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Abstract. The article surveys structural characterizations of several graph
classes defined by distance properties, which have in part a general algebraic
flavor and can be interpreted as subdirect decomposition. The graphs we
feature in the first place are the median graphs and their various kinds of
generalizations, e.g., weakly modular graphs, or fiber-complemented graphs,
or l1-graphs. Several kinds of l1-graphs admit natural geometric realizations as
polyhedral complexes. Particular instances of these graphs also occur in other
geometric contexts, for example, as dual polar graphs, basis graphs of (even
∆-)matroids, tope graphs, lopsided sets, or plane graphs with vertex degrees
and face sizes bounded from below. Several other classes of graphs, e.g., Helly
graphs (as injective objects), or bridged graphs (generalizing chordal graphs),
or tree-like graphs such as distance-hereditary graphs occur in the investigation
of graphs satisfying some basic properties of the distance function, such as the
Helly property for balls, or the convexity of balls or of the neighborhoods of
convex sets, etc. Operators between graphs or complexes relate some of the
graph classes reported in this survey.

0. Introduction

Discrete geometry involves finite configurations of points, lines, planes or other
geometric objects, with the emphasis on combinatorial properties (Matoušek [139]).
This leads to a number of intriguing problems - indeed, “the subject of combina-
torics is devoted to the study of structures on a finite set; many of the most interest-
ing of these structures arise from elimination of continuous parameters in problems
from other mathematical disciplines” (Borovik et al. [58]). Pure graph theory
(Diestel [96]) may then offer the appropriate language, but some extra structure
is needed: in order to express the combinatorial features of incidence geometries
and certain buildings, geodesic (graph) distance plays a key role [157, §5], and the
graphs under investigation should possess rather strong distance properties.

The objects of departure are very simple models: n-cubes (with the l1-metric),
n-dimensional grids endowed with the l∞-metric, trees, and certain plane graphs.
The structural theories initially developed for the classes of median graphs and
Helly graphs, respectively, serve as prototypes for more general and complex the-
ories. Helly property, geodesic convexity, gated sets, isometric embedding, and
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decomposition (mimicking subdirect factorization) are then recurrent themes. The
choice of themes, of course, reflects our personal research interests in this field, with
the emphasis on structure theory. Certainly, the books and papers by Boltyanskii
and Soltan [57], Dress [99], Isbell [127], Mulder [142], and Soltan et al. [163] had
significant influence on our work over the past 20 years.

It is clear that a short survey cannot cover all aspects of metric graph theory
that are related to geometric questions. We have thus to be short about or even to
dismiss entirely the following topics. A classical subject is that of distance-regular
graphs, which are intimately related with combinatorial designs and finite geome-
tries; the book by Brouwer et al. [68] gives a detailed account of this. There exists
a vast literature on graphs that are hypermetric (or l1-embeddable, in particular)
and can be realized as 1-skeletons of certain polytopes (only some of which we
will mention below); see the book by Deza and Laurent [94]. The study of low-
distortion embeddings of graphs and finite metric spaces into l2- or l1-spaces, with
numerous applications in the design of approximation algorithms, was initiated by
Linial et al. [135] and is the subject of several surveys or book chapters, see for
example [139].

1. Basic notions

All graphs G = (V, E) occurring here are simple, connected, without loops or
multiple edges, but not necessarily finite.

Convex and isometric subgraphs. The distance d(u, v) := dG(u, v) between
two vertices u and v is the length of a shortest (u, v)-path, and the interval I(u, v)
between u and v consists of all vertices on shortest (u, v)–paths, that is, of all
vertices (metrically) between u and v:

I(u, v) := {x ∈ V : d(u, x) + d(x, v) = d(u, v)}.
An induced subgraph of G (or the corresponding vertex set A) is called convex if it
includes the interval of G between any of its vertices. An induced subgraph H of
G is isometric if the distance between any pair of vertices in H is the same as that
in G. In particular, convex subgraphs are isometric.

Balls. The ball (or disk) Nr(x) of center x and radius r ≥ 0 consists of all
vertices of G at distance at most r from x. In particular, the unit ball N1(x)
comprises x and the neighborhood N(x). The ball Nr(S) centered at a convex set
S is the union of all balls Nr(x) with centers x from S. The smallest number r for
which some ball (centered at a vertex) with radius r covers the whole graph G is
then called the radius of G. The radius of G is at least one half of the diameter of
G, the largest distance in G. Any two vertices at diameter distance are said to form
a diametrical pair.

Metric triangles and rectangles. Three vertices v1, v2, and v3 form a metric
triangle v1v2v3 if the intervals I(v1, v2), I(v2, v3) and I(v3, v1) pairwise intersect only
in the common end vertices. If d(v1, v2) = d(v2, v3) = d(v3, v1) = k, then this metric
triangle is called equilateral of size k. For example, the three vertices of degree 2 in
the 6-vertex sun (which is the graph obtained by gluing three triangles to the three
edges of another triangle) form a metric triangle of size 2. Four vertices v1, v2, v3, v4

form a metric rectangle if v1, v3 ∈ I(v2, v4) and v2, v4 ∈ I(v1, v3). Notice that in
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a metric rectangle opposite sides have the same length: d(v1, v2) = d(v3, v4) and
d(v1, v4) = d(v2, v3).

Gated sets and Helly property. A subset W of V or the subgraph H of
G induced by W is called gated (in G) if for every vertex x outside H there exists
a vertex x′ (the gate of x) in H such that each vertex y of H is connected with
x by a shortest path passing through the gate x′; cf. [102]. Gated sets emerged
first in location theory [116] and independently in the theory of buildings [167].
Gated sets enjoy the finite Helly property, that is, every finite family of gated sets
that pairwise intersect has a nonempty intersection. Since the intersection of gated
subgraphs is gated, for every subset S ⊆ V there exists the smallest gated set 〈〈S〉〉
containing S, referred to as the gated hull of S. A graph G is a gated amalgam of
two graphs G1 and G2 if G1 and G2 constitute two intersecting gated subgraphs of
G whose union is all of G.

Isometric embeddings and retractions. A graph G = (V, E) is isometri-
cally embeddable into a graph H = (W,F ) if there exists a mapping ϕ : V → W
such that dH(ϕ(u), ϕ(v)) = dG(u, v) for all vertices u, v ∈ V . A retraction ϕ of H
is an idempotent nonexpansive mapping of H into itself, that is, ϕ2 = ϕ : W → W
with d(ϕ(x), ϕ(y)) ≤ d(x, y) for all x, y ∈ W. The subgraph of H induced by the im-
age of H under ϕ is referred to as a retract of H. Retracts are isometric subgraphs,
but the converse is not true in general: the 6-cycle C6 is an isometric subgraph
but not a retract of the 3-cube H3. Note that nonexpansive mappings are just the
morphisms in the category of the so-called reflexive graphs (i.e., the graphs with
loops at all vertices); cf. [39, 144].

Cartesian products. The Cartesian product G = G1¤ . . . ¤Gn has the n-
tuples (x1, . . . , xn) as its vertices (with vertex xi from Gi) and an edge between
two vertices x = (x1, . . . , xn) and y = (y1, . . . , yn) if and only if, for some i, the
vertices xi and yi are adjacent in Gi, and xj = yj for the remaining j 6= i. Ob-
viously, dG(u, v) =

∑n
i=1 dGi(ui, vi) for any two vertices u = (u1, . . . , un) and

v = (v1, . . . , vn) of G. Infinitary Cartesian multiplication does not yield connected
graphs, and therefore one resorts to connected components (referred to as “weak
Cartesian products”). In particular, hypercubes are the weak Cartesian powers of
K2, the complete graph on two vertices. Then the n-cube Hn, the Cartesian prod-
uct of n copies of K2, encodes all subsets of an n-set X = {1, 2, . . . , n}, with two
subsets A, B being adjacent if and only if the symmetric difference A∆B is a single-
ton; in other words, Hn is the underlying graph of the Boolean algebra 2X , that is,
the unoriented version of the (Hasse) diagram of the Boolean lattice, which is also
referred to as the covering graph of 2X (see [164, p.189]). More generally, a weak
Cartesian product of complete graphs is a Hamming graph; in particular, Hm1,...,ms

denotes the Cartesian product of the complete graphs Km1 , . . . , Kms .

Half-cubes, Johnson graphs, and hyperoctahedra. Some further graphs
occur as hosts for isometric embeddings of graphs. The half-cube 1

2Hn is the graph
whose vertex set is the collection of all subsets of X which have the same cardinality
modulo 2, and two vertices A,B are adjacent in 1

2Hn exactly when A∆B is a
doubleton. The Johnson graph Jn,k is the (isometric) subgraph of 1

2Hn induced by
the family of all subsets of cardinality k. The m-octahedron (alias hyperoctahedron
or Cocktail-party graph) Km×2 is the complete multipartite graph with m parts,
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each of size 2. Thus Km×2 is obtained from the complete graph K2m by deleting
a perfect matching. It is no accident that these and other distance-regular graphs
(such as dual polar graphs, the Schläfli and Gosset graphs; see Sections 6.3 and 8.2
below) occur here, because they are all connected with certain finite geometries.

Simplicial and cubical complexes. A number of combinatorial and geo-
metric structures are related with graphs. An abstract simplicial complex X is a
collection of sets (called simplices) such that σ ∈ X and σ′ ⊆ σ implies σ′ ∈ X . A
cubical complex C is a set of (graph) cubes of any dimensions which is closed under
taking subcubes and nonempty intersections. Simplices or cubes of the respective
complex are called faces. For a complex K denote by V (K) and E(K) the vertex
set and the edge set of K, namely, the set of all 0-dimensional and 1-dimensional
faces of K. The pair (V (K), E(K)) is called the (underlying) graph or the 1-skeleton
of K and is denoted by G(K). Conversely, for a graph G one can derive a simpli-
cial complex X (G) and a cubical complex C(G) by taking all complete subgraphs
(simplices) or all induced subhypercubes, respectively, as faces of the complexes. A
simplicial complex X is a flag complex (or a clique complex) if any set of vertices
is included in a face of X whenever each pair of its vertices is contained in a face
of X . (In the theory of hypergraphs this condition is called conformality.) A flag
complex can therefore be recovered by its underlying graph G(X ): the complete
subgraphs of G(X ) are exactly the simplices of X .

The geometric realization |K| of a simplicial or cubical complex K is the poly-
hedral complex obtained by replacing every face σ by a “solid” regular simplex or
“solid” unit cube |σ| of the same dimension such that realization commutes with
intersection, that is, |σ′| ∩ |σ′′| = |σ′ ∩ σ′′| for any two faces σ′ and σ′′. Then
|K| =

⋃{|σ| : σ ∈ K}. Analogously, for a plane graph G (that is, a planar graph
embedded in the plane such that no edges cross) one can define a polygonal com-
plex |G| by replacing each inner face with k sides of G by a regular k-gon with
side length 1 in the Euclidean plane. K is called simply connected if it is connected
and if every continuous mapping of the 1-dimensional sphere S1 into |K| can be
extended to a continuous mapping of the disk D2 with boundary S1 into |K|.

Intrinsic metrics. The polyhedron |K| of a cubical complex K can be en-
dowed with an intrinsic lp-metric in the following way (similarly, one can define
the intrinsic l2-metric on the polyhedron of a simplicial or polygonal complex).
Assume that inside every maximal face |σ| of |K| the distance is measured by an
l1, l2, or l∞ metric. The intrinsic l1-, l2-, or l∞-metric of |K| is defined by letting
the distance between two points x, y ∈ |K| be equal to the greatest lower bound
on the length of the paths joining them; here a path in |K| from x to y is a se-
quence x = x0, x1, . . . , xm = y of points in |K| such that for each i = 0, . . . ,m − 1
there exists a face |Fi| containing xi and xi+1, and the length of the path equals∑m−1

i=0 d(xi, xi+1), where d(xi, xi+1) is computed inside |Fi| according to the respec-
tive metric. The resulting metric space is geodesic, i.e., every pair of points in |K|
can be joined by a geodesic; see [67]. A geodesic joining two points x and y from
|K| is a map γ from the segment [a, b] of length |a − b| = d(x, y) to |K| such that
γ(a) = x, γ(b) = y, and d(γ(s), γ(t)) = |s− t| for all s, t ∈ [a, b]. A complete metric
space is geodesic exactly when it is Menger-convex, that is, for any two distinct
points x and y there exists another point z between x and y.
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Hyperconvexity. A metric space (X, d) is called hyperconvex (or injective)
[3, 126] provided that any family of closed balls Nri

(xi) with centers xi and radii
ri, i ∈ I, satisfying d(xi, xj) ≤ ri + rj for all i, j ∈ I has a nonempty intersection,
that is, (X, d) is a Menger-convex space such that the closed balls have the (infinite)
Helly property. It is well known that (X, d) is hyperconvex if and only if it is
an absolute retract, that is, (X, d) is a retract of every metric space into which
it embeds isometrically. For every metric space (X, d) there exists the smallest
injective space extending (X, d), referred to as the injective hull [126] or tight span
[99, 101] of (X, d), which has most recently appeared in the context of tropical
geometry [91].

