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Abstract

The Faber–Krahn theorem states that the ball has lowest first Dirichlet eigenvalue amongst all bounded
domains of the same volume in R

n (with the standard Euclidean metric). It has been shown that a similar
result holds for (semi-) regular trees. In this article we show that such a theorem also holds for other classes
of (not necessarily regular) trees, for example for trees with the same degree sequence. Then the resulting
trees possess a spiral like ordering of their vertices, i.e., are ball approximations.
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1. Introduction

In recent years the eigenvectors of the graph Laplacian have received increasing attention.
While its eigenvalues have been investigated for fifty years (see, e.g., [1,5,6]), there is little
known about the eigenvectors. The graph Laplacian can be seen as the discrete analog of the
continuous Laplace–Beltrami-operator on manifolds. When using an appropriate definition for
the gradient on a graph, rules similar to the classical Laplace operator can be formulated, e.g.,
Green’s formula. During the last years some results for eigenfunctions of the Laplace–Beltrami-
operator have been shown to hold also for eigenvectors of the graph Laplacian; for example
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Cheeger-type inequalities [8] or nodal domain theorems [7] exist. However, it has turned out that
there are small but subtle differences between the discrete and the continuous case.

The Faber–Krahn inequality is another well-known result. It states that among all bounded
domains with the same volume in R

n (with the standard Euclidean metric), a ball has lowest
first Dirichlet eigenvalue [4]. Friedman [9] introduced the idea of a “graph with boundary” (see
below). With this concept he was able to formulate Dirichlet and Neumann eigenvalue prob-
lems for graphs. He also conjectured an analog to the Faber–Krahn inequality for regular trees.
Amazingly Friedman’s conjecture is false, i.e., in general these trees are similar but not equal to
“balls,” see [13,15] for counterexamples and [14] for a statement of the result. This example (as
well as the nodal domain theorem where also some wrong conjectures exist, see [7]) shows that
there is much more structure in graphs than in manifolds. Conclusions from this fact are twofold:
First, some care is necessary since one’s intuition, trained on manifolds, may lead to wrong con-
jectures. On the other hand, we can use the opportunity to go further and try to find these new
structural properties where no analog exists in the world of elliptic operators on manifolds. It is
this second conclusion that motivates this paper. We want to leave the world of regular graphs
and look what happens when we drop this regularity assumption.

In this article we formulate Faber–Krahn type theorems for trees which need not be regular
any more. We show that trees that have smallest first Dirichlet eigenvalue for a given number of
vertices have an SLO (spiral like ordering) structure, i.e., are ball approximations. It is notable
that the vertex degrees are as small as possible for vertices near the center of these trees. In
particular if there are no other restrictions but the number of interior and exterior vertices then
the resulting trees are paths with a star attached to one end, i.e., comets, see Fig. 2. Analogous
results for the Laplace–Beltrami-operators on manifolds with non-constant curvature are rare
(see, e.g., the work of Carron [2,3]). Additionally we also show in Theorem 5 the remarkable
property that a Dirichlet eigenvalue is a weighted average of the number of boundary vertices to
which an interior vertex is connected.

2. Discrete Dirichlet operator and Faber–Krahn property

Let G(V,E) be a simple (finite) undirected graph with vertex set V and edge set E. The
Laplacian of G is the matrix

�(G) = D(G) − A(G), (1)

where A(G) denotes the adjacency matrix of the graph and D(G) is the diagonal matrix whose
entries are the vertex degrees, i.e., Dvv = dv , where dv denotes the degree of vertex v. We write
� for short if there is no risk of confusion. To state a Faber–Krahn type inequality we need a
Dirichlet operator which itself requires the notion of a boundary of a graph.

A graph with boundary G(V0 ∪∂V,E0 ∪∂E) consists of a set of interior vertices V0, boundary
vertices ∂V , interior edges E0 that connect interior vertices, and boundary edges ∂E that join
interior vertices with boundary vertices [9]. There are no edges between two boundary vertices.

In the following we assume that every boundary vertex has degree 1 and every interior vertex
has degree at least 2, i.e., a vertex is a boundary vertex if and only if it has degree 1. We also
assume that both the set of interior vertices V0 and the set of boundary vertices ∂V are not empty.
Balls are of particular interest for our investigations. A ball B(v0, r) with center v0 and radius
r ∈ N is a connected graph where every boundary vertex w has geodesic distance dist(v0,w) = r .

A discrete Dirichlet operator is the graph Laplacian � which acts only on vectors that vanish
in all boundary vertices. For a motivation of this definition see [9].
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Fig. 1. The class of trees considered by Friedman [9] can be obtained by cutting connected subsets out of the geometric
representation of an infinite d-regular tree (• . . . interior vertices, ◦ . . . boundary vertices).

