rd), if there exist constants A,B > 0 such that

A‖f‖22 ≤
∑
λ∈Λ

∫
Rd

|〈f, TbIgλ〉|2db =
∑
λ∈Λ

‖f ∗ gλ‖22 ≤ B‖f‖22, ∀f ∈ L2(Rd). (24)

The functions {gλ}λ∈Λ are called the atoms of the frame ΨΛ. When A = B the frame is said to be

tight. A tight frame with frame bound A = 1 is called a Parseval frame.

The frame operator associated with the semi-discrete shift-invariant frame ΨΛ is defined in the weak

sense as SΛ : L2(Rd)→ L2(Rd),

SΛf :=
∑
λ∈Λ

∫
Rd

〈f, TbIgλ〉(TbIgλ) db =
(∑
λ∈Λ

gλ ∗ Igλ
)
∗ f, (25)

where 〈f, TbIgλ〉 = (f ∗ gλ)(b), (λ, b) ∈ Λ × Rd, are called the frame coefficients. SΛ is a bounded,

positive, and boundedly invertible operator [41, Theorem 5.11].

The reader might want to think of semi-discrete shift-invariant frames as shift-invariant frames [63],

[64] with a continuous translation parameter, and of the countable index set Λ as labeling a collection

of scales, directions, or frequency-shifts, hence the terminology semi-discrete. For instance, Mallat’s

scattering network is based on a semi-discrete shift-invariant wavelet frame, where the atoms {gλ}λ∈ΛDW

are indexed by the set ΛDW :=
{

(−J, 0)
}
∪
{

(j, k) | j ∈ Z with j > −J, k ∈ {0, . . . ,K−1}
}

labeling

a collection of scales j and directions k.

The following result gives a so-called Littlewood-Paley condition [65], [66] for the collection ΨΛ =

{TbIgλ}(λ,b)∈Λ×Rd to form a semi-discrete shift-invariant frame.

Proposition 2. Let Λ be a countable set. The collection ΨΛ = {TbIgλ}(λ,b)∈Λ×Rd with atoms {gλ}λ∈Λ ⊆

L1(Rd) ∩ L2(Rd) is a semi-discrete shift-invariant frame for L2(Rd) with frame bounds A,B > 0 if

and only if

A ≤
∑
λ∈Λ

|ĝλ(ω)|2 ≤ B, a.e. ω ∈ Rd. (26)

Proof. The proof is standard and can be found, e.g., in [41, Theorem 5.11].

Remark 3. What is behind Proposition 2 is a result on the unitary equivalence between operators [67,

Definition 5.19.3]. Specifically, Proposition 2 follows from the fact that the multiplier
∑

λ∈Λ |ĝλ|2 is

unitarily equivalent to the frame operator SΛ in (25) according to

FSΛF−1 =
∑
λ∈Λ

|ĝλ|2,
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where F : L2(Rd) → L2(Rd) denotes the Fourier transform. We refer the interested reader to [68],

where the framework of unitary equivalence was formalized in the context of shift-invariant frames for

`2(Z).

The following proposition states normalization results for semi-discrete shift-invariant frames that

come in handy in satisfying the weak admissibility condition (13) as discussed in Section III.

Proposition 3. Let ΨΛ = {TbIgλ}(λ,b)∈Λ×Rd be a semi-discrete shift-invariant frame for L2(Rd) with

frame bounds A,B.

i) For C > 0, the family of functions

Ψ̃Λ :=
{
TbIg̃λ

}
(λ,b)∈Λ×Rd , g̃λ := C−1/2gλ, ∀λ ∈ Λ,

is a semi-discrete shift-invariant frame for L2(Rd) with frame bounds Ã := A
C and B̃ := B

C .

ii) The family of functions

Ψ\
Λ :=

{
TbIg

\
λ

}
(λ,b)∈Λ×Rd , g\λ := F−1

(
ĝλ

( ∑
λ′∈Λ

|ĝλ′ |2
)−1/2)

, ∀λ ∈ Λ,

is a semi-discrete shift-invariant Parseval frame for L2(Rd).

Proof. We start by proving statement i). As ΨΛ is a frame for L2(Rd), we have

A‖f‖22 ≤
∑
λ∈Λ

‖f ∗ gλ‖22 ≤ B‖f‖22, ∀f ∈ L2(Rd). (27)

With gλ =
√
Cg̃λ, for all λ ∈ Λ, in (27) we get A‖f‖22 ≤

∑
λ∈Λ ‖f ∗

√
Cg̃λ‖22 ≤ B‖f‖22, for all

f ∈ L2(Rd), which is equivalent to A
C ‖f‖

2
2 ≤

∑
λ∈Λ ‖f ∗ g̃λ‖22 ≤

B
C ‖f‖

2
2, for all f ∈ L2(Rd), and hence

establishes i). To prove statement ii), we first note that Fg\λ = ĝλ
(∑

λ′∈Λ |ĝλ′ |2
)−1/2, for all λ ∈ Λ,

and thus
∑

λ∈Λ |(Fg
\
λ)(ω)|2 =

∑
λ∈Λ |ĝλ(ω)|2

(∑
λ′∈Λ |ĝλ′(ω)|2

)−1
= 1, a.e. ω ∈ Rd. Application of

Proposition 2 then establishes that Ψ\
Λ is a semi-discrete shift-invariant Parseval frame for L2(Rd).

B. Appendix: Examples of semi-discrete shift-invariant frames in 1-D

General 1-D semi-discrete shift-invariant frames are given by collections

Ψ = {TbIgk}(k,b)∈Z×R (28)
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with atoms gk ∈ L1(R) ∩ L2(R), indexed by the integers Λ = Z, and satisfying the Littlewood-Paley

condition

A ≤
∑
k∈Z
|ĝk(ω)|2 ≤ B, a.e. ω ∈ R. (29)

The structural example frames we consider are Weyl-Heisenberg (Gabor) frames where the gk are

obtained through modulation from a prototype function, and wavelet frames where the gk are obtained

through scaling from a mother wavelet.

Semi-discrete shift-invariant Weyl-Heisenberg (Gabor) frames: Weyl-Heisenberg frames [69]–[72] are

well-suited to the extraction of sinusoidal features from signals [73], and have been applied successfully

in various practical feature extraction tasks [50], [74]. A semi-discrete shift-invariant Weyl-Heisenberg

frame for L2(R) is a collection of functions according to (28), where gm(x) := e2πimxg(x), m ∈ Z, with

the prototype function g ∈ L1(R) ∩ L2(R). The atoms {gm}m∈Z satisfy the Littlewood-Paley condition

(29) according to

A ≤
∑
m∈Z
|ĝ(ω −m)|2 ≤ B, a.e. ω ∈ R. (30)

A popular function g ∈ L1(R) ∩ L2(R) satisfying (30) is the Gaussian function [71].

Semi-discrete shift-invariant wavelet frames: Wavelets are well-suited to the extraction of signal features

characterized by singularities [44], [66], and have been applied successfully in various practical feature

extraction tasks [51], [52]. A semi-discrete shift-invariant wavelet frame for L2(R) is a collection of

functions according to (28), where gj(x) := 2jψ(2jx), j ∈ Z, with the mother wavelet ψ ∈ L1(R) ∩

L2(R). The atoms {gj}j∈Z satisfy the Littlewood-Paley condition (29) according to

A ≤
∑
j∈Z
|ψ̂(2−jω)|2 ≤ B, a.e. ω ∈ R. (31)

A large class of functions ψ satisfying (31) can be obtained through a multi-resolution analysis in L2(R)

[41, Definition 7.1].