2. Median graphs

Median graphs and related median structures (median algebras and median
complexes) have many nice properties and admit numerous characterizations. These
structures have been investigated in several contexts by quite a number of authors
for more than half a century. Median structures are still being rediscovered in
various disguises. We present here only a brief account of the characteristic proper-
ties of median structures; for more detailed information, the interested reader can
consult the books [110, 125, 142, 170] and the paper [29].

A graph G is called median if the interval intersection I(x, y)∩ I(y, z)∩ I(z, x)
is a singleton, comprising the median m(x, y, z) for each triplet x, y, z of vertices.
Basic examples of median graphs are trees (which are successive point amalgams
of K2) and hypercubes (which are Cartesian powers of K2). The intervals of arbi-
trary median graphs, being themselves median subgraphs, are precisely the covering
graphs of finite distributive lattices. All median structures are intimately related
to hypercubes: median graphs are isometric subgraphs of hypercubes; in fact, they
are even retracts of those hypercubes into which they embed isometrically.

Theorem 2.1. [8, 127, 169] Median graphs are exactly the retracts of hy-
percubes. Every median graph with more than two vertices is either a Cartesian
product or a gated amalgam of proper median subgraphs.

In particular, every finite median graph G can be obtained by successive appli-
cations of gated amalgamations from hypercubes. A related construction of median
graphs via convex expansions is given in [141, 142]; this characterization leads to
efficient algorithms for recognizing median graphs [124, 125]. Gated sets play a
fundamental role in the investigation of median graphs (and more generally, metric
median spaces). For example, all convex sets of median graphs are gated and as
such they satisfy the finite Helly property. Notice also that for every edge ab of a
median graph G = (V, E) the sets

a/b := {v ∈ V : d(v, a) < d(v, b)},
a\b := {v ∈ V : d(v, b) < d(v, a)}

induce complementary gated subgraphs (in fact, this property characterizes median
graphs). Finally note that the median graphs are exactly the graphs in which all
intervals are gated; cf. [125].

There is a canonical construction of median graphs departing from arbitrary
graphs: namely, for a graph G the simplex graph κ(G) has the simplices (the com-
plete subgraphs) of G as its vertices and pairs of (comparable) simplices differing
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in exactly one vertex as its edges. Since X (G) is a flag complex, κ(G) is a median
graph [48].

While the dimension n of the smallest hypercube into which the median graph
G embeds is easy to determine, the problem of determining the smallest number of
tree factors necessary for an embedding into a Cartesian product of trees is hard.

Proposition 2.2. [44] The simplex graph κ(G) of a graph G can be isomet-
rically embedded into the Cartesian product of at most k trees if and only if the
chromatic number of G is at most k.

In particular, it is NP-complete to decide whether a 3-cube-free median graph
embeds into the Cartesian product of three trees [44]. In contrast, the graphs iso-
metrically embeddable into the product of two trees can be recognized in polynomial
time: one can show that they are exactly the 3-cube-free median graphs without
odd bipartite wheels (an odd bipartite wheel is the simplex graph of a k-cycle with
k > 3 odd).

The fact that median graphs are built up from hypercubes by (successive) gated
amalgamation is also reflected in the behavior of nonexpansive mappings. This is
made precise in the following fixed-cube theorem, which can be seen as a kind of
discrete analogue of classical fixed-point theorems.

Theorem 2.3. [43] Every nonexpansive map f of a finite median graph G into
itself has a fixed k-cube (k ≥ 0), i.e., a k-cube of G which is mapped isomorphically
onto itself by f.

A polynomial time algorithm for computing minimal fixed cubes of nonexpan-
sive mappings of a hypercube into itself was presented in [110].

2.1. Median algebra. Median graphs have a remarkable algebraic structure,
which is induced by the ternary operation on the vertex set that assigns to each
triplet of vertices the median vertex. This operation can be studied in an axiomatic
way as follows: an abstract median operator on a (not necessarily finite) set X is a
function m : X3 → X satisfying the following four conditions, where the short-hand
(uvw) := m(u, v, w) is used:

(M1) (uvv) = v (right absorption);

(M2) (uvw) = (uwv) (right symmetry);

(M3) (uvw) = (vuw) (left symmetry);

(M4) (uv(uwx)) = (u(uvw)x) (transitivity).

This system of identities is equivalent to the one from [170, p.8]. The resulting pair
(X, m) is called a median algebra. All median algebras are subdirect products of
the two-element algebra {0, 1}. Median algebras have a rich theory going back to
Birkhoff, Kiss, Sholander and Isbell; for an extensive survey, see [29, 127, 170].
The median operator of a median graph trivially satisfies the first three axioms, and
some computation shows that the fourth axiom also holds. This axiom expresses
associativity of the derived binary operation v, w 7→ (uvw) := v ∧ w, or equally,
transitivity of the relation v ≤ w ⇔ (uvw) = v for fixed u. In fact, it was one of the
starting points for the development of the theory of median algebras that under a
few axioms (equivalent to (M1)-(M4)) certain semilattices (X,∧) arise, which were
then called median semilattices. They are characterized by the property that all
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principal ideals {x ∈ X : x ≤ u} are distributive lattices and three elements have
an upper bound whenever each pair of them does. Therefore the median operator
can be retrieved from the median semilattice as

(uvw) = (u ∧ v) ∨ (u ∧ w) ∨ (v ∧ w),

just as in the classical case of distributive lattices.
Axioms (M1)-(M4) are evidently independent, but one can reduce the number

of axioms by integrating (M2) into a twisted variant of (M4). For instance, if one
substitutes in

(M5) (uv(uwx)) = (ux(uvw))

x by either (i) (uvw), or (ii) w, or (iii) v, or substitutes (iv) x, v, w by v, w, v,
respectively, then (by employing right absorption wherever possible) one derives
right symmetry by applying (i)-(iv) in this order: (uvw) = (uv(uw(uvw))) =
(uv(uvw)) = (uv(uwv)) = (uwv). In a similar fashion, one can dispense with left
symmetry by introducing a further twist into (M5):

(M6) (uv(uwx)) = (ux(wuv)).

Then one arrives at the most compact axiom system for median algebras, (M1) plus
(M6) [133]. There are many other ways to describe median algebras by identities.
For example, one system comprises (M1),(M2),(M3), and the axiom

(M7) ((vwx)u(uwx)) = (uwx),

which then replaces (M4); see [127, 6.6].
There is a bijection between discrete median algebras and median graphs: dis-

creteness refers to the non-existence of bounded infinite chains in the ternary alge-
bra; then with any discrete median algebra (X, m) one can associate a connected
graph by taking X as the vertex set and the pairs xy such that m(x, y, z) ∈ {x, y}
for all z ∈ X as edges.

Proposition 2.4. [6] Median graphs and discrete median algebras constitute
the same objects.

A subset Y of a median algebra is called median-stable (or a subalgebra) if
m(x, y, z) ∈ Y for all x, y, z ∈ Y. For any subset M there exists the smallest median-
stable set containing M (the median closure of M). It was shown in [127, 170] that
the median closure of a finite set is finite and therefore constitutes a median graph in
its own right. In other words, the free median algebra with finitely many generators
is finite; for more information about the free median algebras, see [45]. Every
median subalgebra of a hypercube generated by a subset X (not necessarily freely)
is determined by the splits (i.e., bipartitions) of X induced by the projections to the
K2 factors. Analyzing these splits in pairs then provides the necessary information
that enters into simple counting formulae for the total number of k-cubes [103] in
those median subalgebras, which in turn lead to Euler-type formulae via binomial
inversion [37].

Median-stable subsets of Boolean algebras naturally arise as solution sets of
certain Boolean expressions, namely of 2-SAT instances [156]; for example, the
2-SAT instance (x1∨x3)(x1∨x4)(x2∨x3)(x2∨x4)(x3∨x4) is the median-stable set
{(0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 1, 0, 1)}. This fact, which
can also be found in [89] and be derived from [127] and [143], was the main tool
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(along with Theorems 2.1 and 2.3) in investigating the stability of certain logical
networks [110]:

Proposition 2.5. [156] Median-stable subsets of Boolean algebras are exactly
the solution sets of instances of the 2-SAT problem.

Indeed, a median-stable subset S of 2X is uniquely determined by its 2-fold
projections, that is, the projections to pairs of factors. Since each 2-fold projection
can trivially be realized as the solution set of some 2-SAT instance in the corre-
sponding 2 variables, the conjunction of all those instances has S as its solution
set. Conversely, assume that u, v, w are solutions of a 2-SAT instance. Then each
of these solutions assigns value 1 to at least one letter from each clause (a disjunc-
tion of two literals, i.e., variables or their negations), whence there exists one letter
from each clause for which two solutions assign value 1. Therefore the majority
assignment generated from u, v, w also constitutes a solution.

2.2. Geometry of median graphs. The cubical complex C(G) associated
with a median graph G is called a median cubical complex and its geometric re-
alization |G| := |C(G)| is then referred to as a median polyhedral complex [170].
Such polyhedral complexes endowed with any of the intrinsic l1, l2, or l∞-metrics
constitute geodesic (isometric) subspaces of normed spaces carrying the same type
of norm. For example, |G| equipped with the l1-metric is a median space (i.e.,
every triplet of points has a unique median) and therefore is an l1-subspace [170].
If |G| carries the intrinsic l∞-metric instead, then the resulting metric space is in-
jective [138, 171]. Finally, if we impose the intrinsic l2-metric on |G|, we obtain a
metric space with global non-positive curvature. To be more precise, some further
notions have to be introduced. First, note that all three resulting metric spaces are
geodesic.

A geodesic triangle ∆(x1, x2, x3) in a geodesic metric space (X, d) consists of
three points in X (the vertices of ∆) and a geodesic between each pair of vertices
(the edges of ∆). A comparison triangle for ∆(x1, x2, x3) is a triangle ∆(x′1, x

′
2, x

′
3)

in the Euclidean plane E2 such that dE2(x′i, x
′
j) = d(xi, xj) for i, j ∈ {1, 2, 3}. A

geodesic metric space (X, d) is defined to be a CAT(0) space [118] if all geodesic
triangles ∆(x1, x2, x3) of X satisfy the comparison axiom of Cartan–Alexandrov–
Toponogov:

If y is a point on the side of ∆(x1, x2, x3) with vertices x1 and x2 and y′ is the
unique point on the line segment [x′1, x

′
2] of the comparison triangle ∆(x′1, x

′
2, x

′
3)

such that dE2(x′i, y
′) = d(xi, y) for i = 1, 2, then d(x3, y) ≤ dE2(x′3, y

′).

This simple axiom turned out to be very powerful, because CAT(0) spaces can
be characterized in several different natural ways (for a full account of this theory
consult the book [67]). CAT(0) spaces play a vital role in modern combinatorial
group theory, where various versions of hyperbolicity are related to group-theoretic
properties [107, 113, 114, 118]; many arguments in this area have a strong met-
ric graph-theoretic flavor. A geodesic metric space (X, d) is CAT(0) if and only if
any two points of this space can be joined by a unique geodesic. CAT(0) is also
equivalent to convexity of the function f : [0, 1] → X given by f(t) = d(α(t), β(t)),
for any geodesics α and β (which is further equivalent to convexity of the neighbor-
hoods of convex sets). This implies that CAT(0) spaces are contractible. Several
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classes of CAT(0) complexes (mostly 2-dimensional) can be characterized combina-
torially, and the characterization of cubical CAT(0) complexes given by M. Gromov
is especially nice:

Theorem 2.6. [118] A cubical polyhedral complex |C| with the intrinsic l2-
metric is CAT(0) if and only if |C| is simply connected and satisfies the following
condition: whenever three (k +2)-cubes of |C| share a common k-cube and pairwise
share common (k + 1)-cubes, they are contained in a (k + 3)–cube of C.

In some recent papers, CAT(0) cubical polyhedral complexes were called cub-
ings. The following relationship holds between cubings and median polyhedral
complexes.

Theorem 2.7. [84, 153] Median polyhedral complexes and cubings (both equip-
ped with the l2-metric) constitute the same objects.