Definition 1. A discrete Dirichlet operator �0 is the graph Laplacian restricted to interior ver-
tices, i.e.,

�0 = D0 − A0, (2)

where A0 is the adjacency matrix of the graph induced by the interior vertices, G(V0,E0), and
where D0 is the degree matrix D restricted to the interior vertices V0.

Notice that �0 is obtained from the graph Laplacian � by deleting all rows and columns
that correspond to boundary vertices. Thus any edges between two boundary vertices have no
influence on the Dirichlet operator. Thus we have eliminated such edges by definition for the
sake of simplicity.

Definition 2 (Faber–Krahn property). We say that a graph with boundary has the Faber–Krahn
property if it has lowest first Dirichlet eigenvalue among all graphs with the same “volume” in a
particular graph class.

This informal definition raises two questions: (1) What is the “volume” of a graph, and
(2) what is an appropriate graph class (besides the trivial requirement that it must contain the
graph G in question)?

Pruss [15] used the number of edges of an unweighted tree as volume and the class of semi-
d-regular trees with boundary. In such a tree every interior vertex has the same degree d whereas
every boundary vertex has degree 1. This idea can be extended to weighted trees [9], where edge
weights are represented by the reciprocal lengths of arcs in a geometric representation of the
tree. The volume is then defined as the sum of all the arc lengths of the geometric representation.
Friedman [9] looked at the class of all trees, where the interior vertices have the same degree d ,
all interior edges have length (weight) 1 and all boundary edges have length at most 1. Such
graphs can be obtained by cutting out a subset of the geometric representation of an infinite
(unweighted) d-regular tree, see Fig. 1.

In this article we want to formulate Faber–Krahn type theorems for (non-regular) trees. When
we generalize the Faber–Krahn type theorems to arbitrary trees, we have to solve the following
(roughly formulated) problem.
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Problem 1. Give a characterization of all graphs in a given class C with the Faber–Krahn prop-
erty, i.e., characterize those graphs in C which have minimal first Dirichlet eigenvalue for a given
“volume.”

Making the graph class C too large leads to quite simple (non-interesting) graphs. For exam-
ple, if C is the set of all connected graphs with a given number of vertices as the “volume” of the
graph, then graphs with the Faber–Krahn property are paths with one terminating triangle [12].
If we restrict this class to trees, then we arrive at simple paths [11,12].2

It seems natural to use the number of vertices as measure for the “volume” of a graph. (Notice
that this is equivalent to using the number of edges for an unweighted tree.) Moreover, we will
consider only graph classes where both the total numbers of interior vertices, |V0|, and boundary
vertices, |∂V |, are fixed. (For semiregular trees this is always the case when we fix the total num-
ber of vertices.) We will drop this requirement at the end of this article and state some additional
results in Section 4. Hence we will look at the following classes of graphs with boundaries:

T (n,k) = {
G is a tree, with |V | = n and |V0| = k

}
, (3)

T (n,k)
d = {

G ∈ T (n,k): dv � d for all v ∈ V0
}
. (4)

As it is clear that we always look at a particular class T (n,k) or T (n,k)
d we will write T and Td for

short; n and k have then to be selected accordingly. We always assume that 1 � k � n − 2.
Another interesting class is based on so-called degree sequences. A sequence π =

(d0, . . . , dn−1) of non-negative integers is called a degree sequence if there exists a graph G

with n vertices for which d0, . . . , dn−1 are the degrees of its vertices. For trees the following
characterization exists.

Lemma 1. [10] A degree sequence π = (d0, . . . , dn−1) is a tree sequence (i.e., a degree sequence
of some tree) if and only if every di > 0 and

∑n−1
i=0 di = 2(n − 1).

Using this notion we can introduce another interesting graph class for which we want to
formulate a Faber–Krahn like theorem,

Tπ = {G is a tree with boundary and with degree sequence π}. (5)

Notice that for a particular degree sequence π we have

Tπ ⊆ Tdπ ⊆ T2 = T , (6)

where dπ is the minimal degree for interior vertices of the degree sequence π .
For the class T of all trees we find a simple structure for graphs with the Faber–Krahn prop-

erty.

Theorem 1 (Klobürštel theorem). A tree G has the Faber–Krahn property in the class T if and
only if G is a star with a long tail, i.e., a comet, see Fig. 2. G is then uniquely determined up to
isomorphism.

Graphs with the Faber–Krahn property in Td or Tπ have a richer structure. For its description
we need additional notions. For a tree G with root v0 the height h(v) of a vertex v is defined

2 To be precise Katsuda and Urakawa [12] used the more general “non-separation property.”
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Fig. 2. A comet has the Faber–Krahn property in class T . It consists of a star with diameter 2 and a path attached to it
(• . . . interior vertices, ◦ . . . boundary vertices).

by h(v) = dist(v, v0). For two adjacent vertices v and w with h(w) = h(v) + 1 we call v the
parent of w, and w a child of v. Notice that every vertex v �= v0 has exactly one parent, and
every interior vertex w has at least one child vertex. The main notion for describing trees with
the Faber–Krahn property is spiral-like ordering of its vertices, first introduced by Pruss [15].
We give a slightly modified and extended definition.