C. Examples of semi-discrete shift-invariant frames in 2-D

Semi-discrete shift-invariant wavelet frames: Two-dimensional wavelets are well-suited to the extrac-

tion of signal features characterized by point singularities (such as, e.g., stars in astronomical images

[75]), and have been applied successfully in various practical feature extraction tasks, e.g., in [16]–[18],
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Fig. 3: Partitioning of the frequency plane R2 induced by (left) a semi-discrete shift-invariant tensor
wavelet frame, and (right) a semi-discrete shift-invariant directional wavelet frame.

[53]. Prominent families of two-dimensional wavelet frames are tensor wavelet frames and directional

wavelet frames:

i) Semi-discrete shift-invariant tensor wavelet frames: A semi-discrete shift-invariant tensor wavelet

frame for L2(R2) is a collection of functions according to

ΨΛTW
:= {TbIg(e,j)}(e,j)∈ΛTW ,b∈R2 , g(e,j)(x) := 22jψe(2jx),

where ΛTW :=
{

((0, 0), 0)
}
∪
{

(e, j) | e ∈ E\{(0, 0)}, j ≥ 0
}

, and E := {0, 1}2. Here, the

functions ψe ∈ L1(R2)∩L2(R2) are tensor products of a coarse-scale function φ ∈ L1(R)∩L2(R)

and a fine-scale function ψ ∈ L1(R) ∩ L2(R) according to

ψ(0,0) := φ⊗ φ, ψ(1,0) := ψ ⊗ φ, ψ(0,1) := φ⊗ ψ, ψ(1,1) := ψ ⊗ ψ.

The corresponding Littlewood-Paley condition (26) reads

A ≤
∣∣ψ̂(0,0)(ω)

∣∣2 +
∑
j≥0

∑
e∈E\{(0,0)}

|ψ̂e(2−jω)|2 ≤ B, a.e. ω ∈ R2. (32)

A large class of functions φ, ψ satisfying (32) can be obtained through a multi-resolution analysis

in L2(R) [41, Definition 7.1].
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Fig. 4: Partitioning of the frequency plane R2 induced by a semi-discrete shift-invariant ridgelet frame.

ii) Semi-discrete shift-invariant directional wavelet frames: A semi-discrete shift-invariant directional

wavelet frame for L2(R2) is a collection of functions according to

ΨΛDW
:= {TbIg(j,k)}(j,k)∈ΛDW ,b∈R2 ,

with

g(−J,0)(x) := 2−2Jφ(2−Jx), g(j,k)(x) := 22jψ(2jRθkx),

where ΛDW :=
{

(−J, 0)
}
∪
{

(j, k) | j ∈ Z with j > −J, k ∈ {0, . . . ,K − 1}
}

, Rθ is a 2 × 2

rotation matrix defined as

Rθ :=

cos(θ) − sin(θ)

sin(θ) cos(θ)

 , θ ∈ [0, 2π), (33)

and θk := 2πk
K , with k = 0, . . . ,K − 1, for a fixed K ∈ N, are rotation angles. The functions

φ ∈ L1(R2) ∩ L2(R2) and ψ ∈ L1(R2) ∩ L2(R2) are referred to in the literature as coarse-scale

wavelet and fine-scale wavelet, respectively. The integer J ∈ Z corresponds to the coarsest scale

resolved and the atoms {g(j,k)}(j,k)∈ΛDW
satisfy the Littlewood-Paley condition (26) according to

A ≤ |φ̂(2Jω)|2 +
∑
j>−J

K−1∑
k=0

|ψ̂(2−jRθkω)|2 ≤ B, a.e. ω ∈ R2. (34)

Prominent examples of functions φ, ψ satisfying (34) are the Gaussian function for φ and a

modulated Gaussian function for ψ [41].

Semi-discrete shift-invariant ridgelet frames: Ridgelets, introduced in [26], [27], are well-suited to the

extraction of signal features characterized by straight-line singularities (such as, e.g., straight edges in
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ω1

ω2

Fig. 5: Partitioning of the frequency plane R2 induced by a semi-discrete shift-invariant curvelet frame.

images), and have been applied successfully in various practical feature extraction tasks [54]–[56], [58].

A semi-discrete shift-invariant ridgelet frame for L2(R2) is a collection of functions according to

ΨΛR
:= {TbIg(j,l)}(j,l)∈ΛR,b∈R2 ,

with

g(0,0)(x) := φ(x), g(j,l)(x) := ψ(j,l)(x),

where ΛR :=
{

(0, 0)
}
∪
{

(j, l) | j ≥ 1, l = 1, . . . , 2j − 1
}

, and the atoms {g(j,l)}(j,l)∈ΛR
satisfy the

Littlewood-Paley condition (26) according to

A ≤ |φ̂(ω)|2 +

∞∑
j=1

2j−1∑
l=1

|ψ̂(j,l)(ω)|2 ≤ B, a.e. ω ∈ R2. (35)

The functions ψ(j,l) ∈ L1(R2)∩L2(R2), (j, l) ∈ ΛR\{(0, 0)}, are designed to be constant in the direction

specified by the parameter l, and to have a Fourier transform ψ̂(j,l) supported on a pair of opposite wedges

of size 2−j × 2j in the dyadic corona {ω ∈ R2 | 2j ≤ |ω| ≤ 2j+1}, see Figure 4. We refer the reader

to [62, Section 2] for constructions of functions φ, ψ(j,l) satisfying (35) with A = B = 1, see [62,

Proposition 6].

Semi-discrete shift-invariant curvelet frames: Curvelets, introduced in [28], [29], are well-suited to the

extraction of signal features characterized by curve-like singularities (such as, e.g., curved edges in

images), and have been applied successfully in various practical feature extraction tasks [57], [58].

A semi-discrete shift-invariant curvelet frame for L2(R2) is a collection of functions according to

ΨΛC
:= {TbIg(j,l)}(j,l)∈ΛC ,b∈R2 ,



27

with

g(−1,0)(x) := φ(x), g(j,l)(x) := ψj(Rθj,lx),

where ΛC :=
{

(−1, 0)
}
∪
{

(j, l) | j ≥ 0, l = 0, . . . , Lj − 1
}

, Rθ ∈ R2×2 is the rotation matrix defined

in (33), and θj,l := πl2−dj/2e−1, for j ≥ 0, and 0 ≤ l < Lj := 2dj/2e+2, are scale-dependent rotation

angles. The functions φ ∈ L1(R2) ∩ L2(R2) and ψj ∈ L1(R2) ∩ L2(R2) satisfy the Littlewood-Paley

condition (26) according to

A ≤ |φ̂(ω)|2 +

∞∑
j=0

Lj−1∑
l=0

|ψ̂j(Rθj,lω)|2 ≤ B, a.e. ω ∈ R2. (36)

The functions ψj , j ≥ 0, are designed to have their Fourier transform ψ̂j supported on a pair of opposite

wedges of size 2−j/2× 2j in the dyadic corona {ω ∈ R2 | 2j ≤ |ω| ≤ 2j+1}, see Figure 5. We refer the

reader to [29] for constructions of functions φ, ψj satisfying (36) with A = B = 1, see [29, Theorem

4.1].