Examples of cubings and simplex graphs come up in the context of taxonomic
models. The space T 0

n−1 of all ultrametrics δ ≤ 1 on a finite set {1, . . . , n − 1}
(n ≥ 3) is a cubing [53]. The corresponding cone of all ultrametrics has been
dubbed the “Bergman fan” of the graphical matroid of the complete graph Kn−1

[2]. In this context, an ultrametric δ is defined as a particular pseudometric (where
δ may be zero for a pair of distinct points), that is, δ is a nonnegative symmetric
function on {1, . . . , n− 1}2 with zero diagonal satisfying the ultrametric inequality
δ(i, j) ≤ max{δ(i, k), δ(j, k)} for all 1 ≤ i, j, k ≤ n − 1. It is well known that
ultrametrics on {1, . . . , n − 1} correspond to rooted trees with n − 1 leaves (end
vertices) that are labeled from 1 to n− 1, where all edges have nonnegative lengths
such that the path lengths from the root to the leaves are all equal. These rooted
trees can be reorganized by subtracting the largest number from the lengths of all
terminal links (maintaining nonnegativity of lengths) and taking this number as
the length of a new edge joining the old root with a new root vertex 0. When one
now adds arbitrary nonnegative values to the length of the terminal edges incident
with the leaves 1, . . . , n − 1, then one arrives at the usual tree representation of a
tree (pseudo)metric d on {0, 1, . . . , n − 1} (which is characterized by the 4-point
condition; see Section 5 below); cf. [11]. The space Tn of all tree metrics d ≤ 1 on
{0, 1, . . . , n − 1}, the tropical Grassmannian of lines G2,n [160], then includes the
space T 0

n−1 as a factor. The combinatorial structure of Tn (or T 0
n−1 accordingly) is

fully defined by the finite median polyhedral complex consisting of the unit cubes
of Tn (or T 0

n−1) sharing the origin of all orthants, which is derived from a simplex
graph, as will be detailed next.

The space Tn is composed in the following way. For every trivalent tree T (i.e.,
a tree in which all interior vertices have degree 3) with n leaves labeled by the
elements of the set X = {0, 1, . . . , n − 1} and with edges e1, . . . , e2n−3 of lengths
0 < l1, . . . , l2n−3 ≤ 1, the vector (l1, . . . , l2n−3) specifies a point in the positive unit
orthant (0, 1]2n−3. To each other point from (0, 1]2n−3, one can associate a unique
tree of this kind which has the same topology as T but different edge lengths,
specified by the coordinates of that point. Points on the boundary of the unit
orthant correspond to trees which are obtained from T by contracting some edges
of T : these contracted trees are referred to as the X-trees [158]. The cubing Tn

is obtained by taking one (2n− 3)-dimensional unit orthant for each trivalent tree
and gluing these unit orthants together along their common faces.
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The combinatorial structure of Tn is fully defined by the finite median polyhe-
dral complex consisting of the unit cubes of Tn sharing the origin of all orthants.
This complex is determined by the compatibility graph Sn of the splits of X via
the simplex graph and cubical complex operators. Sn has the splits (i.e., biparti-
tions) {A,B} of the set X as its vertices such that two vertices are connected by
an edge in Sn if and only if the corresponding splits are compatible, i.e., some part
of one split is contained in one part of the other split. The simplices of Sn then
correspond to the X-trees [47,48,70,158]; in particular, the maximal simplices of
Sn are in one-to-one correspondence with the trivalent trees having their n leaves
labeled by the elements of X. The flag complex X (κ(Sn)), derived from the (me-
dian) simplex graph of Sn, is known under various names (e.g., the Grassmannian
G′′′2,n [160]); it encodes the tree space Tn, which in turn is the geometric realization
|C(κ(Sn))| of the cubical complex C(κ(Sn)).

In applications to phylogenetic trees [158], the spaces T 0
n−1 and Tn would

mainly serve as conceptual models for dealing with optimisation problems or sto-
chastic questions [53]. Although the total spaces are too large for immediate visu-
alization (when n > 4), some low-dimensional projections may very well turn up,
e.g., when displaying the median spaces generated from competing phylogenetic
trees or (non-majority) threshold consensus of a collection of trees [13].

Another particular instance of median cubical complexes is that of acyclic cubi-
cal complexes: a cubical complex C is acyclic if the incidence graph of vertices and
maximal cubes does not contain any induced cycle of length > 4. A maximal cube
Q of C is called pendant if there exists another cube R of C properly intersecting
Q such that every proper intersection of Q with any other cube of C is included in
Q∩R. Eliminating Q and all its subcubes not contained in Q∩R from C then yields
a subcomplex C′. If C can eventually be transformed into a complex consisting of
a single cube and all its subcubes by successively eliminating pendant cubes, then
we say that C has a cube elimination scheme.

Theorem 2.8. [16] The following statements are equivalent for a finite cubical
complex C:

(a) C is acyclic;
(b) C has a cube elimination scheme;
(c) the skeleton of C is a median graph not containing any convex bipartite

wheels.

Simplicial elimination schemes for chordal graphs translate into cube elimina-
tion schemes for the associated simplex graphs (and vice versa):

Corollary 1. A graph G is chordal if and only if the cubical complex C(κ(G))
derived from the simplex graph of G is acyclic.

3. Helly graphs and absolute retracts

Helly graphs are the discrete analogues of hyperconvex spaces: namely, the
(implicit) requirement that radii of balls are from the nonnegative reals is modified
by replacing the reals by the integers. Then the discrete analogue of Menger-
convexity is trivially satisfied for the metric spaces that are graphs. A graph G is
thus called a Helly graph if the family of balls of G has the Helly property, that
is, every collection of pairwise intersecting balls of G has a nonempty intersection.
In perfect analogy with hyperconvexity, there is a close relationship between Helly
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graphs and absolute retracts. An object such as a graph is an absolute retract
exactly when it is a retract of any super-object into which it embeds (isometrically,
in this case). Then absolute retracts and Helly graphs are the same [121]. In
particular, for any graph G there exists a smallest Helly graph comprising G as an
isometric subgraph [129, 148].

In the preceding definition, we have referred to the metric definition of retrac-
tion as an idempotent nonexpansive mapping. There is, however, the purely graph-
theoretic notion of retraction that requires idempotency and preservation of edges.
When the graphs are assumed to have loops at all vertices, then the two notions
coincide. This is why one would then speak of absolute retracts of reflexive graphs.
If the graphs are ordinary, i.e., without loops (“irreflexive”), then idempotent edge-
preserving mappings are particular retractions that preserve the chromatic number
of the graph. Namely, for every retract F of this kind, any n-coloring of F can
be extended to an n-coloring of the whole graph. For the corresponding concept
of absolute retract, there is thus no loss of generality in assuming that the retrac-
tions (as idempotent nonexpansive mappings) are color-preserving. In the case of
(connected) bipartite graphs, the coloring is unique (up to permutation of the two
colors) and therefore does not have to be specified explicitly. A bipartite (irreflex-
ive) graph G is thus a bipartite absolute retract (of bipartite graphs) if G is a retract
of every bipartite (irreflexive) graph into which G embeds isometrically [39, 149].

3.1. Reflexive case: Helly graphs. In Helly graphs, the Helly property is
manifest in several collections of subgraphs related to balls. Properties related to
the Helly property are often preserved under the strong product rather than the
Cartesian product; in the strong product (which is the ordinary product in the
category of reflexive graphs) two distinct vertices are adjacent exactly when they
are equal or adjacent at each coordinate. A clique-Helly graph is a graph in which
the collection of cliques (maximal simplices) has the Helly property. A graph G is
called pseudo-modular if any three pairwise intersecting balls of G have a nonempty
intersection [32]. A vertex x of a graph G is dominated by another vertex y if the
unit ball N1(y) includes N1(x). A finite graph G is dismantlable if its vertices can
be linearly ordered, v1, v2, . . . , vn, so that, for each vi, i > 1, there is a neighbor
vj , j < i, of vi dominating the vertex vi in the subgraph Gi of G induced by the
vertices v1, . . . , vi. In this case, every Gi is a retract of G. It is known [145, 155]
that dismantlable graphs are precisely the “cop-win graphs”, i.e., the graphs in
which the cop has a winning strategy in the pursuit game of a cop and a robber.

Theorem 3.1. For a finite graph G = (V, E), the following statements are
equivalent:

(a) G is a Helly graph;
(b) [144] G is a retract of a strong product of paths;
(c) [38] G is a dismantlable clique-Helly graph;
(d) [39] G is a pseudo-modular graph in which the family of unit balls has the

Helly property;
(e) [39] for every vertex v in a diametrical pair, there exists a vertex w dom-

inating v and the vertex-deleted subgraph G− {v} is an absolute retract;
(f) [98] every eccentricity function eπ(x) = max{π(v)d(x, v) : v ∈ V } is

unimodal (that is, every local minimum is a global minimum) for any
weight function π from V to the nonnegative reals.
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In analogy with the fixed-cube property of median graphs, every automorphism
ϕ of a Helly graph has a fixed simplex C (that is, ϕ(C) = C) [155]. For a compre-
hensive survey concerning fixed subgraphs, see [151].

The strong product is the l∞ version of the Cartesian product. Thus, when we
turn all k-cubes of the Cartesian product of k paths into simplices, then we have
the corresponding strong product of k paths. More generally, a similar operator
transforms median graphs into Helly graphs: let G∆ be the graph having the same
vertex set as G, where two vertices are adjacent if and only if they belong to a
common cube of G. The clique graph K(H) of a graph H is the intersection graph
of the cliques (=maximal simplices) of H. The clique graph of a Helly graph is
Helly again [38]. Applied to H = G∆, we see that the cliques of G∆ are exactly the
maximal hypercubes in G, whence K(G∆) is the intersection graph of the maximal
hypercubes in G.

Proposition 3.2. [45] If G is a median graph, then G∆ and K(G∆) are Helly
graphs.

A dually chordal graph is a Helly graph in which the intersection graph of balls
is chordal (i.e., without induced cycles of lengths > 3). Dually chordal graphs are
exactly those graphs G which admit a spanning tree T such that any ball (or any
clique) induces a subtree in T [60]. There is a close relationship between chordal
graphs, dually chordal graphs, and graphs of acyclic cubical complexes which is
set up by the following operators: taking the simplex graph, or the clique graph,
or the intersection graph of the maximal hypercubes, respectively. Then dually
chordal graphs are precisely the clique graphs of chordal graphs, and clique-Helly
chordal graphs are precisely the clique graphs of dually chordal graphs [60, 62].
The intersection graph of the maximal cubes in any acyclic cubical complex is
dually chordal [16]. Conversely, every dually chordal graph can be realized in such
a way [64].

3.2. Irreflexive case: Helly n-chromatic graphs. The study of absolute
retracts of bipartite graphs (alias Helly bipartite graphs) was initiated in [120] by
establishing that they are precisely the retracts of direct (“relational”) products of
(irreflexive) paths. Another characterization, similar to Theorem 3.1(e), was given
in [149]. Here we present the structural characterizations of absolute bipartite
retracts provided in [26]. A bipartite graph G is of breadth at most two if, for
any vertex u with a family of intervals I(u, vi), i = 1, . . . n having intersection
{u}, two of the members of the family have intersection {u}. The graph Bn is
the graph obtained from the complete bipartite graph Kn,n by removing a perfect
matching; then let B̂n be the extension of Bn obtained from Kn+1,n+1 by deleting
a matching with n edges. The intersections of balls with one of the two color classes
of the bipartite graph G are referred to as half-balls. G is called modular if any
three pairwise intersecting half-balls have a nonempty intersection. It is easy to see
that this definition is equivalent to the conventional one requiring that any three
intervals I(u, v), I(u,w), and I(v, w) have a nonempty intersection.

Theorem 3.3. [26] For a finite bipartite graph G = (V, E) the following state-
ments are equivalent:

(a) G is a Helly bipartite graph, i.e., the collection of half-balls of G has the
Helly property;
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(b) G is modular and the collection of the neighborhoods of vertices of G has
the Helly property;

(c) G is a modular graph of breadth at most two;
(d) G is a modular graph such that every induced subgraph Bn (n ≥ 4) extends

to B̂n;
(e) for any vertices u and v with d(u, v) ≥ 3, the neighbors of v in I(u, v)

have a second common neighbor in I(u, v).

Among finite bipartite graphs G, the Helly bipartite graphs can be characterized
as those graphs that admit Condorcet solutions in the following voting location
game. Assume that some voters are arbitrarily assigned to vertices of G (thus
realizing nonnegative integer weights). A Condorcet vertex is a vertex x such that
no absolute majority of voters would ever be closer to a rival vertex y than to x.
In other words, x is not a Condorcet vertex exactly when there exists a vertex y
such that the the sum of weights of the vertices closer to y than to x (representing
the voters preferring y over x) exceeds half of the total weight. Now, Condorcet
vertices exist for every distribution of voters in G exactly when G is Helly bipartite
[26].

Many of the above (and further) equivalent descriptions of Helly bipartite
graphs are perfect analogues of corresponding descriptions of Helly graphs. This
correspondence has been made explicit in [28] by exhibiting four transformations
between bipartite (irreflexive) graphs and reflexive graphs that preserve the prop-
erty of being an absolute retract in the respective category.

The concept of absolute retract of bipartite graphs naturally extends to the n-
chromatic (irreflexive) case. In order to develop criteria for absolute retracts in this
scenario, the graphs under consideration should be endowed with n-colorings (which
can be constructed canonically for absolute retracts). Then the characterization
of n-chromatic absolute retracts either uses the Helly property of balls pairwise
intersecting in color i plus certain local conditions prescribing the existence of
vertices with color i (i = 1, . . . , n) in the neighborhood of vertices (as a kind of color-
variant of Menger-convexity) or uses recursive procedures or dismantling schemes;
the results are though somewhat more involved and the proofs more complex than
in the bipartite case [40].