Definition 3 (SLO-ordering). Let G(V0 ∪ ∂V,E0 ∪ ∂E) be a tree with boundary with root v0.
Then a well-ordering ≺ of the vertices is called spiral-like (SLO-ordering for short) if the fol-
lowing holds for all vertices v, v1, v2, w, w1, w2 ∈ V :

(S1) v ≺ w implies h(v) � h(w);
(S2) if v1 ≺ v2 then for all children w1 of v1 and all children w2 of v2, w1 ≺ w2;
(S3) if v ≺ w and v ∈ ∂V , then w ∈ ∂V .

It is called spiral-like with increasing degrees (SLO∗-ordering for short) if additionally the fol-
lowing holds:

(S4) if v ≺ w for interior vertices v,w ∈ V0, then dv � dw .

We call trees that have an SLO- or SLO∗-ordering of its vertices SLO-trees and SLO∗-trees,
respectively.

Notice that SLO-trees are almost balls, that is, there exists a radius r such that dist(v, v0) ∈
{r, r + 1} for all boundary vertices v ∈ ∂V , see Fig. 3 for an example. With this concept we can
formulate Faber–Krahn type theorems for the other graph classes, Td and Tπ .

Theorem 2. A graph G has the Faber–Krahn property in a class Td if and only if it is an SLO∗-
tree where at most one interior vertex has degree d◦ exceeding d and all other interior vertices
have degree d . G is then uniquely determined up to isomorphism.

Theorem 3. A graph G with degree sequence π has the Faber–Krahn property in the class Tπ if
and only if it is an SLO∗-tree. G is then uniquely determined up to isomorphism.

As an immediate corollary we get the result of Pruss [15].

Corollary 4. [15, Theorem 6.2] In the class of semi-d-regular trees a graph G has the Faber–
Krahn property if and only if it is an SLO∗-tree. G is then uniquely determined up to isomor-
phism.
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Fig. 3. An SLO∗-tree with 8 interior and 18 boundary vertices. The SLO∗-ordering ≺ is indicated by numbers. Degree
sequence π = (3,3,3,4,4,4,5,6,1,1, . . . ,1).

Before we prove these theorems we first want to show that each of these two classes indeed
contains an SLO∗-tree.

Lemma 2. Each class Tπ contains an SLO∗-tree that is uniquely determined up to isomorphism.

Proof. First we prove the existence of an SLO∗-tree. This is trivial for a star with one interior
vertices and n − 1 boundary vertices: the central vertex is chosen as root for the SLO-ordering.
Such stars have degree sequence (n − 1,1, . . . ,1). For all other trees (which have at least two
interior vertices) we show this statement by induction on |π | (the number of vertices of π ).

Now we assume by induction that each Tπ ′ with |π ′| � n − 1 has an SLO∗-tree. Let π =
(d0, d1, . . . , dk−1, dk, . . . , dn−1), k � 2, be the degree sequence of Tπ , where 2 � d0 � d1 �
· · · � dk−1 and dk = · · · = dn−1 = 1 (i.e., correspond to boundary vertices); |π | = n. Notice that
dk−1 is the last degree for interior vertices and thus the corresponding vertex vk−1 is adjacent to
dk−1 −1 boundary vertices, which correspond to the last entries in π . Therefore, we can construct
a new degree sequence π ′ by deleting the last dk−1 − 1 elements from π and by replacing dk−1

by d ′
k−1 = 1. Obviously π ′ has n − (dk−1 − 1) < n elements.

By Lemma 1, π ′ is a tree sequence. By induction Tπ ′ has an SLO∗-tree T ′. Let v be the first
vertex of T ′ w.r.t. the SLO-ordering that is adjacent to some boundary vertex w. We replace w

by an interior vertex u and add dk−1 − 1 boundary vertices and get a tree T . Obviously u has
degree dk−1 and thus T has degree sequence π . Moreover, T has an SLO∗-ordering which can
be derived from the ordering in T ′ by inserting the new vertex u as the last interior vertex and
the new boundary vertices as the last dk−1 − 1 vertices in the ordering. It is then easy to see that
the properties (S1)–(S4) are satisfied.

To show that two SLO∗-trees G and G′ in a class Tπ are isomorphic we use a function φ

that maps the vertex vi in the ith position in the SLO∗-ordering of G to the vertex wi in the
ith position in the SLO∗-ordering of G′. By the properties of the SLO∗-ordering, φ is an iso-
morphism, as vi and wi have the same degree and the images of all children of vi are exactly
the children of wi . The latter can be seen by looking on all interior vertices of G in the reverse
SLO∗-ordering. Thus the proposition follows. �
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3. Proof of the theorems

We first recall some basic results. By definition the Laplace operator � is symmetric. Its
associate Rayleigh quotient on real-valued functions f on V is the fraction

RG(f ) = 〈�f,f 〉
〈f,f 〉 =

∑
(u,v)∈E(f (u) − f (v))2

∑
v∈V f (v)2

. (7)

For the Dirichlet operator �0 we get a similar Rayleigh quotient. However, it is much simpler
to consider RG(f ) again but restrict the set of functions f such that f (v) = 0 for all boundary
vertices v ∈ ∂V . We denote the first Dirichlet eigenvalue of �0(G) by λ(G). The following
proposition states a well-known fact about Rayleigh quotients.