Remark 4. For further examples of interesting structured semi-discrete shift-invariant frames, we refer

to [32], which discusses semi-discrete shift-invariant shearlet frames, and [30], which deals with semi-

discrete shift-invariant α-curvelet frames.

D. Appendix: Non-linearities

This appendix gives a brief overview of non-linearities M : L2(Rd) → L2(Rd) that are widely used

in the deep learning literature and that fit into our theory. For each example, we establish how it satisfies

the conditions on M : L2(Rd) → L2(Rd) in Theorems 1 and 2 and Corollary 1. Specifically, we need

to verify the following:

(i) Lipschitz continuity: There exists a constant L ≥ 0 such that

‖Mf −Mh‖2 ≤ L‖f − h‖2, ∀f, h ∈ L2(Rd).

(ii) Mf = 0 for f = 0.

All non-linearities considered here are pointwise (i.e., memoryless) operators in the sense of

M : L2(Rd)→ L2(Rd), (Mf)(x) = ρ(f(x)), (37)
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where ρ : C → C. An immediate consequence of this property is that the operators M commute with

the translation operator Tt:

(MTtf)(x) = ρ((Ttf)(x)) = ρ(f(x− t)) = Ttρ(f(x)) = (TtMf)(x), ∀f ∈ L2(Rd), ∀t ∈ Rd.

Modulus: The modulus operator

| · | : L2(Rd)→ L2(Rd), |f |(x) := |f(x)|,

has been applied successfully in the deep learning literature, e.g., in [13], [18], and most prominently

in Mallat’s scattering network [19]. Lipschitz continuity with L = 1 follows from

‖|f | − |h|‖22 =

∫
Rd

||f(x)| − |h(x)||2dx ≤
∫
Rd

|f(x)− h(x)|2dx = ‖f − h‖22, ∀f, h ∈ L2(Rd),

by the reverse triangle inequality. Furthermore, obviously |f | = 0 for f = 0, and finally | · | is pointwise

as (37) is satisfied with ρ(x) := |x|.

Rectified linear unit: The rectified linear unit non-linearity (see, e.g., [34], [35]) is defined as

R : L2(Rd)→ L2(Rd), (Rf)(x) := max{0,Re(f(x))}+ imax{0, Im(f(x))}.

We start by establishing that R is Lipschitz-continuous with L = 2. To this end, fix f, h ∈ L2(Rd). We

have

|(Rf)(x)− (Rh)(x)| =
∣∣max{0,Re(f(x))}+ imax{0, Im(f(x))}

−
(

max{0,Re(h(x))}+ imax{0, Im(h(x))}
)∣∣

≤
∣∣max{0,Re(f(x))} −max{0,Re(h(x))}

∣∣ (38)

+
∣∣max{0, Im(f(x))} −max{0, Im(h(x))}

∣∣
≤
∣∣Re(f(x))− Re(h(x))

∣∣+
∣∣ Im(f(x))− Im(h(x))

∣∣ (39)

≤
∣∣f(x)− h(x)

∣∣+
∣∣f(x)− h(x)

∣∣ = 2|f(x)− h(x)|, (40)

where we used the triangle inequality in (38),

|max{0, a} −max{0, b}| ≤ |a− b|, ∀a, b ∈ R,
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in (39), and the Lipschitz continuity (with L = 1) of Re : C→ R and Im : C→ R in (40). We therefore

get

‖Rf −Rh‖2 =
(∫

Rd

|(Rf)(x)− (Rh)(x)|2dx
)1/2

≤ 2
(∫

Rd

|f(x)− h(x)|2dx
)1/2

= 2 ‖f − h‖2,

which establishes Lipschitz continuity of R with Lipschitz constant L = 2. Furthermore, obviously

Rf = 0 for f = 0, and finally (37) is satisfied with ρ(x) := max{0,Re(x)}+ imax{0, Im(x)}.

Hyperbolic tangent: The hyperbolic tangent non-linearity (see, e.g., [12]–[14]) is defined as

H : L2(Rd)→ L2(Rd), (Hf)(x) := tanh(Re(f(x))) + i tanh(Im(f(x))),

where tanh(x) := ex−e−x

ex+e−x . We start by proving that H is Lipschitz-continuous with L = 2. To this end,

fix f, h ∈ L2(Rd). We have

|(Hf)(x)− (Hh)(x)| =
∣∣ tanh(Re(f(x))) + i tanh(Im(f(x)))

−
(

tanh(Re(h(x))) + i tanh(Im(h(x)))
)∣∣

≤
∣∣ tanh(Re(f(x)))− tanh(Re(h(x)))

∣∣
+
∣∣ tanh(Im(f(x)))− tanh(Im(h(x)))

∣∣, (41)

where, again, we used the triangle inequality. In order to further upper-bound (41), we show that tanh

is Lipschitz-continuous. To this end, we make use of the following result.

Lemma 1. Let h : R→ R be a continuously differentiable function satisfying sup
x∈R
|h′(x)| ≤ L. Then, h

is Lipschitz-continuous with Lipschitz constant L.

Proof. See [76, Theorem 9.5.1].

Since tanh′(x) = 1− tanh2(x), x ∈ R, we have sup
x∈R
| tanh′(x)| ≤ 1. By Lemma 1 we can therefore

conclude that tanh is Lipschitz-continuous with L = 1, which when used in (41), yields

|(Hf)(x)− (Hh)(x)| ≤
∣∣Re(f(x))− Re(h(x))

∣∣+
∣∣ Im(f(x))− Im(h(x))

∣∣
≤
∣∣f(x)− h(x)

∣∣+
∣∣f(x)− h(x)

∣∣ = 2|f(x)− h(x)|.
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Here, again, we used the Lipschitz continuity (with L = 1) of Re : C → R and Im : C → R. Putting

things together, we obtain

‖Hf −Hh‖2 =
(∫

Rd

|(Hf)(x)− (Hh)(x)|2dx
)1/2

≤ 2
(∫

Rd

|f(x)− h(x)|2dx
)1/2

= 2 ‖f − h‖2,

which proves that H is Lipschitz-continuous with L = 2. Since tanh(0) = 0, we trivially have Hf = 0

for f = 0. Finally, (37) is satisfied with ρ(x) := tanh(Re(x)) + i tanh(Im(x)).