4. Bridged graphs

A graph is called bridged if all isometric cycles of G have length three [108].
In particular, all chordal graphs are bridged. Every cycle (regarded as a set of
edges) of a bridged graph is the modulo 2 sum of triangles, i.e., bridged graphs are
null-homotopic [128].

Theorem 4.1. [108, 162] For a graph G = (V, E), the following statements
are equivalent:

(a) G is bridged;
(b) the balls Nr(S), r ≥ 1, centered at convex sets S are convex;
(c) Nr(v) and Nr(e) are convex for all v ∈ V, e ∈ E, and r ≥ 1.

A shortest path between two vertices x, y of a cycle C of G is called a bridge of
C if its length is smaller than the distance between x and y measured along C. A
cycle C is called well-bridged (in G) if for every vertex x ∈ C there exists a bridge
from x to some vertex of C or the two neighbors of x from C are adjacent (thus
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forming a chord). A cycle C = Cn of length n = 4 or n = 5 is well-bridged exactly
when it is not induced in G, that is, it has some chord, but a non-induced 6-cycle,
for instance, is not necessarily well-bridged. All cycles of a bridged graph are well-
bridged. In the Petersen graph all cycles except 5-cycles are well-bridged (although
there are many induced 6-cycles). The property that all cycles of G except 5-cycles
are well-bridged can be translated into a convexity property of balls.

Theorem 4.2. [108, 162] For a graph G = (V, E), the following statements
are equivalent:

(a) all balls of G are convex;
(b) all cycles Cn, n 6= 5, of G are well-bridged;
(c) G does not contain isometric cycles of length n > 5, and for any two ver-

tices x, y the neighbors of x from the interval I(x, y) are pairwise adjacent.

Theorem 4.3. [1] The finite bridged graphs are exactly the cop-win graphs
without induced 4-wheels and 5-wheels.

A simple algorithmic proof of this result was given in [82], where it is shown
that any ordering of the vertices of a finite bridged graph G produced by breadth-
first search (BFS) starting from an arbitrary vertex b is a cop-win ordering, namely
every vertex x is dominated by its father f(x) with respect to BFS. The proof is
based on the following property of BFS orderings of G: if v and w are adjacent
vertices of G, then their fathers f(v) and f(w) with respect to BFS either are
adjacent or coincide. This property turns out to be closely related with retraction
questions (see Section 7) and with a combing property of graphs, which originated
in the geometric theory of groups [107]. Let b be a distinguished vertex (“base
point”) of a graph G. A geodesic 1-combing of G with respect to the base point b
comprises shortest paths Px between b and all other vertices x such that for any
edge uv of G the paths Pu and Pv stay close when traveling towards the base point,
i.e., if u′ and v′ are vertices on Pu and Pv, respectively, with d(u, u′) = d(v, v′), then
d(u′, v′) ≤ 1. One can select the combing paths so that their union constitutes a
spanning tree Tb of G which is rooted at b and preserves the distances from b to all
vertices. The neighbor f(x) of a vertex x 6= b in the unique path of Tb connecting
x with b will be called the father of x; it is stipulated that the father map f fixes
b. This kind of (nonexpansive) map f has also been referred to as a mooring in
G onto {b} (see [75, 165]). Conversely, in the case that G is bridged, a spanning
tree Tb providing a 1-combing is obtained by taking the edges of G connecting a
vertex x and its father f(x) with respect to BFS. (For extensions of dismantling
and combing properties to other classes of graphs and to infinite bridged graphs,
see [75, 83, 84].)

The simplicial complex X (G) of a bridged graph G is called a bridged com-
plex. Theorem 4.3 implies that finite bridged complexes are contractible. Bridged
complexes can be characterized among flag complexes in the following way:

Theorem 4.4. [84] For a flag complex X the following conditions are equiva-
lent:

(a) X is simply connected and the neighborhood of every vertex v in the un-
derlying graph G(X ) does not contain induced 4–cycles and 5–cycles;

(b) G(X ) is weakly modular and does not contain induced 4–cycles and 5–
cycles;
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(c) G(X ) is bridged.

Therefore it follows (from statement (a)) that the plane graphs in which all inner
faces are triangles and all inner vertices have degrees ≥ 6 are bridged. Note that the
2-dimensional bridged complexes are precisely the CAT(0) 2-dimensional polyhedral
complexes obtained from 2-dimensional simplicial complexes by replacing triangular
faces by equilateral triangles of the same size.

5. Distance-hereditary and hyperbolic graphs

Trees (with weighted edges) constitute basic examples of metric spaces, and
as such they play an important role in various fields, e.g., computer science [147],
classification [47], and in particular, biology [158]. The characteristic metric feature
of weighted trees is the “classical” 4-point condition, asserting that a finite metric
space (X, d) can be embedded into a tree with edges weighted by positive reals if
and only if for any four points u, v, w, x the two larger ones of the sums d(u, v) +
d(w, x), d(u,w) + d(v, x), d(u, x) + d(v, w) are equal. In the case that d is the
shortest-path metric of a graph G, this 4-point condition is satisfied exactly when
G is a block graph, that is, all 2-connected components of G are complete subgraphs
[31, 123].

There are two options for relaxing the 4-point condition: one is to drop the
positivity constraint for edge weights, which leads to distance-hereditary graphs
[122]; their original definition states that every induced path is a shortest path.
The second option is to allow the two larger distance sums to differ slightly, by
some integer δ > 0: thus, the graph G is δ-hyperbolic [113, 114, 118] (or tree-like
with defect at most δ) if and only if for any four vertices u, v, w, x,

d(u, v) + d(w, x) ≤ d(u,w) + d(v, x) ≤ d(u, x) + d(v, w)

implies d(u, x) + d(v, w)− d(u, w)− d(v, x) ≤ δ.

Another notion of tree-likeness directly relaxes the distance requirement for a
tree representation: for a near-isometric embedding of a graph G with shortest-
path metric d into a (positively) weighted tree T with path-length metric d′, it is
required that the absolute error is bounded by some ε > 0, that is, ||d− d′||∞ < ε.
An error bound ε = 2, for instance, can be achieved for chordal graphs [61].

5.1. Distance-hereditary graphs. Finite distance-hereditary graphs can be
generated from the one-vertex graph K1 by means of two operations, viz., adjoining
a new pendant vertex or splitting a vertex into two copies that are either adjacent
(referred to as “true twins”) or nonadjacent (“false twins”) . Alternatively, these
graphs can be characterized in terms of forbidden isometric subgraphs or the gen-
eralized 4-point condition:

Theorem 5.1. [31] A graph G is distance-hereditary if and only if G does not
contain the following graphs as isometric subgraphs: n-cycles Cn of length n > 4,
the house (i.e., the 5-cycle with a unique chord), the fan (i.e., the 5-cycle with
two incident chords), and the domino (i.e., the Cartesian product of K2 and the
3-vertex path K1,2).

Theorem 5.2. For a finite graph G the following assertions are equivalent:
(a) G is distance-hereditary;
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(b) [42] the vertex set of G is included in a tree T with edges weighted with
positive or negative real numbers such that the shortest-path metric d of G
is realized as the (additive) path-length function within the weighted tree
T ;

(c) [31] G can be generated from K1 by successive applications of adjoining
new pendant vertices and splitting vertices.

The weighted tree T that represents the metric d of a distance-hereditary graph
is unique provided that T contains no redundant vertices and edges; namely, all
“unlabeled” vertices of T (i.e., those which do not represent vertices of G) should
have degree > 2, and all edges should have nonzero weights. Then the edge weights
are necessarily from the set {−1,− 1

2 , 1
2 , 1}; see [42]. Further, every path in T

connecting a labeled vertex (which represents a vertex from G) with an unlabeled
vertex has non-negative length, and all paths connecting unlabeled vertices have
lengths at least −1. This can easily be seen by induction. In fact, adjoining a new
pendant vertex x to G by making it adjacent to some vertex u amounts to adjoining
it with an edge of length 1 to the vertex labeled u in the tree representation. The
splitting operation that turns some vertex v of G into a pair x1, x2 of twins is
realized by the following tree expansion: remove the label v from the vertex that
represented the vertex v of G in T and attach a new unlabeled vertex as a neighbor
to this vertex; this new neighbor in turn gets two new neighbors labeled with x1 and
x2, respectively; the new interior edge gets weight −λ and the two new pendant
edges have length λ; for true twins one sets λ = 1

2 and for false twins λ = 1.
After having performed this extension of the weighted tree T, the single unlabeled
vertex of degree 2, which occurs only if the vertex v of G was a pendant vertex,
is suppressed and the weights of those two incident edges are added up. On the
other hand, the tree representation of G permits one to spot immediately either a
pendant vertex or a pair of twins. If the former does not exist, then necessarily
some end vertices of the representing weighted tree have a common (unlabeled)
neighbor and thus constitute twins.

5.2. 1-Hyperbolic graphs. Gluing together any two shortest paths along a
common terminal edge does not necessarily result in a shortest path: take a 4-
cycle, for instance. The graphs in which this operation always returns shortest
paths are exactly the distance-hereditary chordal graphs, also known as ptolemaic
graphs [122, 168]. For arbitrary 1-hyperbolic graphs, however, this terminal gluing
of shortest paths in general yields only near-shortest paths with defect 1, that is,
the following property holds:

(α1) if v ∈ I(u,w) and w ∈ I(v, x) are adjacent, then d(u, x) ≥ d(u, v) + d(w, x).

Under this condition all balls are convex, so that all cycles except C5 must be
well-bridged. Actually, this requirement on cycles plus one forbidden isometric
subgraph characterize the graphs fulfilling (α1) [168]. For a full characterization
of 1-hyperbolic graphs, another five forbidden subgraphs come into play, so that
altogether well-bridgedness of all Cn (n 6= 5) and six forbidden isometric subgraphs
do the job [20].

All of these six forbidden (bridged) graphs include the fan as an induced sub-
graph. Hence a distance-hereditary graph is 1-hyperbolic exactly when it is chordal
(since the 4-cycle yields the three distance sums 2 = 2 < 4). Non-chordal distance-
hereditary graphs G are 2-hyperbolic. To see this, take the subtree connecting a
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quartet of vertices from G in the (real-weighted) tree representation: the interior
edge from the weighted quartet tree (corresponding to a path from the weighted
tree) has length at least −1, and therefore the largest two distance sums for the
quartet cannot differ by more than 2.

A characterization of all 2-hyperbolic graphs by forbidden isometric subgraphs
is not in sight, inasmuch as isometric cycles of lengths up to 7 may occur, thus
complicating the picture.

6. Meshed graphs and weak modularity

A graph G = (V, E) is called meshed [35] if for any three vertices u, v, w with
d(v, w) = 2, there exists a common neighbor x of v and w such that 2d(u, x) ≤
d(u, v) + d(u,w). Meshed graphs are thus characterized by some (weak) convexity
property of the radius functions d(·, u) for u ∈ V. This condition ensures that all
balls centered at simplices in a meshed graph G induce isometric subgraphs and
that every cycle can be written as a modulo 2 sum of cycles of lengths 3 and 4.

A graph G is weakly modular [15, 33, 78] if its distance function d satisfies the
following conditions:

(triangle condition) for any three vertices u, v, w with 1 = d(v, w) < d(u, v) =
d(u, w) there exists a common neighbor x of v and w such that d(u, x) = d(u, v)−1;

(quadrangle condition) for any four vertices u, v, w, z with d(v, z) = d(w, z) = 1 and
2 = d(v, w) ≤ d(u, v) = d(u,w) = d(u, z)− 1, there exists a common neighbor x of
v and w such that d(u, x) = d(u, v)− 1.

The quadrangle condition was first exhibited in a geometric context (as axiom
(A6) in [71]). All weakly modular graphs are meshed. Basis graphs of matroids
and even ∆-matroids (see below) as well as the graphs in which all median sets
induce connected or isometric subgraphs [19] are meshed but in general not weakly
modular. The icosahedron graph constitutes another example of a meshed graph
that is not weakly modular. Meshed graphs, in which K1,2 is a forbidden convex
subgraph and K2,3 plus no, one or two non-incident chords are forbidden induced
subgraphs, have been characterized as the (weak) Cartesian products of icosahedra,
5-wheels, and joins of hyperoctahedra and complete graphs [35].

6.1. Weakly modular graphs. Modular graphs [46], pseudo-modular graphs
[32], pre-median, weakly median, and quasi-median graphs (Section 7), dual polar
graphs [71], median, distance-hereditary, bridged, and Helly graphs (Sections 1-4)
are all instances of weakly modular graphs.