Proposition 3. For a graph with boundary G(V0 ∪ ∂V,E0 ∪ ∂E) we have

λ(G) = min
f ∈S

RG(f ) = min
f ∈S

〈�f,f 〉
〈f,f 〉 , (8)

where S is the set of all real-valued functions on V with the constraint f |∂V = 0. Moreover, if
RG(f ) = λ(G) for a function f ∈ S , then f is an eigenfunction of the first Dirichlet eigenvalue
of �0.

For eigenfunctions of the Dirichlet operator the following remarkable property holds.

Theorem 5. Let G(V0 ∪ ∂V,E0 ∪ ∂E) be a connected graph with boundary and f an eigen-
function corresponding to some eigenvalue λ of the Dirichlet operator. Let bv denote the
number of boundary vertices adjacent to v, i.e., bv = |{w ∈ ∂V : (v,w) ∈ E}|. Then either∑

v∈V f (v) = ∑
v∈V bvf (v) = 0, or

λ =
∑

v∈V bvf (v)∑
v∈V f (v)

.

Proof. Let 1 = (1, . . . ,1)′ and iv = |{w ∈ V0: (v,w) ∈ E}| be the number of interior vertices
adjacent to v. Thus bv + iv = dv . A straightforward computation gives

〈1,�0f 〉 =
∑

v∈V0

dvf (v) −
∑

v∈V0

∑

(v,w)∈E
w∈V0

f (w)

=
∑

v∈V0

dvf (v) −
∑

w∈V0

f (w)
∑

(w,v)∈E
v∈V0

1

=
∑

v∈V0

dvf (v) −
∑

w∈V0

iwf (w) =
∑

v∈V0

bvf (v).

Since f is an eigenfunction we find 〈1,�0f 〉 = λ
∑

v∈V0
f (v). As f (v) = 0 for all boundary

vertices v ∈ ∂V the result follows. �
Proposition 4. (Friedman [9]) Let G(V0 ∪ ∂V,E0 ∪ ∂E) be a connected graph with boundary.



ARTICLE IN PRESS YJCTB:2405
JID:YJCTB AID:2405 /FLA [m1+; v 1.60; Prn:12/06/2006; 10:45] P.8 (1-16)
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Fig. 4. Switching: edges (v1, u1) and (v2, u2) are replaced by edges (v1, v2) and (u1, u2).

(1) �0(G) is a positive operator, i.e., λ(G) > 0.
(2) An eigenfunction f of the eigenvalue λ(G) is either positive or negative on all interior

vertices of G.
(3) λ(G) is monotone in G, i.e., if G ⊂ G′ then λ(G) > λ(G′).
(4) λ(G) is a simple eigenvalue.

The main techniques for proving our theorems is rearranging of edges. We need two different
types of rearrangement steps that we call switching and shifting, respectively, in the following.

Lemma 5 (Switching). (See also [13, Lemma 5].) Let G(V,E) be a tree with boundary in some
class Tπ . Let (v1, u1), (v2, u2) ∈ E be edges such that u2 is in the geodesic path from v1 to v2,
but u1 is not, see Fig. 4. Then by replacing edges (v1, u1) and (v2, u2) by the edges (v1, v2) and
(u1, u2) we get a new tree G′(V ,E′) which is also contained in Tπ with the same set of boundary
vertices. Moreover, we find for a function f ∈ S

RG′(f ) � RG(f ) (9)

whenever f (v1) � f (u2) and f (v2) � f (u1). Inequality (9) is strict if both inequalities are
strict.

Proof. Since by assumption u2 is in the geodesic path from v1 to v2 and u1 is not, G′(V ,E′) is
again a tree. The set of vertices does not change by construction. Moreover, since this switching
does not change the degrees of the vertices, the degree sequence remains unchanged. To verify
inequality (9) we have to compute the effects of removing and inserting edges and get

〈
�(G′)f,f

〉 − 〈
�(G)f,f

〉 = [(
f (v1) − f (v2)

)2 + (
f (u1) − f (u2)

)2]

− [(
f (v1) − f (u1)

)2 + (
f (v2) − f (u2)

)2]

= 2
(
f (u1) − f (v2)

) · (f (v1) − f (u2)
)

� 0,

where the last inequality is strict if both inequalities f (v1) � f (u2) and f (v2) � f (u1) are strict.
Thus the proposition follows. �
Lemma 6. Let G(V,E) be a tree with boundary in some Tπ and let G′(V ,E′) be a tree obtained
from G by applying switching as defined in Lemma 5. If f is a non-negative eigenfunction of the
first Dirichlet eigenvalue of G then λ(G′) � λ(G) whenever f (v1) � f (u2) and f (v2) � f (u1).
Moreover, λ(G′) < λ(G) if one of these two inequalities is strict.