Shifted logistic sigmoid: The shifted logistic sigmoid non-linearity9 (see, e.g., [36], [37]) is defined as

P : L2(Rd)→ L2(Rd), (Pf)(x) := sig(Re(f(x))) + isig(Im(f(x))),

where sig(x) := 1
1+e−x − 1

2 . We first establish that P is Lipschitz-continuous with L = 1
2 . To this end,

fix f, h ∈ L2(Rd). We have

|(Pf)(x)− (Ph)(x)| =
∣∣sig(Re(f(x))) + isig(Im(f(x)))

−
(
sig(Re(h(x))) + isig(Im(h(x)))

)∣∣
≤
∣∣sig(Re(f(x)))− sig(Re(h(x)))

∣∣
+
∣∣sig(Im(f(x)))− sig(Im(h(x)))

∣∣, (42)

where, again, we employed the triangle inequality. As before, to further upper-bound (42), we show

that sig is Lipschitz-continuous. Specifically, we apply Lemma 1 with sig′(x) = e−x

(1+e−x)2 , x ∈ R, and

hence sup
x∈R
|sig′(x)| ≤ 1

4 , to conclude that sig is Lipschitz-continuous with L = 1
4 . When used in (42)

this yields (together with the Lipschitz continuity (with L = 1) of Re : C→ R and Im : C→ R)

|(Pf)(x)− (Ph)(x)| ≤ 1

4

∣∣∣Re(f(x))− Re(h(x))
∣∣∣+

1

4

∣∣∣ Im(f(x))− Im(h(x))
∣∣∣

≤ 1

4

∣∣∣f(x)− h(x)
∣∣∣+

1

4

∣∣∣f(x)− h(x)
∣∣∣ =

1

2

∣∣∣f(x)− h(x)
∣∣∣. (43)

It now follows from (43) that

‖Pf − Ph‖2 =
(∫

Rd

|(Pf)(x)− (Ph)(x)|2dx
)1/2

≤ 1

2

(∫
Rd

|f(x)− h(x)|2dx
)1/2

=
1

2
‖f − h‖2,

9Strictly speaking, it is actually the sigmoid function x 7→ 1
1+e−x rather than the shifted sigmoid function x 7→ 1

1+e−x − 1
2

that is used in [36], [37]. We incorporated the offset 1
2

in order to satisfy the requirement Pf = 0 for f = 0.
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which establishes Lipschitz continuity of P with L = 1
2 . Since sig(0) = 0, we trivially have Pf = 0

for f = 0. Finally, (37) is satisfied with ρ(x) := sig(Re(x)) + isig(Im(x)).

E. Proof of Proposition 1

We need to show that ΦΩ(f) ∈ (L2(Rd))Q, for all f ∈ L2(Rd). This will be accomplished by proving

an even stronger result, namely,

|||ΦΩ(f)||| ≤ ‖f‖2, ∀f ∈ L2(Rd), (44)

which, by ‖f‖2 <∞, establishes the claim. For ease of notation, we let fq := U [q]f , for f ∈ L2(Rd),

in the following. Thanks to (10) and (13), we have ‖fq‖2 ≤ ‖f‖2 <∞, and thus fq ∈ L2(Rd). We first

write

|||ΦΩ(f)|||2 =

∞∑
n=0

∑
q∈Λn

1

||fq ∗ χn||22 = lim
N→∞

N∑
n=0

∑
q∈Λn

1

||fq ∗ χn||22︸ ︷︷ ︸
:=an

.
(45)

The key step is then to establish that an can be upper-bounded according to

an ≤ bn − bn+1, ∀n ∈ N0, (46)

with

bn :=
∑
q∈Λn

1

‖fq‖22, ∀n ∈ N0,

and to use this result in a telescoping series argument according to

N∑
n=0

an ≤
N∑
n=0

(bn − bn+1) = (b0 − b1) + (b1 − b2) + · · ·+ (bN − bN+1) = b0 − bN+1︸ ︷︷ ︸
≥0

≤ b0 =
∑
q∈Λ0

1

‖fq‖22 = ‖U [e]f‖22 = ‖f‖22.
(47)

By (45) this then implies (44). We start by noting that (46) reads

∑
q∈Λn

1

‖fq ∗ χn‖22 ≤
∑
q∈Λn

1

||fq‖22 −
∑

q∈Λn+1
1

‖fq‖22, ∀n ∈ N0, (48)
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and proceed by examining the second term on the right hand side (RHS) of (48). Every path

q̃ ∈ Λn+1
1 = Λ1 × · · · × Λn︸ ︷︷ ︸

=Λn
1

×Λn+1

of length n+1 can be decomposed into a path q ∈ Λn1 of length n and an index λn+1 ∈ Λn+1 according

to q̃ = (q, λn+1). Thanks to (9) we have U [q̃] = U [(q, λn+1)] = Un+1[λn+1]U [q], which yields

∑
q̃∈Λn+1

1

‖fq̃‖22 =
∑
q∈Λn

1

∑
λn+1∈Λn+1

‖Un+1[λn+1]fq‖22. (49)

Substituting the second term on the RHS of (48) by (49) now yields∑
q∈Λn

1

‖fq ∗ χn‖22 ≤
∑
q∈Λn

1

(
||fq‖22 −

∑
λn+1∈Λn+1

‖Un+1[λn+1]fq‖22
)
, ∀n ∈ N0,

which can be rewritten as∑
q∈Λn

1

(
‖fq ∗ χn‖22 +

∑
λn+1∈Λn+1

‖Un+1[λn+1]fq‖22
)
≤
∑
q∈Λn

1

||fq‖22, ∀n ∈ N0. (50)

Next, note that the second term inside the sum on the left hand side (LHS) of (50) can be written as

∑
λn+1∈Λn+1

‖Un+1[λn+1]fq‖22 =
∑

λn+1∈Λn+1

∫
Rd

|(Un+1[λn+1]fq)(x)|2dx

=
∑

λn+1∈Λn+1

∫
Rd

|(Mn+1(fq ∗ gλn+1
))(Rn+1x)|2dx

= R−dn+1

∑
λn+1∈Λn+1

∫
Rd

|(Mn+1(fq ∗ gλn+1
))(y)|2dy

= R−dn+1

∑
λn+1∈Λn+1

‖Mn+1(fq ∗ gλn+1
)‖22, ∀n ∈ N0. (51)

We next use the Lipschitz property of Mn+1, i.e.,

‖Mn+1(fq ∗ gλn+1
)−Mn+1h‖2 ≤ Ln+1‖fq ∗ gλn+1

− h‖,

together with Mn+1h = 0 for h = 0, to upper-bound the terms inside the sum in (51) according to

‖Mn+1(fq ∗ gλn+1
)‖22 ≤ L2

n+1‖fq ∗ gλn+1
‖22, ∀n ∈ N0. (52)

Noting that fq ∈ L2(Rd), as established above, and gλn+1
∈ L1(Rd), by assumption, it follows that

(fq ∗ gλn+1
) ∈ L2(Rd) thanks to Young’s inequality [59, Theorem 1.2.12]. Substituting the second term
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inside the sum on the LHS of (50) by the upper bound resulting from insertion of (52) into (51) yields

∑
q∈Λn

1

(
‖fq ∗ χn‖22 +R−dn+1L

2
n+1

∑
λn+1∈Λn+1

‖fq ∗ gλn+1
‖22
)

≤
∑
q∈Λn

1

max{1, R−dn+1L
2
n+1}

(
‖fq ∗ χn‖22 +

∑
λn+1∈Λn+1

‖fq ∗ gλn+1
‖22
)
, ∀n ∈ N0. (53)

As the functions {gλn+1
}λn+1∈Λn+1

∪{χn} are the atoms of the semi-discrete shift-invariant frame Ψn+1

for L2(Rd) and fq ∈ L2(Rd), as established above, we have

‖fq ∗ χn‖22 +
∑

λn+1∈Λn+1

‖fq ∗ gλn+1
‖22 ≤ Bn+1‖fq‖22,

which, when used in (53) yields

∑
q∈Λn

1

(
‖fq ∗ χn‖22 +

∑
λn+1∈Λn+1

‖Un+1[λn+1]fq‖22
)

≤
∑
q∈Λn

1

max{1, R−dn+1L
2
n+1}Bn+1‖fq‖22

=
∑
q∈Λn

1

max{Bn+1, Bn+1R
−d
n+1L

2
n+1}‖fq‖22, ∀n ∈ N0. (54)

Finally, invoking the assumption

max{Bn, BnR−dn L2
n} ≤ 1, ∀n ∈ N,

in (54) yields (50) and thereby completes the proof.