The metric triangles of meshed graphs are equilateral [19]. Metric triangles of
weakly modular graphs are somewhat more special: namely, a graph G is weakly
modular if and only if for every metric triangle uvw all vertices of the interval
I(v, w) are at the same distance k = dG(u, v) from u [78]. In pseudo-modular
graphs, every metric triangle has size at most 1 [32], and in modular graphs, every
metric triangle is degenerate, that is, has size 0. A graph G is modular exactly
when it is triangle-free and satisfies the quadrangle condition [10, 142].

A metric triangle uvw of G is a quasi–median of the triplet x, y, z if the following
metric equalities are satisfied:

d(x, y) = d(x, u) + d(u, v) + d(v, y),

d(y, z) = d(y, v) + d(v, w) + d(w, z),
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d(z, x) = d(z, w) + d(w, u) + d(u, x).

Every triplet x, y, z of a graph has at least one quasi-median, for instance, the
metric triangle uvw constructed in the following way: first select any vertex u from
I(x, y)∩I(x, z) at maximal distance to x, then select a vertex v from I(y, u)∩I(y, z)
at maximal distance to y, and finally select any vertex w from I(z, u) ∩ I(z, v) at
maximal distance to z. A weakly median graph is a weakly modular graph in which
every triplet of vertices has a unique quasi-median. Weakly median graphs are
exactly the weakly modular graphs not containing any two distinct vertices with
an unconnected triplet of common neighbors; the four minimal obstructions are
displayed in Fig.1 of [18, 21].

6.2. Basis graphs of matroids and even ∆-matroids. According to one
of the many equivalent definitions, a matroid of rank k on a set I of n elements
is a collection B of subsets of I of size k, called bases, which satisfy the following
exchange property:

for A,B ∈ B and i ∈ A−B there exists j ∈ B −A such that (A− {i}) ∪ {j} ∈ B.

One says that the base A−{i}∪ {j} is obtained from the base A by an elementary
exchange. The basis graph G = G(B) of a matroid B is the graph whose vertices
are the bases of B and edges are the pairs A,B of bases differing by an elementary
exchange. The exchange property implies that G(B) is an isometric subgraph of
the Johnson graph Jn,k. It is well known that basis graphs faithfully represent their
matroids, thus studying the basis graph amounts to studying the matroid itself.
An induced subgraph G = (V, E) of Jn,k can be compared to the 1-skeleton of the
convex hull of the characteristic vectors of all v ∈ V : then G is the basis graph of
a (rank k) matroid exactly when G coincides with the 1-skeleton of this polytope
[112].

A ∆-matroid [59, 76, 104] (alias Lagrangian matroid in the terminology of
[58]) is a collection B of subsets of a set I with #I = n, called bases, not necessarily
equicardinal, satisfying the following symmetric exchange property:

for A,B ∈ B and i ∈ A∆B, there exists j ∈ B∆A such that A∆{i, j} ∈ B.

A ∆-matroid whose bases all have the same cardinality modulo 2 is called an even
∆-matroid. The matroids are precisely the (even) ∆-matroids for which all members
of B have the same cardinality. For a subset J of I denote B∆J := {B∆J : B ∈ B}
and say that the ∆-matroid B∆J is obtained by applying a twisting to B.

If A,B are two bases of an even ∆-matroid B and B = A∆{i, j} we say that
B is obtained from A by an elementary exchange. Following the terminology for
ordinary matroids, the basis graph G = G(B) of an even ∆-matroid B is the graph
whose vertices are the bases of B and edges are the pairs A,B of bases such that
#A∆B = 2. Some properties of these graphs have been used and investigated in
[172]. It is clear that G(B) is an isometric subgraph of the half-cube 1

2Hn.
The following two conditions play a key role in the characterizations of basis

graphs. A graph G satisfies the interval condition (ICm) (m ≥ 2) if for any vertices
u, v at distance 2, the interval I(u, v) includes an induced square C4 = K2×2 and is
contained in the m-octahedron Km×2. A graph G satisfies the positioning condition
(PC) if for each vertex b and each square v1v2v3v4 of G the equality d(b, v1) +
d(b, v3) = d(b, v2) + d(b, v4) holds. Obviously, a graph in which every interval
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between vertices at distance 2 includes a 4-cycle satisfies the positioning condition
exactly when G is meshed.

Theorem 6.1. Let G = be a finite graph.
(a) [140] G is a basis graph of a matroid if and only if it satisfies the interval

condition (IC3), the positioning condition (PC), and the subgraph induced
by the neighborhood N(v) of any vertex v is the line graph of a bipartite
graph;

(b) [85] G is a basis graph of an even ∆-matroid if and only if it satisfies the
interval condition (IC4), the positioning condition (PC), and the subgraph
induced by the neighborhood N(v) of any vertex v is the line graph of some
graph. If G 6= K4, then all even ∆-matroids having G as a basis graph
can be obtained each from other by a twisting.

We outline the idea of the proof of this theorem given in [85]. To establish
that a graph G satisfying the conditions of the theorem is a basis graph, pick
a vertex b of G such that the subgraph induced by N(b) is the line graph of a
graph Γ and define the following mapping ϕ : V → 2I . Set ϕ(b) = ∅. Each vertex
x ∈ N(b) encodes some edge ij of Γ; put ϕ(x) = {i, j}. For any other vertex v, let
ϕ(v) = ∪{ϕ(x) : x ∈ I(b, v) ∩ N(b)}. One first shows that ϕ is injective and that
all sets ϕ(v) have even cardinality. It then turns out that ϕ is an edge-preserving
map from G to the half-cube 1

2Hn, which implies that Bϕ := {ϕ(v) : v ∈ V } is
an even ∆-matroid. If Γ is a bipartite graph with two color classes A and B, then
Bϕ∆A is a matroid of rank #A. This encoding scheme is different from that used
by S. Maurer. He encodes the vertex b by A, a vertex x ∈ N(b) representing the
edge ij of Γ with i ∈ A and j ∈ B is labeled by the set (A− {i}) ∪ {j}. Then the
encoding is inductively expanded to the whole graph using certain squares (among
other things, in establishing that this labeling is well-defined, it is necessary to show
that it does not depend of the choice of squares); see [140] for all details.

6.3. Dual polar graphs. Polar spaces represent one of the fundamental types
of incidence geometries [69]. Polar spaces of rank at least 3 with thick lines (i.e.,
all lines contain at least three points) have been classified in the seminal work by
Tits [167]: they can be constructed from sesquilinear or pseudoquadratic forms
on vector spaces; cf. [90]. To every abstract polar space of rank ≥ 2 one can
associate a certain graph G of diameter 2 and radius 2, in which adjacency expresses
collinearity. Thus the points of the space are the vertices of G and the lines are
certain simplices (complete subgraphs) of G such that any two adjacent vertices are
in some line, and every vertex outside a line L is adjacent to either exactly one vertex
or all vertices of L. In the rank 2 case (“generalized quadrangle”) lines are required
to be cliques, that is, maximal simplices. For rank n ≥ 3, additional requirements
are imposed, where a hierarchy of simplices, distinguished as (singular) subspaces
play a role. Therefore the graph alone captures the structure of the polar space
only poorly in this case.

In contrast, interesting graphs of diameter n arise, when the order of the sub-
spaces of a polar space of rank n is reversed (yielding a “dual polar space”), so
that the vertices now represent the (n− 1)-dimensional (projective) subspaces and
the edges pairs of such subspaces intersecting in a (n − 2)-dimensional subspace.
According to [71] the graph G of a dual polar space of rank n is characterized by
the following conditions, rephrased here:
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(A1) every clique of G is gated, that is, the triangle condition is fulfilled and
the kite K−

4 (K4 minus one edge) does not occur as an induced subgraph;

(A2) G has diameter n;

(A3&4) the gated hull 〈〈u, v〉〉 of two vertices u, v at distance 2 has diameter 2,
and hence the quadrangle condition is satisfied;

(A5) every pair of nonadjacent vertices u, v together with every neighbor x of
u in I(u, v) belong to the corners of some metric rectangle in G.

The joint formulation of Cameron’s two axioms (A3) and (A4) rests on the obser-
vation that the gated hull of a subset S in a weakly modular graph G is obtained
as the smallest set including S and containing any common neighbor of any two of
its vertices [78]. Axioms (A1),(A3), and (A4) can then be formulated as a single
condition:

(A1&3&4) the gated hull 〈〈u, v〉〉 of any two vertices u, v at distance 1 ≤ k ≤ 2
has diameter k.

Axiom (A5) is a weak variant of the sphericity condition studied in [52]. In the
case of rank n = 2, this axiom together with (A1) and specifying n = 2 in (A2)
then describes the generalized quadrangles [146]. For example, the generalized
quadrangle of order (2, 2) is the familiar 15-vertex “doily” (for a diagram, see
http://www.maths.monash.edu.au/∼bpolster/gq1.html, or http://home.wlu.edu/∼mcraea/

Finite−Geometry/Applications/Prob33Walks/problem33.html, or [65]), whereas the one of
order (4,2) is the 27-vertex Schläfli graph G27 (cf. [68]). On the other hand, the
graphs of finite dual polar spaces of rank r ≥ 3 in which two points at distance 2
have more than two neighbors are known explicitly (see Theorem 2 of [71]) due to
Tits’ classification of thick polar spaces of rank at least 3.

6.4. Modular graphs and orientability. A bipartite graph is the graph of
a dual polar space if and only if it is modular, satisfies the above axiom (A5), and
does not contain the graph K−

3,3 (K3,3 minus an edge) as an induced subgraph.
Indeed, the gated hull 〈〈u, v〉〉 of two vertices u, v at distance 2 in a modular graph
has diameter 2 (and hence equals K2,m, for some cardinal m) exactly when there
is no induced K−

3,3. The graphs of dual polar spaces that are bipartite have been
classified completely [71]. Every interval I(u, v) in such a graph G necessarily
is the covering graph of a complemented modular lattice (with bounds u and v).
Therefore G is weakly spherical [52] in the sense that for every vertex x between
two vertices u and v there exists some vertex x′ such that v, x, u, x′ form a metric
rectangle.

When dropping (A5) intervals still constitute modular lattices [46]. The whole
graph cannot always be organized as the covering graph of a 4-crown-free ordered
set (by a 4-crown we mean the height 1 orientation of a 4-cycle; see [164, Fig.
5.12]). If a modular graph G admits a realization as the covering graph of an
ordered set (with intervals being modular lattices) that has no 4-crown, then G
is called orientable. The orientable hereditary modular graphs played a crucial
role in the characterization of the so-called minimizable metrics in a version of
the multifacility location problem (also known as the 0-extension problem); see
[25, 130]. A hereditary modular graph is a bipartite graph for which all isometric
cycles have length four and consequently is a Helly bipartite graph [10]. The
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hereditary modular graphs without induced K−
3,3 characterize yet another property

of the 0-extension problem [131].
The characterization of minimizable metrics took advantage of the following

feature of modularity. A metric space (X, d) is said to be modular if the metric
betweenness segments [u, v], [u,w], and [v, w] have a nonempty intersection for any
three points u, v, and w. In the finite (or more generally, discrete) case, the metric
space (X, d) can then be regarded as a modular graph for which graph intervals
coincide with the corresponding segments and edges are weighted by some positive
length function under which 4-cycles are turned into metric rectangles [9].

7. Fiber-complemented graphs

As we mentioned above, median graphs are generalized to quasi-median graphs
and further to weakly median graphs. How do the results for median graphs extend
to these two (or other intermediate) classes of graphs? Decomposition, retraction,
and algebraic aspects of quasi-median and weakly median graphs have been settled
in [18, 21, 22, 36, 174]. The gist of the methods and arguments employed there
has been distilled in [73, 74] by presenting a general framework under which de-
composition, retraction, and fixed-box theorems can be derived. This would only
leave the question unanswered of describing the prime graphs in each specific case.
A graph is called prime if it neither is a gated amalgam of any proper subgraphs
nor can be represented as a nontrivial Cartesian product.

The main observation in [73] then is that those decomposition schemes hinge
upon a property of the gated sets in the graphs under study. The term “prefiber”
alludes to a property of the fibers in Cartesian products and had (unfortunately)
been used as a mere synonym for gated set; cf. [72, 165]. An arbitrary gated set
in a graph is however quite far from a genuine product fiber. We have therefore
called a gated set A a prefiber [21] if it satisfies the following property investigated
in [73]:

(Chastand condition) each set of all vertices in the given graph G that share the
same gate in the gated set A of G is itself gated in G.

Graphs in which all gated sets are prefibers are called fiber-complemented [73].

Theorem 7.1. [73] A finite connected graph G is fiber-complemented if and
only if G can be obtained by successive applications of gated amalgams from Carte-
sian products of prime graphs.