Proof. The first inequality is an immediate consequence of Lemma 5 and Proposition 3

λ(G′) �RG′(f ) � RG(f ) = λ(G).
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Fig. 5. Shifting: edge (u, v1) is replaced by edge (u, v2).

For the second statement notice that λ(G′) = λ(G) if and only if RG′(f ) = RG(f ) and f is
an eigenfunction corresponding to λ(G′) on G′, since λ(G′) is simple (Propositions 3 and 4).
Therefore, if λ(G′) = λ(G) we find

λ(G)f (v1) = �(G)f (v1) = dv1f (v1) − f (u1) −
∑

(v1,w)∈E
w �=u1

f (w)

= λ(G′)f (v1) = �(G′)f (v1) = dv1f (v1) − f (v2) −
∑

(v1,w)∈E′
w �=v2

f (w).

Since the summation is done over the same neighbors of v1 in this equation we find f (u1) =
f (v2). Analogously we derive from �(G)f (u1) = �(G′)f (u1), f (v1) = f (u2). Thus the
proposition follows. �
Lemma 7 (Shifting). Let G(V,E) be a tree with boundary in graph class T . Let (u, v1) ∈ E be
an edge and v2 ∈ V some vertex such that u is not in the geodesic path from v1 to v2, see Fig. 5.
Then by replacing edge (u, v1) by the edge (u, v2) we get a new tree G′(V ,E′) which is also
contained in T . If v2 ∈ V0 is an interior vertex and dv1 � 3 then the number of boundary vertices
remains unchanged. Moreover, we find for a non-negative function f ∈ S

RG′(f ) � RG(f ) (10)

if f (v1) � f (v2) � f (u). The inequality is strict if f (v1) > f (v2).

Notice that if G is in some class Td (or Tπ ) then in general G′ need not be a member of this
graph class any more.

Proof. Analogously to the proof of Lemma 5. �
Remark 6. Lemmata 5, 6, and 7 hold analogously for arbitrary graphs.

We now can use a sequence of switchings and shiftings to transform any tree G with boundary
in some class Tπ into an SLO∗-tree G∗ ∈ Tπ .

Lemma 8. Let G(V,E) be a tree with boundary in some class Tπ . Then there exists an SLO-tree
G′(V ,E′) in Tπ with λ(G′) � λ(G).

Furthermore, if G has the Faber–Krahn property then there exists already an SLO-ordering
≺ of the vertices (i.e., G is an SLO-tree). If, moreover, f is a non-negative eigenfunction of λ(G),
then v ≺ w implies f (v) � f (w).
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Proof. Let n = |V | and k = |V0| denote the number of vertices and of interior vertices of G,
respectively, and let f be a non-negative eigenfunction of the first Dirichlet eigenvalue of G.
We assume that the vertices of G, V = {v0, v1, . . . , vk−1, vk, . . . , vn−1}, are numbered such that
f (vi) � f (vj ) if i � j , i.e., they are sorted with respect to f (v) in non-increasing order. We
define a well-ordering ≺ on V by vi ≺ vj if and only if i < j .

Now we use a series of switchings to construct the desired new tree G′. This is done recur-
sively such that we have a ball that already has the desired SLO-ordering in the central part of
each intermediate graph. This ball grows in every recursion step until all vertices of the initial
graph G are used.

We start with the first vertex v0 of this ordered set of vertices. If v0 is adjacent to v1 there is
nothing to do. Else, we check whether v0 is adjacent to some vertex w with f (w) = f (v1) and
v1 ≺ w. If there exists such a vertex we just exchange the positions of these two vertices in the
ordering of V (and update the indices of the vertices). (In particular this is the case when v1 is
a boundary vertex then by our assumptions 0 � f (w) � f (v1) = 0 and thus f (w) = f (v1) = 0
and this condition is satisfied.) Otherwise, there exists a child vertex u0 of v0 with v1 ≺ u0 and a
path P0,1 from v0 to v1, since G is connected. There also exists a parent of v1 (which is in this
path P0,1 and which cannot be v0) and some child vertices (which are not in this path). The latter
exists as v1 cannot be a boundary vertex, since then one of the above two cases would apply.
Now if u0 ∈ P0,1 then let u1 be one these child vertices; else let u1 be the parent of v1. As, by the
construction, v0 ≺ v1 ≺ u0, u1 we have f (v0) � f (v1) � f (u0), f (u1) and hence we can apply
Lemma 5, exchange edges (v0, u0) and (v1, u1) by (v0, v1) and (u0, u1), and get a new graph G1
with RG1(f ) � RG(f ) which also belongs to Tπ .