F. Appendix: Proof of Theorem 1

The proof of the deformation stability bound (14) is based on two key ingredients. The first one, stated

in Proposition 4 in Appendix G, establishes that the generalized feature extractor ΦΩ is non-expansive,

i.e.,

|||ΦΩ(f)− ΦΩ(h)||| ≤ ‖f − h‖2, ∀f, h ∈ L2(Rd), (55)

and needs the weak admissibility condition (13) only. The second ingredient, stated in Proposition 5 in

Appendix H, is an upper bound on the deformation error ‖f − Fτ,ωf‖2 given by

‖f − Fτ,ωf‖2 ≤ C
(
R‖τ‖∞ + ‖ω‖∞

)
‖f‖2, ∀f ∈ L2

R(Rd), (56)
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and is valid under the assumptions ω ∈ C(Rd,R) and τ ∈ C1(Rd,Rd) with ‖Dτ‖∞ < 1
2d . We now

show how (55) and (56) can be combined to establish the deformation stability bound (14). To this end,

we first apply (55) with h := Fτ,ωf = e2πiω(·)f(· − τ(·)) to get

|||ΦΩ(f)− ΦΩ(Fτ,ωf)||| ≤ ‖f − Fτ,ωf‖2, ∀f ∈ L2(Rd). (57)

Here, we used Fτ,ωf ∈ L2(Rd), which is thanks to

‖Fτ,ωf‖22 =

∫
Rd

|f(x− τ(x))|2dx ≤ 2‖f‖22,

obtained through the change of variables u = x− τ(x), together with

du

dx
= |det(E − (Dτ)(x))| ≥ 1− d‖Dτ‖∞ ≥ 1/2, ∀x ∈ Rd. (58)

The first inequality in (58) follows from:

Lemma 2. [77, Corollary 1] Let M ∈ Rd×d be such that |Mi,j | ≤ α, for all i, j with 1 ≤ i, j ≤ d. If

dα ≤ 1, then

| det(E −M)| ≥ 1− dα.

The second inequality in (58) is a consequence of the assumption ‖Dτ‖∞ ≤ 1
2d . The proof is finalized

by replacing the RHS of (57) by the RHS of (56).

G. Appendix: Proposition 4

Proposition 4. Let Ω =
(
(Ψn,Mn, Rn)

)
n∈N be a weakly admissible module-sequence. The correspon-

ding feature extractor ΦΩ : L2(Rd)→ (L2(Rd))Q is non-expansive, i.e.,

|||ΦΩ(f)− ΦΩ(h)||| ≤ ‖f − h‖2, ∀f, h ∈ L2(Rd). (59)

Remark 5. Proposition 4 generalizes [19, Proposition 2.5], which shows that Mallat’s wavelet-modulus

feature extractor ΦM is non-expansive. Specifically, our generalization allows for general semi-discrete

shift-invariant frames, general Lipschitz-continuous operators, and sub-sampling operations, all of which

can be different in different layers. Both, the proof of Proposition 4 stated below and the proof of [19,

Proposition 2.5] employ a telescoping series argument.

Proof. The key idea of the proof is—similarly to the proof of Proposition 1 in Appendix E—to judi-

ciously employ telescoping series arguments. For ease of notation, we let fq := U [q]f and hq := U [q]h,
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for f, h ∈ L2(Rd). Thanks to (10) and the weak admissibility condition (13), we have ‖fq‖2 ≤ ‖f‖2 <∞

and ‖hq‖2 ≤ ‖h‖2 <∞ and thus fq, hq ∈ L2(Rd). We start by writing

|||ΦΩ(f)− ΦΩ(h)|||2 =

∞∑
n=0

∑
q∈Λn

1

||fq ∗ χn − hq ∗ χn||22

= lim
N→∞

N∑
n=0

∑
q∈Λn

1

||fq ∗ χn − hq ∗ χn||22︸ ︷︷ ︸
=:an

.

As in the proof of Proposition 1 in Appendix E, the key step is to show that an can be upper-bounded

according to

an ≤ bn − bn+1, ∀n ∈ N0, (60)

where here bn :=
∑

q∈Λn
1
‖fq − hq‖22, ∀n ∈ N0, and to note that, similarly to (47),

N∑
n=0

an ≤
N∑
n=0

(bn − bn+1) = (b0 − b1) + (b1 − b2) + · · ·+ (bN − bN+1) = b0 − bN+1︸ ︷︷ ︸
≥0

≤ b0 =
∑
q∈Λ0

1

‖fq − hq‖22 = ‖U [e]f − U [e]h‖22 = ‖f − h‖22,

which then yields (59) according to

|||ΦΩ(f)− ΦΩ(h)|||2 = lim
N→∞

N∑
n=0

an ≤ lim
N→∞

‖f − h‖22 = ‖f − h‖22.

Writing out (60), it follows that we need to establish

∑
q∈Λn

1

‖fq ∗ χn − hq ∗ χn‖22 ≤
∑
q∈Λn

1

||fq − hq‖22 −
∑

q∈Λn+1
1

‖fq − hq‖22, ∀n ∈ N0. (61)

We start by examining the second term on the RHS of (61) and note that, thanks to the decomposition

q̃ ∈ Λn+1
1 = Λ1 × · · · × Λn︸ ︷︷ ︸

=Λn
1

×Λn+1

and U [q̃] = U [(q, λn+1)] = Un+1[λn+1]U [q], by (9), we have∑
q̃∈Λn+1

1

‖fq̃ − hq̃‖22 =
∑
q∈Λn

1

∑
λn+1∈Λn+1

‖Un+1[λn+1]fq − Un+1[λn+1]hq‖22. (62)
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Substituting (62) into (61) and rearranging terms, we obtain

∑
q∈Λn

1

(
‖fq ∗ χn − hq ∗ χn‖22 +

∑
λn+1∈Λn+1

‖Un+1[λn+1]fq − Un+1[λn+1]hq‖22
)

≤
∑
q∈Λn

1

||fq − hq‖22, ∀n ∈ N0. (63)

We next note that the second term inside the sum on the LHS of (63) satisfies

∑
λn+1∈Λn+1

‖Un+1[λn+1]fq − Un+1[λn+1]hq‖22

≤ R−dn+1

∑
λn+1∈Λn+1

‖Mn+1(fq ∗ gλn+1
)−Mn+1(hq ∗ gλn+1

)‖22, (64)

where we employed arguments similar to those leading to (51). Substituting the second term inside the

sum on the LHS of (63) by the upper bound (64), and using the Lipschitz property of Mn+1 yields

∑
q∈Λn

1

(
‖fq ∗ χn − hq ∗ χn‖22 +

∑
λn+1∈Λn+1

‖Un+1[λn+1]fq − Un+1[λn+1]hq‖22
)