In algebraic terms, this result asserts that G is a subdirect product of prime
fiber-complemented graphs; see [21]. The main step in the proof of this theorem is
to show that if G contains a proper gated set, then either G is a Cartesian prod-
uct or a gated amalgam of smaller subgraphs. This is thus quite analogous to the
strategy that was employed in the particular case of weakly median graphs [18].
The advantage of the general approach involving fiber-complementedness is that
it provides a blueprint for proving the same sort of decomposition theorem for re-
lated or more general graph classes, such as the pre-median graphs [73]. Moreover,
further analysis [74] shows that representations in terms of retracts from Carte-
sian products (e.g. Theorem 2.1 above) follow this scheme under some additional
hypothesis:



22 HANS-JÜRGEN BANDELT AND VICTOR CHEPOI

Theorem 7.2. [74] Every finite fiber-complemented graph G which has a geo-
desic 1-combing is a retract of the Cartesian product of its prime constituents.

We outline a shorter proof of this theorem, which is based on the following
result from [110]: a graph G is a retract of Cartesian product H = H1¤ . . . ¤Hn

exactly when the following two projection criteria are met:

(1) G coincides with the largest induced subgraph of H that has the same
images under the projections to all Hi (1 ≤ i ≤ n) and Hi¤Hj (1 ≤ i < j ≤ n) as
G; and

(2) each of these images constitutes a retract of the corresponding factor Hi or
product Hi¤Hj .

Since the prime factors Hi do not have any nontrivial gated subgraphs in the
case of a fiber-complemented graph G, the projections to the factors are either
trivial or surjective. Then, as G can be interpreted as a subdirect product of
algebras satisfying the absorption laws, it follows from [51] that criterion (1) is
met. Moreover, one can easily show that the image of G under any projection to
Hi¤Hj is either a singleton, a fiber, the whole product, or a point amalgam of two
fibers. In general, it is difficult to decide whether a point amalgam (i.e., the gated
amalgam of two graphs along a common vertex) is a retract of the Cartesian product
of the two graphs - even when the second graph is fixed to be K2: this decision
problem is known to be NP-complete [110]. Now, a retraction from Hi¤K2 to Hi

exists exactly when Hi admits a geodesic 1-combing [21, 74]. Therefore criterion
(2) is satisfied by virtue of the hypothesis on G.

7.1. Weakly median graphs and algebras. One of the appealing features
of weakly median graphs is that one can determine all prime constituents.

Theorem 7.3. [18] K2, the 5-wheel, induced subgraphs of hyperoctahedra that
include either K4 or a 4-wheel, and two-connected K4- and K1,1,3-free bridged
graphs are the prime finite weakly median graphs. The latter bridged graphs are
exactly the graphs which can be realized as plane graphs such that all inner faces
are triangles and all inner vertices have degrees larger than 5.

The bridged prime constituents of weakly median graphs are therefore exactly
the (3,6)-graphs (see the next section) that have only triangles as their inner faces.
Although the construction of a weakly median graph from its prime constituents
through gated amalgamation and Cartesian multiplication requires some finiteness
hypothesis, the prime constituents are nevertheless manifest also in the infinite case
as the blocks of a certain canonical “tolerance” (that is, a reflexive and symmetric
binary relation compatible with the following “apex operation” [21]).

Universal algebra enters the study of weakly median graphs in a natural way,
just as in the case of median structures. Notice that every graph G with vertex
set V can be turned into a ternary algebra, called an apex algebra of G [36]: an
apex operation (. . .) : V 3 → V maps any triplets x, y, z and x, z, y to some vertex
u = (xyz) = (xzy) ∈ I(x, y) ∩ I(x, z) such that I(x, u) is maximal with respect
to inclusion. For weakly median graphs the apex algebra is uniquely defined, be-
cause for any triplet x, y, z the vertices (xyz), (yxz), and (zxy) form the unique
quasi-median of the triplet. The equational description follows the lines of median
algebras by skipping the left symmetry axiom (M3) and adding one (more complex)
axiom for compensation:
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Theorem 7.4. [22] Weakly median graphs with their apex operations are ex-
actly the discrete ternary algebras satisfying the four axioms (M1), (M5), and

(M8) ((uwx)(vwx)u) = (uwx),

(M9) ((wux)(uvw)v) = (w(uvw)(vu(wux))).

Again, we can freely exchange (M5) by the pair (M2), (M4). We outline the
idea of the proof of Theorem 7.4. To show that the apex algebra A of a weakly
median graph G satisfies the axioms (M8) and (M9) (as well as further identities),
we first establish that A is a subdirect product of the apex algebras of its prime con-
stituents, which constitute simple algebras. It suffices to consider only finite weakly
median graphs because the subalgebras generated by finite sets in weakly median
graphs are included in finite (weakly median) isometric subgraphs. This is quite
straightforward to show for the 5-wheel and induced subgraphs of hyperoctahedra
but quite laborious in the case of the prime bridged weakly median graphs since
the required metric properties have to be established from scratch by employing
their geometric structure (which has much in common with the hexagonal plane).
To prove the converse, we first show that a discrete ternary algebra A satisfying
the four axioms (M1),(M5),(M8), and (M9) defines a discrete “geometric interval
space” (sensu [170]) obeying the interval version of the triangle condition. Then,
using a result from [15], we show that this interval space leads to a weakly median
graph G such that the apex algebra of G coincides with A; for details, see [22].

Weakly median graphs are known to be so-called join spaces relative to the
interval operation, which in turn can be expressed by two betweenness conditions,
referred to as the Pasch and Peano axioms for interval spaces [22, 79, 80, 161,
170]. This underscores the naturalness of weakly median graphs and algebras with
regard to some geometric features of classical Euclidean geometry.

Inasmuch as the class of weakly median graphs possesses a variety of prime
members, there is quite some flexibility in defining special subclasses (tailored to
specific problems) which are closed under gated amalgamation and weak Cartesian
multiplication. For instance, one such subclass, briefly studied in [22], consists of
the weakly median graphs that do not contain the 6-vertex sun, so that in this class
there is only one isomorphism type for the convex hull of metric triangles of each
size k, viz., the k-th Cartesian power of K3.

7.2. Quasi-median graphs. The theory developed for arbitrary weakly me-
dian graphs immediately specializes to quasi-median graphs (by forbidding the kite
K−

4 as an induced subgraph), where the results often become much simpler. Finite
quasi-median graphs were first constructed through a sequence of “quasi-median
expansions” [142], which can be re-organized in a condensed sequence of “gated
expansions” [36]. A gated expansion amounts to taking Cartesian products with
a new complete graph and gated amalgamations along a common gated subgraph,
which, algebraically speaking, is equivalent to the introduction of a new subdirect
factor. Quasi-median graphs are precisely the retracts of (weak) Hamming graphs
[72, 88, 89, 174]. This fact was used in a characterization of quasi-median graphs
in terms of a dynamic location game [88, 89]. Further characteristic properties of
quasi-median graphs can be found in [36, 66, 125]. Here is a list of some more
recent descriptions, which are, of course, variations of the same theme:

Theorem 7.5. The following statements are equivalent for a graph G = (V, E):
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(a) G is quasi-median;
(b) G is meshed and without induced K2,3 and K−

4 ;
(c) G has no induced K2,3, and the gated hull of any two vertices u and v at

distance 1 ≤ k ≤ 2 has diameter k;
(d) the interval I(u, v) is convex and the gated hull 〈〈u, v〉〉 has diameter k,

for any vertices u and v with d(u, v) = k;
(e) [22] every clique is a prefiber.

It needs only few arguments to show that the statements in the preceding
theorem are equivalent to previous characterizations of quasi-median graphs. For
instance, observe that a meshed graph G without induced K−

4 satisfies the quadran-
gle condition and hence is weakly modular, so that one can substitute “meshed” by
“weakly modular” in statement (b). Indeed, proceed by induction and consider an
instance of the quadrangle condition: if the required vertex is not obtained through
meshedness right away, then an induced 4-cycle is obtained that violates the po-
sitioning condition, so that one is invited to use the triangle condition twice and
then the induction hypothesis; two further applications of the triangle condition
eventually lead to a forbidden K−

4 . To see that the gated hull operator on pairs of
vertices does not increase distance/diameter in a quasi-median graph G, embed G
isometrically in a Hamming graph H. Then two vertices u and v with d(u, v) = k
embedded in H differ in exactly k coordinates, so that the embedded gated hull
〈〈u, v〉〉 stays within a k-dimensional Hamming subgraph of H.

Notice that the condition requiring that all intervals be gated, which is stronger
than (d), in fact characterizes median graphs. On the other hand, if one relaxes the
trivial consequence (c) of (d) by allowing induced K2,3 subgraphs, then one arrives
at the key axiom (A1&3&4) for dual polar graphs.

Theorem 7.6. [22] Quasi-median graphs with their apex operations are exactly
the discrete ternary algebras satisfying (M1), (M5), and (M7).

In view of this result every finite set of vertices in a quasi-median graph G gen-
erates a finite subalgebra of the apex algebra and hence yields a quasi-median graph
in its own right. It is not yet clear though whether all possible algebraic descriptions
of finite quasi-median graphs are also equivalent in the non-discrete case and, in par-
ticular, whether the free four-generated algebra is finite (and hence quasi-median)
in each case [36]. The free quasi-median algebras with four and five generators have
been described in [150]: they have 868 (cf. [30]) and 97,916,730,716,165 elements,
respectively. The growth with the number of generators is thus enormous compared
to the corresponding free median algebras, where the 5-generated one has only 81
elements [45, 150]. The total number of vertices of a subalgebra that is generated
by some subset X of the vertex set of a Hamming graph is easy to determine by
analyzing the projections of X to each pair of factors [14]. An Euler-type formula
for the numbers of k-regular Hamming subgraphs has been established in [66].

A finite Hamming space, that is, a finite Hamming graph with positive co-
ordinate weights is the natural host model for molecular sequences such as DNA
or amino acid sequences. In this context, one considers a set X of k aligned se-
quences, which are forced to have the same length by inserting some gaps (encoded
by “−”) where necessary. In the case of DNA, the positions of the k sequences thus
carry letters from the alphabet {A,G, C, T,−}, which is regarded as a complete
graph. Then the Hamming graph KX may be weighted coordinatewise, whence a
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mismatch at the i-th coordinate contributes λi > 0 to the weighted Hamming dis-
tance between two sequences. The structure of the data set X comprising aligned
DNA sequences embedded in KX can be elucidated by investigating the quasi-
median closure of X in the corresponding Hamming space [12, 14]. For the task
of phylogenetic analysis, one is typically interested in trees that connect the ob-
served data and are optimal with regard to length (or likelihood). In particular,
the maximum parsimony problem [158] corresponds to the (NP-hard [119]) Steiner
problem in Hamming space, which has subsets of the vertex set of a Hamming space
as its instances and requires a shortest connection (“minimum Steiner tree”) in the
Hamming space by using suitable additional vertices that serve as branching points
(“Steiner points”). With respect to unit weights per coordinate, every quasi-median
subgraph of the Hamming graph trivially contains a minimum Steiner tree by way
of retraction. This can also be seen more directly by employing the apex operation
in a two-phase labelling algorithm for finding suitable Steiner points, so that the
result immediately carries over to the weighted situation.

Proposition 7.7. [41] The quasi-median closure of any set X in a finite Ham-
ming space includes a minimal Steiner tree. More generally, every X-tree has a
shortest-length realization within the quasi-median closure of X in the Hamming
space.

8. l1-Graphs

Some structural properties of graphs, especially for Hamming graphs (and hy-
percubes, in particular), carry over to their isometric subgraphs - a theme that has
been emphasized in the books [94] and [125]. In the former book the polyhedral
view is predominant, whereas in the latter one the so-called canonical embedding
of graphs (see below) receives particular attention.

A dissimilarity function d on X = {1, . . . , n} is said to be hypermetric if it
satisfies the inequalities

∑
1≤i<j≤n bibjd(i, j) ≤ 0 for all integers b1, . . . , bn with∑n

i=1 bi = 1 (n ≥ 3) [94]. In particular, the triangle inequalities are captured by
b coefficients from {−1, 0, 1} such that exactly three coefficients are nonzero. The
pentagonal inequalities, for example, arise with b coefficients from {−1, 0, 1} such
that exactly five coefficients are nonzero. Obviously, every split pseudometric (alias
cut semimetric) δA,B associated with a split (alias bipartition or cut) {A,B} of X
is hypermetric (where δA,B can be thought of being lifted from the metric of the
graph K2 for which one vertex is labeled with the points from A and the other
vertex with the points from B). Therefore hypermetricity is a necessary condition
for l1-embeddability.

An l1-(pseudo)metric d on a finite set X is any positive linear combination of
split pseudometrics. Thus, a finite metric space (X, d) is isometrically embeddable
in Rn endowed with the l1-norm exactly when d is an l1-metric. For an l1-metric,
the positive linear combinations of split pseudometrics need not be unique as the
example of the K4 metric shows. In the case of uniqueness, one speaks of l1-rigid
(pseudo)metrics [93, 94].