By this switching step we have exchanged a child of v0 by v1 (if necessary) which then
becomes a child of v0. By the same procedure we can exchange all other vertices adjacent to v0
with the respective vertices v2, v3, . . . , vs0 , where s0 = dv0 , and get graphs G2, G3, . . . , Gs0 in
Tπ with RGi

(f ) � RGi−1(f ).
Next we proceed in an analogous manner with all children u of v1 with v1 ≺ u and make all

vertices vs0+1, vs0+2, . . . , vs1 adjacent to v1, where s1 = s0 + dv1 − 1, and get graphs Gs0+1,
Gs0+2, . . . , Gs1 . By processing all interior vertices in this way we get a sequence of graphs

G = G0 → G1 → G2 → ·· · → Gk = G′ (11)

in Tπ with

λ(G) = RG0(f ) � RG1(f ) � · · · �RGk
(f ) � λ(G′). (12)

In step Gr−1 → Gr there is either nothing to do (when we assume that the vertices are already
in the proper ordering), or switching is used to joint the vertex vr−1 ≺ vr with vertex vr : Let
Pr−1,r be the geodesic path from vr−1 to vr . By construction of our sequence of graphs we
have h(vr−1) � h(vr) in graph Gr−1 and thus the parent wr of vr must be in Pr−1,r . Moreover,
vr cannot be a boundary vertex (since otherwise we can use the argument from above and we
only had to change the ordering of the vertices) and thus has some child ur . Furthermore this
path either contains some child ur−1 of vr−1, or it contains the parent of vr−1. In the latter
case there exists at least one child ur−1. Now we can use switching and replace either edges
(vr−1, ur−1) and (vr , ur) by the edges (vr−1, vr ) and (ur−1, ur) (if ur−1 is contained in Pr−1,r )
or (otherwise) edges (vr−1, ur−1) and (wr, vr) by the edges (vr−1, vr ) and (ur−1,wr). In both
cases we can apply Lemma 5 as f (vr−1) � f (vr) � f (ur−1), f (wr), f (ur). (It cannot happen
that vr is adjacent to some vertex w with w ≺ vr−1.) In the consecutive steps edges between
vertices u and w with u ≺ w ≺ vr+1 are neither deleted nor inserted any more. Hence λ(G′) �
RG′(f ) � RG(f ) = λ(G).
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It remains to show that ≺ is an SLO-ordering of the vertices V in G′. Property (S3) holds
by definition of the ordering ≺. By construction (S2) holds. Moreover, G′ is built by stepwise
adding layers to a ball. Thus property (S1) holds and the first statement follows.

Now assume that G has the Faber–Krahn property. Then equality holds in (12) everywhere.
Furthermore, f must be an eigenfunction of the first Dirichlet eigenvalue for every graph Gi in
this sequence. Otherwise, if f is not an eigenfunction of a graph Gi then λ(Gi) < RGi

(f ) =
λ(G), a contradiction by Proposition 3.

For switching step Gr−1 → Gr we have f (vr) � f (ur−1). If f (vr) = f (ur−1) there would
be nothing to do (we only change the positions of vr and ur−1 in the ordering ≺). Hence we
have f (vr) > f (ur−1) and by Lemma 6, λ(Gr) < λ(Gr−1), a contradiction to the Faber–Krahn
property of G.

The monotonicity property of f follows for the same reasons. �
Lemma 9. Let G(V,E) be a tree with boundary in some Tπ . Then there exists an SLO∗-tree
G∗(V ,E∗) in Tπ with λ(G∗) � λ(G).

Proof. Let again n = |V | and k = |V0| denote the number of vertices and of interior vertices
of G, respectively, and let f be a non-negative eigenfunction of the first Dirichlet eigen-
value of G. Then by Lemma 8 there exists an SLO-tree G′

0 = G′(V ,E′) in Tπ with the
SLO-ordering ≺. The vertices of G (and G′) V = {v0, v1, . . . , vk−1, vk, . . . , vn−1} are num-
bered such that vi ≺ vj if and only if i < j . Moreover, by the construction in the proof
of Lemma 8 we find f (v) � f (w) if v ≺ w. The degree sequence of G is given by π =
(d0, d1, . . . , dk−1, dk, . . . , dn−1) such that the degrees di are non-decreasing for 0 � i < k, and
dj = 1 for j � k (i.e., correspond to boundary vertices).