≤
∑
q∈Λn

1

max{1, R−dn+1L
2
n+1}

(
‖(fq − hq) ∗ χn‖22 +

∑
λn+1∈Λn+1

‖(fq − hq) ∗ gλn+1
‖22
)
, (65)

for all n ∈ N0. As the functions {gλn+1
}λn+1∈Λn+1

∪{χn} are the atoms of the semi-discrete shift-invariant

frame Ψn+1 for L2(Rd) and fq, hq ∈ L2(Rd), as established above, we have

‖(fq − hq) ∗ χn‖22 +
∑

λn+1∈Λn+1

‖(fq − hq) ∗ gλn+1
‖22 ≤ Bn+1‖fq − hq‖22,

which, when used in (65) yields

∑
q∈Λn

1

(
‖fq ∗ χn − hq ∗ χn‖22 +

∑
λn+1∈Λn+1

‖Un+1[λn+1]fq − Un+1[λn+1]hq‖22
)

≤
∑
q∈Λn

1

max{Bn+1, Bn+1R
−d
n+1L

2
n+1}‖fq − hq‖22, ∀n ∈ N0. (66)

Finally, invoking the assumption

max{Bn, BnR−dn L2
n} ≤ 1, ∀n ∈ N,

in (66) we get (63) and hence (60). This completes the proof.
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H. Appendix: Proposition 5

Proposition 5. There exists a constant C > 0 such that for all f ∈ L2
R(Rd), all ω ∈ C(Rd,R), and all

τ ∈ C1(Rd,Rd) with ‖Dτ‖∞ < 1
2d , it holds that

‖f − Fτ,ωf‖2 ≤ C
(
R‖τ‖∞ + ‖ω‖∞

)
‖f‖2. (67)

Remark 6. A similar bound was derived by Mallat in [19, App. B], namely

‖f ∗ ψ(−J,0) − Fτ (f ∗ ψ(−J,0))‖2 ≤ C2−J+d‖τ‖∞‖f‖2, ∀f ∈ L2(Rd), (68)

where ψ(−J,0) is the low-pass filter of a semi-discrete shift-invariant directional wavelet frame for L2(Rd),

and (Fτf)(x) = f(x− τ(x)). The techniques for proving (67) and (68) are related in the sense of both

employing Schur’s Lemma [59, App. I.1] and a Taylor expansion argument [78, p. 411]. The major

difference between our bound (67) and Mallat’s bound (68) is that in (67) time-frequency deformations

Fτ,ω act on band-limited-functions f ∈ L2
R(Rd), whereas in (68) translation-like deformations Fτ act

on low-pass filtered functions f ∗ ψ(−J,0).

Proof. We first determine an integral operator

(Kf)(x) =

∫
Rd

k(x, u)f(u)du (69)

satisfying Kf = Fτ,ωf−f , for all f ∈ L2
R(Rd), and then upper-bound the deformation error ‖f−Fτ,ωf‖2

according to

‖f − Fτ,ωf‖2 = ‖Fτ,ωf − f‖2 = ‖Kf‖2 ≤ ‖K‖2,2‖f‖2, ∀f ∈ L2
R(Rd).

Application of Schur’s Lemma, stated below, then yields an upper bound on ‖K‖2,2 according to

‖K‖2,2 ≤ C
(
R‖τ‖∞ + ‖ω‖∞

)
, with C > 0,

which completes the proof.

Schur’s Lemma. [59, App. I.1] Let k : Rd × Rd → C be a locally integrable function satisfying

(i) sup
x∈Rd

∫
Rd

|k(x, u)|du ≤ α, (ii) sup
u∈Rd

∫
Rd

|k(x, u)|dx ≤ α, (70)

where α > 0. Then, (Kf)(x) =
∫
Rd k(x, u)f(u)du is a bounded operator from L2(Rd) to L2(Rd) with
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operator norm ‖K‖2,2 ≤ α.

We start by determining the integral operator K in (69). To this end, consider η ∈ S(Rd,C) such

that η̂(ω) = 1, for all ω ∈ B1(0). Setting γ(x) := Rdη(Rx) yields γ ∈ S(Rd,C) and γ̂(ω) = η̂(ω/R).

Thus, γ̂(ω) = 1, for all ω ∈ BR(0), and hence f̂ = f̂ · γ̂, so that f = f ∗ γ, for all f ∈ L2
R(Rd). Next,

we define the operator Aγ : L2(Rd) → L2(Rd), Aγf := f ∗ γ, and note that Aγ is well-defined, i.e.,

Aγf ∈ L2(Rd), for all f ∈ L2(Rd), thanks to Young’s inequality [59, Theorem 1.2.12] (since f ∈ L2(Rd)

and γ ∈ S(Rd,C) ⊆ L1(Rd)). Moreover, Aγf = f , for all f ∈ L2
R(Rd). Setting K := Fτ,ωAγ −Aγ we

get Kf = Fτ,ωAγf −Aγf = Fτ,ωf − f , for all f ∈ L2
R(Rd), as desired. Furthermore, it follows from

(Fτ,ωAγf)(x) = e2πiω(x)

∫
Rd

γ(x− τ(x)− u)f(u)du,

that the integral operator K = Fτ,ωAγ −Aγ , i.e., (Kf)(x) =
∫
Rd k(x, u)f(u)du, has the kernel

k(x, u) := e2πiω(x)γ(x− τ(x)− u)− γ(x− u). (71)

Before we can apply Schur’s Lemma to establish an upper bound on ‖K‖2,2, we need to verify that k

in (71) is locally integrable, i.e., we need to show that for every compact set S ⊆ Rd × Rd we have∫
S |k(x, u)|d(x, u) < ∞. To this end, let S ⊆ Rd × Rd be a compact set. Next, choose compact sets

S1, S2 ⊆ Rd such that S ⊆ S1 × S2. Thanks to γ ∈ S(Rd,C), τ ∈ C1(Rd,Rd), and ω ∈ C(Rd,R), all

by assumption, the function |k| : S1 × S2 → C is continuous as a composition of continuous functions,

and therefore also Lebesgue-measurable. We further have∫
S1

∫
S2

|k(x, u)|dxdu ≤
∫
S1

∫
Rd

|k(x, u)|dxdu

≤
∫
S1

∫
Rd

|γ(x− τ(x)− u)|dxdu+

∫
S1

∫
Rd

|γ(x− u)|dxdu

≤ 2

∫
S1

∫
Rd

|γ(y)|dydu+

∫
S1

∫
Rd

|γ(y)|dy du = 3µL(S1)‖γ‖1 <∞, (72)

where the first term in (72) follows by the change of variables y = x− τ(x)− u, together with

dy

dx
= | det(E − (Dτ)(x))| ≥ 1− d‖Dτ‖∞ ≥ 1/2, ∀x ∈ Rd. (73)

The arguments underlying (73) were already detailed at the end of Appendix F. It follows that k is
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locally integrable owing to∫
S
|k(x, u)|d(x, u) ≤

∫
S1×S2

|k(x, u)|d(x, u) =

∫
S1

∫
S2

|k(x, u)|dxdu <∞, (74)

where the first step in (74) follows from S ⊆ S1 × S2, the second step is thanks to the Fubini-Tonelli

Theorem [79, Theorem 14.2] noting that |k| : S1 × S2 → C is Lebesgue-measurable (as established

above) and non-negative, and the last step is due to (72). Next, we need to verify conditions (i) and (ii)

in (70) and determine the corresponding α > 0. In fact, we seek a specific constant α of the form