A totally decomposable (pseudo)metric d on a finite set X [27] is any positive
linear combination of split metrics with respect to triplewise weakly compatible
splits: three splits {Ai, Bi} of X (i = 1, 2, 3) are said to be weakly compatible if
A1 ∩ A2 ∩ A3 6= ∅ implies B1 ∩B2 ∩B3 = Bi ∩Bj for some i, j, that is, the traces
of the three splits {Ai, Bi} (i = 1, 2, 3) on any 4-point subset {t, u, v, w} of X do
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not constitute the three nontrivial 4-point splits {{t, u}, {v, w}}, {{t, v}, {u,w}},
and {{t, w}, {u, v}}. The weighted system of weakly compatible splits can then be
retrieved from d [27].

We briefly say that a graph is a hypermetric graph or an l1-graph or is l1-
rigid when its shortest-path metric d is a hypermetric or an l1-metric or is l1-
rigid, respectively. Despite the embeddability results reported below, one still lacks
a structural characterization of general l1-graphs in terms of forbidden isometric
subgraphs [94, p. 326].

8.1. Canonical isometric embedding. Even though a graph may be iso-
metrically embedded into different Cartesian products, there is a finest choice, viz.,
the canonical isometric embedding [117]. Two edges xy and uv of a graph G =
(V, E) are in the Djokovic-Winkler relation Θ if d(x, u)+d(y, v) 6= d(x, v)+d(y, u).
This relation on the edge set E is trivially reflexive and symmetric but not neces-
sarily transitive. Let Θ∗ denote the transitive closure of Θ, and let E1, . . . , Ek be
the blocks of Θ∗. Let Gi (i = 1, . . . , k) be the graph having the connected compo-
nents of the graph (V,E −Ei) as its vertices, with two different components being
adjacent when connected by an edge from Ei; alternatively, one can view Gi as
the graph resulting from the contraction of all edges in E − Ei. This contraction
induces a natural projection αi from G onto Gi.

Theorem 8.1. [117] The map α : G → G1¤ . . . ¤Gk defined by α(v) =
(α1(v), . . . , αk(v)) constitutes an isometric embedding, which is the finest isometric
embedding of G into a Cartesian product (whence the name “canonical”).

The previous construction can be turned into an efficient algorithm for canon-
ical isometric embedding of a graph into a Cartesian product of indecomposable
factors, because the transitive closure of Θ can be computed in polynomial time
[109, 110, 117].

Every edge ab of a graph G = (V, E) induces a partition of V into V = a/b ∪
a\b∪a|b, where a|b = {v ∈ V : d(v, a) = d(v, b)}. Clearly, if the graph G is bipartite,
then a|b = ∅ for each ab ∈ E.

Theorem 8.2. Let G be a graph.
(a) [77] G can be isometrically embedded into a Hamming graph if and only

if the sets a/b, a\b, a/b ∪ a|b and a\b ∪ a|b are convex for all edges ab of
G.

(b) [175] G can be isometrically embedded into a Hamming graph H3,3,...,3

(Cartesian power of K3) if and only if the relation Θ is transitive.

Theorem 8.3. For a bipartite graph G the following conditions are equivalent:
(a) G can be isometrically embedded into a hypercube;
(b) [56] G is an l1-graph;
(c) [175] G is l1-rigid;
(d) [154] G is hypermetric;
(e) [7, 154] the pentagonal inequalities are satisfied in G;
(f) [97] a/b, a\b are convex for each edge ab of G;
(g) [97] the relation Θ is transitive on the edge set of G.

The dimension k of the smallest hypercube into which a finite graph G = (V, E)
may be isometrically embedded equals the number of blocks E1, . . . , Ek of the
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equivalence relation Θ. While it is NP-complete to decide if G isometrically embeds
into the Cartesian product of three trees, it is possible to determine in polynomial
time the minimum dimension m of the integer lattice Zm into which G isometrically
embeds [106]: m equals k minus the maximum matching in the graph Γ whose
vertices are the connected components of the graphs (V, E−Ei), i = 1 . . . , k, where
two such components are adjacent in Γ if and only if they are not disjoint but
together cover V.

Further characterizations of isometric subgraphs of Hamming graphs are pre-
sented in [173] and [63]. For other characterizations of isometric subgraphs of
hypercubes see [94, 115, 125, 176]. Recognition algorithms for graphs that are
isometrically embeddable into (hypercubes and) Hamming graphs are surveyed in
[125].

In relation with the canonical decomposition of graphs, the following task arises:
given a class of graphs determine the factors in the canonical isometric embedding
of its members. For weakly median graphs, these factors are the prime weakly me-
dian graphs described in Section 5. More generally, the prime fiber-complemented
graphs are exactly the factors occurring in the canonical decomposition of fiber-
complemented graphs [73].

8.2. Scale embeddings. A triangle K3 with its metric d cannot be embedded
into a hypercube but the doubled distance 2d can. This sort of property turns out
to be a general feature of l1-graphs. A graph G = (V, E) is scale λ embeddable
into a graph H = (W,F ) for some positive integer λ if there exists a mapping
ϕ : V → W such that dH(ϕ(u), ϕ(v)) = λdG(u, v) for all vertices u, v ∈ V [94].
In the particular case λ = 1 we obtain the notion of isometric embedding. For
instance, Hamming graphs as well as half-cubes and the Johnson graphs are scale
2 embedded in hypercubes. On the other hand, the m-octahedron Km×2 is scale
embeddable into a hypercube, but its scale grows with m.

Proposition 8.4. [5] G is an l1-graph if and only if it admits a scale embedding
into a hypercube.

This result paves the way to a description of l1-graphs and, more generally,
hypermetric graphs via the canonical embedding. The extra indecomposable factors
that come into play when passing from l1-graphs to the more general hypermetric
graphs involve the Gosset graph G56, which is the skeleton of the 7-dimensional
Gosset polytope: its 56 vertices are obtained by putting signs in the eight possible
ways to the characteristic vectors of the Fano plane; see [94, 166] for details.

Theorem 8.5. Let G be a graph.
(a) [92, 166] G is hypermetric if and only if G is an isometric subgraph of a

Cartesian product of half-cubes, hyperoctahedra and copies of the Gosset
graph.

(b) [92, 159] G is an l1-graph if and only if G is an isometric subgraph of a
Cartesian product of half-cubes and hyperoctahedra.

(c) [86] Every K5-free l1-graph is isometrically embeddable into a half-cube,
and every K4-free l1-graph is l1-rigid. In particular, every planar l1-graph
is isometrically embeddable into a half-cube.

The proof of (b) given in [159] is graph-theoretical and can be adapted to test
in time O(#V #E) whether a given graph G = (V, E) is an l1-graph and whether
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it can be isometrically embedded into a half-cube; see [95]. This contrast with the
NP-completeness of recognizing l1-embeddable finite metrics. The proof of (a) given
in [166] and the alternative proof of (b) given in [92] are geometrical and exploit
some beautiful connections between hypermetric graphs and Delaunay polytopes of
root systems, which can be sketched as follows (notice that [86] presents two proofs
of (c), one graph-theoretical and the other geometrical). According to a result
of Assouad [4], a finite metric space (V, d) is hypermetric if and only if V can be
mapped to the vertices of the Delaunay polytope Pd of some lattice Ld of Rk so that
(V,

√
d) is isometrically l2-embedded into Rk (for basic definitions related to lattices

and Delaunay polytopes, see [94]). By a result of [166], if the hypermetric space
(V, d) comes from a graph G = (V,E), then the Delaunay polytope Pd associated
with (V, d) is generated by a root lattice Ld and G is isometrically embedded in
the underlying graph (1-skeleton) of Pd. Every root lattice Ld is the direct sum
of irreducible root lattices, and, by a well-known result of Witt, the irreducible
root lattices have one of the forms An (n ≥ 0), Dn (n ≥ 4), E8, E7, and E6. The
underlying graphs of the Delaunay polytopes of An are the Johnson graphs Jn+1,k

with 1 ≤ k ≤ bn+1
k c, those of Dn are the hyperoctahedra Kn×2 and the half-cubes

1
2Hn, those of E8 are K9 and K8×2, those of E7 are K8 and the Gosset graph G56,
and that of E6 is the Schläfli graph G27. To conclude the proof, it remains to notice
that G27 is an isometric subgraph of G56 and that G27 and G56 are not l1-graphs.

Some particular classes of plane graphs which can be isometrically embedded
into a half-cube are worth mentioning explicitly:

(4,4)-graphs [152] are plane graphs in which all inner faces have lengths ≥ 4 and
all inner vertices have degrees ≥ 4;

(6,3)-graphs [87] are plane graphs in which all inner faces have length ≥ 6 and all
inner vertices have degrees ≥ 3;

(3,6)-graphs [87] are plane graphs in which (all inner faces have lengths ≥ 3 and)
all inner vertices have degrees ≥ 6.

Proposition 8.6. Let G be a plane graph in which the degrees of all inner
vertices are at least p and all inner faces have lengths at least q.

(a) [118, 137] If each inner face of G with k sides is replaced by a regular
k-gon of the Euclidean plane with side length 1, then the resulting cell
complex |G| is CAT(0) exactly when G is either a (4,4)-, or a (6,3)- , or
a (3,6)-graph.

(b) [87, 152] The (4,4)-, (6,3),-, and (3,6)-graphs G are scale 2 embeddable
into hypercubes.

The proof of (b) rests on the analysis of the so-called alternating splits in those
plane graphs [86, 152], which are constructed in the following way. Give every odd
face (cycle) of the plane graph G a clockwise orientation. Start with an edge u0v0

on the boundary of the outer face of G and keep selecting the edges opposite in the
next inner face Fi that contains the edge uivi selected last but no other selected
edge (- if there is no such face, uivi is on the boundary, and the edge selection is
completed). If Fi is odd, there are two candidate edges (incident with the unique
vertex opposite to uivi): select the one that comes either first or second in the
chosen orientation, depending on the last choice for an odd face in the series of
faces processed so far. Namely, let first and second choices alternate in the series
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F0, F1, . . . , Fi (ignoring even faces, which are unoriented). If at least one odd face
belongs to this series, then there are thus exactly two feasible selections starting
from u0v0. In either case, the corresponding zone Z is defined as the union of
all faces F0, F1, . . . , Fk that contain a pair of selected cut edges. Removing these
edges from G results in two connected components, defining the alternating split
{A,B} associated with Z. Under the hypothesis that G is (4,4) or (6,3) or (3,6),
the strip-like zone Z = Z(A,B) as well as the split parts A and B are convex. It
then turns out that every edge of G is separated by exactly two alternating splits
(if the associated zone includes at least one odd face) or just one alternating split
(separating only even faces), thus yielding the desired scale 2 embedding.

The (4,4)-, (3,6)-, and (6,3)-graphs have been introduced in the context of
combinatorial group theory [137]. The following maximum principle for such graphs
G was established in [136]: for any vertex v of G, the vertices x such that the
interval I(v, x) is not properly contained in any other interval I(v, x′) all belong to
the outer face of G; in other words, every shortest path of G can be extended to a
shortest path having both end vertices on the outer face of G. This result actually
holds for all non-positively curved plane graphs [49, 50].

8.3. Tope graphs, cellular graphs, and benzenoids. Isometric subgraphs
of hypercubes naturally arise in several contexts. We now briefly mention three
classes of such graphs with specific features, which are derived from oriented ma-
troids or 2-dimensional cubical complexes, respectively.

An (affine) arrangement of hyperplanes in Rk is a finite family A = (Hi)i∈I of
(affine) hyperplanes in Rk. One can choose a “positive side” for every hyperplane
in A, which is realized by a sign vector s(x) ∈ {+,−, 0}I for every point x ∈ Rn,
where xi(e) denotes whether x is on the positive side of Hi, on the negative side, or
lies on Hi. The set of all points x ∈ Rk having the same sign vector s forms a cell
in the decomposition of Rk induced by A. The maximal (i.e., the n-dimensional)
cells are called regions (or topes). The tope graph (or graph of regions) T (A) of
an arrangement A has as vertices the set of regions of A and as edges the pairs
of regions which share a common facet. Tope graphs of central arrangements, i.e.,
arrangements of hyperplanes through the origin, are the 1-skeletons of zonotopes
(n-polytopes which can be expressed as the Minkowski sum of n line segments); for
details see the book [55] on oriented matroids. Tope graphs of any arrangements
of n hyperplanes embed isometrically into the hypercube Hn, namely, the graph
distance between two regions equals the number of hyperplanes of A which separate
these regions [54] (for similar results in the theory of Coxeter matroids, see [58]).
Using this property and the uniqueness of the isometric embedding into hypercubes,
it can be shown that an arrangement of hyperplanes is uniquely determined (up to
reorientation) by its unlabeled tope graph [54]. As a corollary, two zonotopes are
combinatorially equivalent if and only if their 1-skeletons are isomorphic graphs.
These results can be extended to the graphs of topes (i.e., maximal covectors) of
oriented matroids (for definitions, results, and references, see Section 4.1 and Ex-
ercises to Chapter 4 of [55]). The converse question of characterizing the isometric
subgraphs of hypercubes which are tope graphs of oriented matroids is still open;
the rank 3 case has been settled in [111]: these graphs are the planar antipodal
isometric subgraphs of hypercubes.
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Graphs for which the shortest-path metrics are totally decomposable constitute
certain low-dimensional polyhedral complexes. In the finite bipartite case, they are
known to be built up from cycles (their “cells”), whence the name “cellular”. Since
graphs are discrete objects, we may extend the notion of total decomposability to
the infinite case: then a graph G is cellular if there exists a positively weighted
system of triplewise weakly compatible splits such that for any two vertices u and
v the distance d(u, v) can be expressed as the sum of all split weights for those
(finitely many) splits that separate u and v (i.e., for which {u, v} is not contained
in a split part). Because the split weights can be reconstructed from the metric d
by comparing distance sums for quartets of vertices, the split weights are equal to
1
2 or 1. Therefore all cellular graphs are scale 2 embedded in hypercubes.