Now we start with root v0. If dv0 = d0 (= min0�i�k di ) then there is nothing to do. Otherwise,
we can use shifting to replace all edges (v0, vd0+1), (v0, vd0+2), . . . , by the respective edges
(v1, vd0+1), (v1, vd0+2), . . . . As v0 ≺ v1 ≺ vd0+1 ≺ · · · we have f (v0) � f (v1) � f (vd0+1) � · · ·
and thus we can apply Lemma 7 and get a new graph G′

1 with RG′
1
(f ) � RG′(f ). Notice that

G′
1 is again an SLO-tree. Moreover, the number of boundary vertices remains unchanged, since

either d0 = 2 and there is nothing to do, or d0 � 3 and the statement follows from Lemma 7.
However, it might happen that the degree sequence has changed and G′

1 /∈ Tπ .
Next we proceed in the same way with vertex v1. We denote the degree of a vertex vj in a

graph G′
i with index i by d

(i)
vj

. Notice that d
(1)
v1 � min1�i�k di = d1. If d

(1)
v1 = d1 there is nothing

to do. Otherwise, we can use shifting to replace all edges (v1, vs1+1), (v1, vs1+2), . . . , by the
respective edges (v2, vs1+1), (v2, vs1+2), . . . , where s1 = d0 + d1. Again we can apply Lemma 7
and get a new graph G′

2 with RG′
2
(f ) � RG′

1
(f ). We can continue in this way and get a sequence

of SLO-trees

G → G′ = G′
0 → G′

1 → G′
2 → ·· · → G′

k = G∗ (13)

with

λ(G) = RG(f ) � RG′
0
(f ) � RG′

1
(f ) � · · · � RG′

k
(f ) � λ(G∗). (14)

Notice that we always have d
(r)
vr � dr . This follows from the fact that

∑
j�r d

(0)
vj

�
∑

j�r dj as
the right-hand side of this inequality is the minimum of any sum of degrees of j interior vertices
of G′. Moreover, by our construction,

∑
j�r d

(r)
vj

= ∑
j�r d

(0)
vj

and
∑

j<r d
(r)
vj

= ∑
j<r dj . Hence

d
(r)
vr = ∑

j�r d
(r)
vj

− ∑
j<r d

(r)
vj

= ∑
j�r d

(0)
vj

− ∑
j<r dj �

∑
j�r dj − ∑

j<r dj = dr . In step
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G′
r → G′

r+1 there is either nothing to do, or edges are exchanged such that vertex vr has the
desired degree. In the consecutive steps edges that are incident to a vertex u ≺ vr+1 are neither
deleted nor inserted.

The resulting SLO-tree G∗ has the same degree sequence π as G and thus belongs to class Tπ .
It also satisfies property (S4), i.e., ≺ is an SLO∗-ordering of the vertices. �

For our theorem on the class Td we need a modified version of this lemma. To state this
new proposition we need a partial ordering of degree sequences. Let π = (d0, d1, . . . , dk−1,

dk, . . . , dn−1) and π ′ = (d ′
0, d

′
1, . . . , d

′
k′−1, dk′ , . . . , dn−1) be two degree sequence of some trees

with the same number of vertices n and respective numbers k and k′ of interior vertices (not nec-
essarily equal). Again we assume that the first k (and k′, respectively) degrees correspond to the
interior vertices and are ordered non-decreasingly. Then we write π � π ′ if the above condition
holds and

∑
j�r dj �

∑
j�r d ′

j for all 0 � r < n.

Lemma 10. Let G(V,E) be a tree with boundary with degree sequence π and let π ′ an-
other degree sequence with π ′ � π . Then there exists an SLO∗-tree G∗(V ,E∗) in Tπ ′ with
λ(G∗) � λ(G).

Proof. Completely analogous to the proof of Lemma 9. �
Notice that Lemma 9 is a special case of this lemma as π � π . It can also be applied to prove

Theorem 2 for class Td as we immediately have π◦ � π with π◦ = (d, d, . . . , d, d◦,1, . . . ,1)

where d◦ = d + ∑
v∈V0

(dv − d).
Next we show that every tree with the Faber–Krahn property has an SLO∗-ordering.

Lemma 11. Let G be an SLO-tree with a non-negative eigenfunction f of λ(G). Then every
interior vertex v has a child w with f (w) < f (v).

Proof. First assume v is not the root of G. Let u be the parent of v. Then by Lemma 8 f (v) �
f (u) and f (v) � f (w) for all children w of v. Now suppose that f (v) = f (w) for all children
of v. Then λ(G)f (v) = �f (v) = ∑

(v,x)∈E(f (v) − f (x)) = f (v) − f (u) � 0, a contradiction
as both f (v) > 0 and λ(G) > 0 by Proposition 4. If v is the root of G then all vertices adjacent
to v are children of v. If we again suppose f (w) = f (v) for all these children then we find
analogously λ(G)f (v) = 0, again a contradiction. �
Lemma 12. Let G(V,E) be an SLO∗-tree and f a non-negative eigenfunction to λ(G). Let
v and w be two vertices with f (v) = f (w). Then the subtrees Tv and Tw rooted at v and w,
respectively, are isomorphic.

Proof. We prove this lemma by induction from boundary vertices to the root v0. It is obviously
trivial for boundary vertices. Without loss of generality we assume v ≺ w.