α = C
(
R‖τ‖∞ + ‖ω‖∞

)
, with C > 0. (75)

This will be accomplished as follows: For x, u ∈ Rd, we parametrize the integral kernel in (71) according

to hx,u(t) := e2πitω(x)γ(x − tτ(x) − u) − γ(x − u). A Taylor expansion [78, p. 411] of hx,u(t) w.r.t.

the variable t now yields

hx,u(t) = hx,u(0)︸ ︷︷ ︸
=0

+

∫ t

0
h′x,u(λ)dλ =

∫ t

0
h′x,u(λ)dλ, ∀t ∈ R, (76)

where h′x,u(t) = ( d
dthx,u)(t). Note that hx,u ∈ C1(R,C) thanks to γ ∈ S(Rd,C). Setting t = 1 in (76)

we get

|k(x, u)| = |hx,u(1)| ≤
∫ 1

0
|h′x,u(λ)|dλ, (77)

where

h′x,u(λ) = −e2πiλω(x)〈∇γ(x− λτ(x)− u), τ(x)〉+ 2πiω(x)e2πiλω(x)γ(x− λτ(x)− u),

for λ ∈ [0, 1]. We further have

|h′x,u(λ)| ≤
∣∣〈∇γ(x− λτ(x)− u), τ(x)

〉∣∣+ |2πω(x)γ(x− λτ(x)− u)|

≤ |τ(x)||∇γ(x− λτ(x)− u)|+ 2π|ω(x)||γ(x− λτ(x)− u)|. (78)

Now, using |τ(x)| ≤ sup
y∈Rd

|τ(y)| = ‖τ‖∞ and |ω(x)| ≤ sup
y∈Rd

|ω(y)| = ‖ω‖∞ in (78), together with (77),

we get the upper bound

|k(x, u)| ≤ ‖τ‖∞
∫ 1

0
|∇γ(x− λτ(x)− u)|dλ+ 2π‖ω‖∞

∫ 1

0
|γ(x− λτ(x)− u)|dλ. (79)
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Next, we integrate (79) w.r.t. u to establish (i) in (70):∫
Rd

|k(x, u)|du

≤‖τ‖∞
∫
Rd

∫ 1

0
|∇γ(x− λτ(x)− u)|dλdu+ 2π‖ω‖∞

∫
Rd

∫ 1

0
|γ(x− λτ(x)− u)|dλdu

= ‖τ‖∞
∫ 1

0

∫
Rd

|∇γ(x− λτ(x)− u)|dudλ+ 2π‖ω‖∞
∫ 1

0

∫
Rd

|γ(x− λτ(x)− u)|dudλ (80)

= ‖τ‖∞
∫ 1

0

∫
Rd

|∇γ(y)|dydλ+ 2π‖ω‖∞
∫ 1

0

∫
Rd

|γ(y)|dydλ

= ‖τ‖∞‖∇γ‖1 + 2π‖ω‖∞‖γ‖1, (81)

where (80) follows by application of the Fubini-Tonelli Theorem [79, Theorem 14.2] noting that the

functions (u, λ) 7→ |∇γ(x−λτ(x)−u)|, (u, λ) ∈ Rd× [0, 1], and (u, λ) 7→ |γ(x−λτ(x)−u)|, (u, λ) ∈

Rd × [0, 1], are both non-negative and continuous (and thus Lebesgue-measurable) as compositions of

continuous functions. Finally, using γ = Rdη(R·), and thus ∇γ = Rd+1∇η(R·), ‖γ‖1 = ‖η‖1, and

‖∇γ‖1 = R‖∇η‖1 in (81) yields

sup
x∈Rd

∫
Rd

|k(x, u)|du ≤ R‖τ‖∞‖∇η‖1 + 2π‖ω‖∞‖η‖1

≤ max
{
‖∇η‖1, 2π‖η‖1

}(
R‖τ‖∞ + ‖ω‖∞

)
, (82)

which establishes an upper bound of the form (i) in (70) that exhibits the desired structure for α.

Condition (ii) in (70) is established similarly by integrating (79) w.r.t. x according to∫
Rd

|k(x, u)|dx

≤‖τ‖∞
∫
Rd

∫ 1

0
|∇γ(x− λτ(x)− u)|dλdx+ 2π‖ω‖∞

∫
Rd

∫ 1

0
|γ(x− λτ(x)− u)|dλdx

= ‖τ‖∞
∫ 1

0

∫
Rd

|∇γ(x− λτ(x)− u)|dxdλ+ 2π‖ω‖∞
∫ 1

0

∫
Rd

|γ(x− λτ(x)− u)|dxdλ (83)

≤ 2 ‖τ‖∞
∫ 1

0

∫
Rd

|∇γ(y)|dydλ+ 4π‖ω‖∞
∫ 1

0

∫
Rd

|γ(y)|dydλ (84)

= 2 ‖τ‖∞‖∇γ‖1 + 4π‖ω‖∞‖γ‖1 ≤ max
{

2‖∇η‖1, 4π‖η‖1
}(
R‖τ‖∞ + ‖ω‖∞

)
, (85)

which yields an upper bound of the form (ii) in (70) with the desired structure for α. Here, again,

(83) follows by application of the Fubini-Tonelli Theorem [79, Theorem 14.2] noting that the functions

(x, λ) 7→ |∇γ(x−λτ(x)−u)|, (x, λ) ∈ Rd× [0, 1], and (x, λ) 7→ |γ(x−λτ(x)−u)|, (x, λ) ∈ Rd× [0, 1],
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are both non-negative and continuous (and thus Lebesgue-measurable) as a composition of continuous

functions. The inequality (84) follows from a change of variables argument similar to the one in (72)

and (73). Combining (82) and (85), we finally get (75) with

C := max
{

2‖∇η‖1, 4π‖η‖1
}
. (86)

This completes the proof.

I. Appendix: Proof of Theorem 2

We start by proving i). The key step in establishing (16) is to show that the operator Un, n ∈ N,

defined in (7) satisfies the relation

Un[λn]Ttf = Tt/Rn
Un[λn]f, ∀f ∈ L2(Rd), ∀t ∈ Rd, ∀λn ∈ Λn. (87)

With the definition of U [q] in (9) this then yields

U [q]Ttf = Tt/(R1R2···Rn)U [q]f, ∀f ∈ L2(Rd), ∀t ∈ Rd, ∀q ∈ Λn1 . (88)

The identity (16) is then a direct consequence of (88) and the translation-covariance of the convolution

operator:

Φn
Ω(Ttf) =

{(
U [q]Ttf

)
∗ χn

}
q∈Λn

1
=
{(
Tt/(R1R2···Rn)U [q]f

)
∗ χn

}
q∈Λn

1

=
{
Tt/(R1R2···Rn)

(
(U [q]f) ∗ χn

)}
q∈Λn

1
= Tt/(R1R2···Rn)

{
(U [q]f) ∗ χn

}
q∈Λn

1

= Tt/(R1R2···Rn)Φ
n
Ω(f), ∀f ∈ L2(Rd), ∀t ∈ Rd.