Theorem 8.7. [17] For a bipartite graph G = (V,E) with at least two vertices,
the following conditions are equivalent:

(a) G is cellular;
(b) every isometric cycle of G is gated, and G does not contain any three

isometric cycles C1, C2, C3 and three distinct edges e1, e2, e3 sharing a
common vertex such that ei belongs to Cj exactly when i 6= j;

(c) G can be obtained from a collection of single edges and even cycles by
successive gated amalgamations;

(d) the system of splits {u/v, u\v} is triplewise weakly compatible.
Every finite cellular bipartite graph different from a single vertex, edge, or even
cycle contains a gated cutset that is a tree.

To establish this result it is shown, among other things, that a finite bipartite
graph in which every isometric cycle is gated is isometrically embeddable into a
hypercube. Note that if one replaces every gated (i.e., isometric) cycle of a cellular
graph by a regular polygon with side length 1, then the resulting 2-dimensional
cell complex is CAT(0). The precise structure of all (not necessarily bipartite or
finite) cellular graphs has not yet been determined. Among cellular graphs are, for
example, the 3-octahedron, any Cartesian product of two block graphs (being scale
2 embeddable into the Cartesian product of two trees), and certain planar graphs:

Proposition 8.8. (4,4)-graphs are cellular.

The collection of alternating splits providing the l1-embedding of a (4,4)-graph
G actually consists of triplewise weakly compatible splits. To show this, consider
four arbitrary vertices t, u, v, w and an alternating split {A,B} such that t, u ∈ A
and v, w ∈ B. As we noticed above, the associated zone Z = Z(A,B) is a strip (a
path of faces) consisting of two convex paths ∂A = A ∩ Z and ∂B = B ∩ Z. These
three sets are pseudo-gated in the following sense. A set Y is pseudo-gated in a
graph if for every vertex x outside Y there exists a simplex πx (the pseudo-gate) in
Y such that every shortest path from x to a vertex of Y passes through πx; cf. [34].
The pseudo-gate πx of any vertex x of G in Z comprises a single vertex or an edge
[87]. For each vertex x of A and each vertex y of B there exists a shortest (x, y)-
path traversing both pseudo-gates πx and πy. Therefore, for any mutual location
of the pseudo-gates πt, πu on ∂A and the pseudo-gates πv, πw on ∂B, we can select
a vertex from {t, u}, say u, and a vertex from {v, w}, say v, such that the intervals
I(u, v) and I(t, w) intersect. Since the alternating splits of G are convex, there is
no such split separating {u, v} from {t, w}.
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In the context of chemical graph theory, a benzenoid is a particular (6,3)-graph,
viz., a plane graph in which all inner faces are regular hexagons and all inner vertices
have degree 3. These graphs are not necessarily cellular but they admit isometric
embeddings into hypercubes [132] and, in particular, into the Cartesian product
of three trees [81]. With the latter coordinatization in hand, one can compute the
Wiener index (the sum of pairwise distances) of benzenoids in optimal time [125].

8.4. Lopsided sets. An important, though elementary, feature of median
subgraphs G of n-cubes (the n-th Cartesian powers of K2) is that every k-cube im-
age under any k-fold projection has, a forteriori, a k-cube within G as a pre-image
[169]. This (weak) projectivity property of hypercubes is in fact behind the basic
counting formula that equates the number of vertices of a median graph G with
the number of those k-fold projections (k = 0, 1, . . . , n) to the K2 powers which are
surjective [103], alluded to in Section 2.1. Conversely, when this projectivity prop-
erty of all k-cubes is stipulated, then one arrives at a class of isometric subgraphs
of hypercubes, closed under taking induced subgraphs of complementary vertex
sets, which is thus more general than finite median graphs but still has canonical
properties with regard to geometric l1 realizations. These constitute the lopsided
sets introduced in [134] in order to investigate the subgraphs S of the n-cube with
vertex set {0, 1}n which encode the intersection pattern of a given convex set K
in n-dimensional Euclidean space with the (closed) orthants of Rn. Specifically, a
vertex x of Hn belongs to S = S(K) exactly when K meets the orthant of Rn

in which the ±1 (“sign”) vector 2x−1 lies. Every subgraph S of Hn which arises
in this way is hereditarily asymmetric in the following sense (whence the name
“lopsided”) [134]:

(Lawrence condition) each face F of Hn which intersects S properly includes a
vertex pair u, v diametrical in F such that S contains exactly one of u and v.

One can then define S to be lopsided if it satisfies the preceding characteristic prop-
erty. It is obvious that the Lawrence condition rejects any minimal obstruction to
isometry of S (realized in some face F of dimension > 1 as a diametrical vertex
pair), whence lopsided sets induce isometric subgraphs of Hn. Moreover, a heredi-
tary version of isometry (“superisometry” [23]) then characterizes lopsidedness. To
express this, factor the n-cube 2X hosting S into 2Y and 2X−Y with respect to any
subset Y of X = {1, . . . , n} and let the subset SY of 2X−Y encode the location of
all 2Y fibers within S:

SY := {t ∈ 2X−Y : every extension s ∈ 2X of t belongs to S}.
The coordinate subsets Y of X for which some 2Y fiber exists in S form a simplicial
complex:

X (S) := {Y ⊆ X : SY is nonempty }.
The sets SY and X (S) can be compared to the sets

SY := S|X−Y and X (S) := {Y ⊆ X : SY = 2X−Y },
which determines the image of S under the projection onto 2X−Y and collects the
coordinate subsets Y such that the projections onto 2X−Y are surjective, respec-
tively. To give an example, let X = {1, 2, 3} and let S be an isometric 6-cycle in
2X , then S{e} yields a 4-cycle but S{e} comprises only a diametrical pair of vertices
in this 4-cycle for any e ∈ X.
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The original definition of a lopsided set in [134] can be expressed in terms of
the simplicial complexes X (S) and X (S) as the requirement that for each Y ⊆ X
the alternative Y ∈ X (S) or Y /∈ X (S) holds. One of the basic observations is
that the inequality #X (S) ≤ #S ≤ #X (S) holds for all subsets S of 2X [23]. Any
equality here then characterizes lopsidedness. In fact, the condition #S = #X (S)
(“S is ample”) led to a rediscovery of lopsided sets in the context of overlapping
clustering [100]. A systematic investigation of the interplay between the subsets S
of the n-cube and the associated simplicial complexes X (S) and X (S) then leads
to an amazing number of equivalent conditions for lopsidedness. The following
theorem then presents only a small sample of characteristic properties established
in [23].

Theorem 8.9. [23] For a subset S of 2X the following conditions are equiva-
lent:

(a) S is lopsided;
(b) 2X − S is lopsided;
(c) SY is isometric for all Y ⊆ X;
(d) #S = #X (S);
(e) #S = #X (S);
(f) X (S) = X (S);
(g) S is connected, and S{e} is lopsided for every e ∈ X;
(h) S is isometric, and both S{e} and S{e} are lopsided for some e ∈ X.

As to the geometric interpretation of lopsided sets, it was already noted in
[134] that not every lopsided set encodes the orthant intersection pattern for a
convex set in Euclidean space. It comes close, though. In order to have a full
geometric representation, one has to resort to a weaker concept (“ortho-convexity”)
of convexity. For a subset S of 2X , let |S| be the polyhedral cubical complex
obtained by replacing all faces of S by solid cubes. If S is connected, then |S|
is connected as well, and therefore can be endowed with an intrinsic l1-metric
d|S|. The resulting metric space (|S|, d|S|) is geodesic but not necessarily a metric
subspace of (RX , || · ||1). For example, if S comprises the six vertices of an isometric
6-cycle in the 3-cube, then |S| is a solid 6-cycle of R3. The l1-distance between
the midpoints of two opposite sides of this cycle is 2, while the intrinsic l1-distance
between the same points is 3. In fact, l1-isometry of |S| is yet another characteristic
feature of lopsidedness of S:

Theorem 8.10. [24] For a subset S of 2X the following conditions are equiv-
alent:

(a) S is lopsided;
(b) |S| endowed with the intrinsic l1-metric d|S| is a metric subspace of the

metric space (RX , || · ||1);
(c) S is isometric in 2X and every face of |S| is a gated subset of (|S|, d|S|);
(d) S encodes the orthant intersection pattern for some geodesic metric sub-

space K of (Rn, || · ||1), that is, x ∈ S exactly when the orthant determined
by the corresponding sign vector 2x−1 also includes a point from K.

In the preceding condition (d), K = |S| can actually be chosen. By Theorem
8.9 or 8.10 it is clear that every median subgraph S of the cube 2X is a lopsided set.
Specifically, a subset S of 2X forms a median subgraph of this #X-cube exactly
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when X (S) = X (S) is a flag complex. There are many other interesting classes of
lopsided sets for which the associated simplicial complexes are not necessarily flag
complexes. For example, tope graphs of arrangements of pseudolines such that no
more than two pseudolines meet at any intersection point constitute lopsided sets
[134]. Antimatroids (i.e., closure systems satisfying the anti-exchange property) on
a finite set X, also known under the name convex geometries [105], are instances of
lopsided sets (when passing to the characteristic maps). The requirement that the
set X itself belongs to the antimatroid can be dropped without losing lopsidedness:
these set systems over X are then referred to as conditional antimatroids [23]. The
set of all partial orders on a finite set M, for example, constitutes a conditional
antimatroid S on X = M2. Its geometric realization |S| could then in principle
provide a framework for fuzzy partial orders.
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[80] V. Chepoi, Separation of two convex sets in convexity structures, J. Geometry 50 (1994),

30–51.
[81] V. Chepoi, On distances in benzenoid systems, J. Chem. Inf. Comput. Sci. 36 (1996), 1169–

1172.
[82] V. Chepoi, Bridged graphs are cop-win graphs: an algorithmic proof, J. Combin. Th. Ser. B

69 (1997), 97–100.
[83] V. Chepoi, On distance-preserving and domination elimination orderings, SIAM J. Discr.

Math. 11 (1998), 414–436.
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[164] M. Stern, Semimodular Lattices: Theory and Applications, Encyclopedia of mathematics

and its applications, vol. 73, Cambridge University Press, Cambridge, 1999.
[165] C. Tardif, On compact median graphs, J. Graph Th. 23 (1996), 325–336.
[166] P. Terwiliger, M. Deza, Classification of finite connected hypermetric spaces, Graphs Com-

bin. 3 (1987), 293–298.
[167] J. Tits, Buildings of Spherical Type and Finite BN-Pairs, Lecture Notes in Math. 386,

Springer-Verlag, Berlin, 1974.
[168] S.V. Yushmanov, V. Chepoi, A general method of investigation of metric graph properties

related to the eccentricity, in Mathematical Problems in Cybernetics, vol. 3, Nauka, Moscow,
1991, pp. 217–232 (Russian).

[169] M. van de Vel, Matching binary convexities, Topology Appl. 16 (1983), 207–235.
[170] M. van de Vel, Theory of Convex Structures, Elsevier Science Publishers, Amsterdam, 1993.
[171] M. van de Vel, Collapsible polyhedra and median spaces, Proc. Amer. Math. Soc. 126 (1998),

2811–2818.
[172] W. Wenzel, Maurer’s homotopy theory for even ∆-matroids and related combinatorial ge-

ometries, J. Combin. Th. Ser. A 71 (1995), 19–59.
[173] E. Wilkeit, Isometric embedding in Hamming graphs, J. Combin. Th. Ser. B 50 (1990),

179–197.
[174] E. Wilkeit, The retracts of Hamming graphs, Discr. Math. 102 (1992), 197–218.
[175] P.M. Winkler, Isometric embedding in the product of complete graphs, Discr. Appl. Math.

7 (1984), 221–225.
[176] P.M. Winkler, The metric structure of graphs: theory and applications. in Survey in Combi-

natorics 1987, C. Whitehead (ed.), London Math. Soc. Lect. Notes Ser., vol. 123, Cambridge
University Press, Cambridge, 1987, pp. 197–221.

Fachbereich Mathematik, Universität Hamburg, Bundesstr. 55, 20146 Hamburg,
Germany,

E-mail address: bandelt@math.uni-hamburg.de

Laboratoire d’Informatique Fondamentale de Marseille, Université de la Méditerranée,
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