To establish (87), we first define the operator Dn : L2(Rd)→ L2(Rd), Dnf := f(Rn·), and note that

Un[λn]Ttf = (Mn((Ttf) ∗ gλn
))(Rn·) = DnMn((Ttf) ∗ gλn

)

= DnMnTt(f ∗ gλn
) = DnTtMn(f ∗ gλn

), ∀f ∈ L2(Rd), ∀t ∈ Rd, (89)

where, in the last step, we employed MnTt = TtMn, for all n ∈ N, and all t ∈ R, which is by

assumption. Next, using

DnTtf = f(Rn · −t) = f(Rn(· − t/Rn)) = Tt/Rn
Dnf, ∀f ∈ L2(Rd), ∀t ∈ Rd,
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in (89) yields

Un[λn]Ttf = DnTtMn(f ∗ gλn
) = Tt/Rn

DnMn(f ∗ gλn
) = Tt/Rn

Un[λn]f,

for all f ∈ L2(Rd), and all t ∈ Rd. This completes the proof of i).

Next, we prove ii). For ease of notation, again, we let fq := U [q]f , for f ∈ L2(Rd). Thanks to (10)

and the weak admissibility condition (13), we have ‖fq‖2 ≤ ‖f‖2 <∞, and thus fq ∈ L2(Rd). We first

write

|||Φn
Ω(Ttf)− Φn

Ω(f)|||2 = |||Tt/(R1...Rn)Φ
n
Ω(f)− Φn

Ω(f)|||2 (90)

=
∑
q∈Λn

1

‖Tt/(R1...Rn)(fq ∗ χn)− fq ∗ χn‖22

=
∑
q∈Λn

1

‖M−t/(R1...Rn)(f̂q ∗ χn)− f̂q ∗ χn‖22, ∀n ∈ N, (91)

where in (90) we used (16), and in (91) we employed Parseval’s formula [40, p. 189] (noting that

(fq ∗ χn) ∈ L2(Rd) thanks to Young’s inequality [59, Theorem 1.2.12]) together with the relation

T̂tf = M−tf̂ , for all f ∈ L2(Rd), and all t ∈ Rd. The key step is then to establish the upper bound

‖M−t/(R1...Rn)(f̂q ∗ χn)− f̂q ∗ χn‖22 ≤
4π2|t|2K2

(R1 . . . Rn)2
‖fq‖22, ∀n ∈ N, (92)

where K > 0 corresponds to the constant in the decay condition (17), and to note that

∑
q∈Λn

1

‖fq‖22 ≤
∑

q∈Λn−1
1

‖fq‖22, ∀n ∈ N, (93)

which follows from (46) thanks to

0 ≤
∑

q∈Λn−1
1

||fq ∗ χn−1||22 = an−1 ≤ bn−1 − bn =
∑

q∈Λn−1
1

‖fq‖22 −
∑
q∈Λn

1

‖fq‖22, ∀n ∈ N.

Iterating on (93) yields

∑
q∈Λn

1

‖fq‖22 ≤
∑

q∈Λn−1
1

‖fq‖22 ≤ · · · ≤
∑
q∈Λ0

1

‖fq‖22 = ‖U [e]f‖22 = ‖f‖22, ∀n ∈ N. (94)

The identity (91) together with the inequalities (92) and (94) then directly imply

|||Φn
Ω(Ttf)− Φn

Ω(f)|||2 ≤ 4π2|t|2K2

(R1 . . . Rn)2
‖f‖22, ∀n ∈ N. (95)
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It remains to prove (92). To this end, we first note that

‖M−t/(R1...Rn)(f̂q ∗ χn)− f̂q ∗ χn‖22

=

∫
Rd

|e−2πi〈t,ω〉/(R1...Rn) − 1|2|χ̂n(ω)|2|f̂q(ω)|2dω. (96)

Since |e−2πix − 1| ≤ 2π|x|, for all x ∈ R, it follows that

|e−2πi〈t,ω〉/(R1...Rn) − 1|2 ≤ 4π2|〈t, ω〉|2

(R1 . . . Rn)2
≤ 4π2|t|2|ω|2

(R1 . . . Rn)2
, (97)

where in the last step we employed the Cauchy-Schwartz inequality. Substituting (97) into (96) yields

‖M−t/(R1...Rn)(f̂q ∗ χn)− f̂q ∗ χn‖22

≤ 4π2|t|2

(R1 . . . Rn)2

∫
Rd

|ω|2|χ̂n(ω)|2|f̂q(ω)|2dω

≤ 4π2|t|2K2

(R1 . . . Rn)2

∫
Rd

|f̂q(ω)|2dω (98)

=
4π2|t|2K2

(R1 . . . Rn)2
‖f̂q‖22 =

4π2|t|2K2

(R1 . . . Rn)2
‖fq‖22, ∀n ∈ N, (99)

where in (98) we employed the decay condition (17), and in the last step, again, we used Parseval’s

formula [40, p. 189]. This establishes (92) and thereby completes the proof of ii).

J. Appendix: Proof of Corollary 1

The key idea of the proof is—similarly to the proof of ii) in Theorem 2—to upper-bound the deviation

from perfect covariance in the frequency domain. For ease of notation, again, we let fq := U [q]f , for

f ∈ L2(Rd). Thanks to (10) and the weak admissibility condition (13), we have ‖fq‖2 ≤ ‖f‖2 < ∞,

and thus fq ∈ L2(Rd). We first write

|||Φn
Ω(Ttf)− TtΦn

Ω(f)|||2 = |||Tt/(R1...Rn)Φ
n
Ω(f)− TtΦn

Ω(f)|||2 (100)

=
∑
q∈Λn

1

‖(Tt/(R1...Rn) − Tt)(fq ∗ χn)‖22

=
∑
q∈Λn

1

‖(M−t/(R1...Rn) −M−t)(f̂q ∗ χn)‖22, ∀n ∈ N, (101)

where in (100) we used (16), and in (101) we employed Parseval’s formula [40, p. 189] (noting that

(fq ∗ χn) ∈ L2(Rd) thanks to Young’s inequality [59, Theorem 1.2.12]) together with the relation
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T̂tf = M−tf̂ , for all f ∈ L2(Rd), and all t ∈ Rd. The key step is then to establish the upper bound

‖(M−t/(R1...Rn) −M−t)(f̂q ∗ χn)‖22 ≤ 4π2|t|2K2
∣∣1/(R1 . . . Rn)− 1

∣∣2‖fq‖22, (102)

where K > 0 corresponds to the constant in the decay condition (17). Arguments similar to those leading

to (95) then complete the proof. It remains to prove (102):

‖(M−t/(R1...Rn) −M−t)(f̂q ∗ χn)‖22

=

∫
Rd

∣∣e−2πi〈t,ω〉/(R1...Rn) − e−2πi〈t,ω〉∣∣2|χ̂n(ω)|2|f̂q(ω)|2dω. (103)

Since |e−2πix − e−2πiy| ≤ 2π|x− y|, for all x, y ∈ R, it follows that

∣∣e−2πi〈t,ω〉/(R1...Rn) − e−2πi〈t,ω〉∣∣2 ≤ 4π2|t|2|ω|2
∣∣1/(R1 . . . Rn)− 1

∣∣2, (104)

where, again, we employed the Cauchy-Schwartz inequality. Substituting (104) into (103), and employing

arguments similar to those leading to (99), establishes (102) and thereby completes the proof.
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