We start with the case where v is not the root v0 of SLO∗-ordering. Let uv and uw be
the parents of v and w, respectively. Then from �(G)f (v) and �(G)f (w) we get f (uv) =
(dv −λ(G))f (v)−∑

(v,x)∈E,x �=u f (x) and f (uw) = (dw −λ(G))f (w)−∑
(w,y)∈E,y �=u f (y).
v w
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By property (S2) and Lemma 8 we have f (uv) � f (uw) and therefore it follows from
f (v) = f (w),

(dw − dv)f (v) �
∑

(w,y)∈E
y �=uw

f (y) −
∑

(v,x)∈E
x �=uv

f (x), (15)

where the sums on the right-hand side are over all children of w and v, respectively. Let m

be a child of v such that f (m) � f (x) for all children x of v. Notice that by (S2) x ≺ y

and thus by Lemma 8 f (x) � f (y) for all children y of w; in particular f (m) � f (y). Thus∑
(v,x)∈E,x �=uv

f (x) � (dv − 1)f (m) and
∑

(w,y)∈E,y �=uw
f (y) � (dw − 1)f (m). Consequently

∑

(w,y)∈E
y �=uw

f (y) −
∑

(v,x)∈E
x �=uv

f (x) � (dw − dv)f (m) (16)

and by (15) (dw − dv)f (v) � (dw − dv)f (m).
By Proposition 4 and Lemma 11, 0 < f (m) < f (v). By property (S4), dv � dw . Hence

dv = dw . Then the right-hand side of (15) (and left-hand side of (16)) vanishes and f must
have the same value for all children of v and w (in particular f (x) = f (y)). It then follows by
induction that Tv and Tw are isomorphic.

The case where v is the root v0 of SLO∗-ordering, remains. Then we set uv = v1 and all
estimations are still valid. Thus the proposition follows. �
Lemma 13. If a tree G(V,E) with boundary has the Faber–Krahn property in some class Tπ ,
then G is an SLO∗-tree.

Proof. By Lemma 8, G is an SLO-tree. In the proof of Lemma 9 we have produced sequence (13)
of trees where inequalities (14) hold. Since G has the Faber–Krahn property, equality holds in
each of these inequalities. Notice that G′ and G∗ are in class Tπ while all other graphs G′

i need
not. However, for every graph G′

i in this sequence that belongs to Tπ we have by the Faber–
Krahn property λ(G′

i ) = λ(G) and f is also an eigenfunction of the first Dirichlet eigenvalue
of G′

i . Otherwise we had λ(G′
i ) < RG′

i
(f ) = λ(G), a contradiction.

Now suppose there is a graph G′
r ∈ Tπ while G′

r+1 /∈ Tπ . We denote the children of vertex vr

in G′
r by w1, . . . ,ws and its parent by ur . In step G′

r → G′
r+1 we replace the edges (vr ,wdr ), . . . ,

(vr ,ws) by the respective edges (vr+1,wdr ), . . . , (vr+1,ws). Hence s > dr − 1, since otherwise
there would be nothing to do and G′

r+1 = G′
r , a contradiction to G′

r+1 /∈ Tπ . Notice that the
neighbors of vr in G′

r+1 do not change any more in the subsequent steps. As f is an eigenfunction
of both G′

r and G∗ to the same eigenvalue λ(G) it follows that �(G′
r )f (vr) = �(G∗)f (vr), i.e.,

(s + 1)f (vr) − f (ur) −
s∑

j=1

f (wj ) = drf (vr) − f (ur) −
dr−1∑

j=1

f (wj )

and thus (s − dr + 1)f (vr) = ∑s
j=dr

f (wj ). Since f (vr) � f (w1) � f (wj ) � f (ws) � 0 for
all j = 1, . . . , s by Lemma 8, we find f (vr) = f (wj ) for all children wj , a contradiction to
Lemma 11. If r = 0, i.e., vr is the root and there is no parent of vr , the same argument holds
analogously.

Hence there cannot be a graph G′
r ∈ Tπ while G′

r+1 /∈ Tπ . Therefore each graph G′
i in se-

quence (13) belongs to class Tπ and f is an eigenfunction for each of these. We show for each
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r that G′
r is isomorphic to G′

r+1 and consequently isomorphic to G∗. Thus all these graphs, in
particular G′

0, are SLO∗-trees. Notice that for step G′
r → G′

r+1 we either find G′
r = G′

r+1, or
f (vr) = f (vr+1), since otherwise we had RG′

r
(f ) > RG′

r+1
(f ) by Lemma 7. In the first case

there remains nothing to show. In the latter case the subtrees (of both G′
r and G′

r+1) rooted at the
respective vertices vr and vr+1 are isomorphic by Lemma 12. As only edges incident to vr are
shifted to vr+1 the isomorphism between G′

r and G′
r+1 follows. �

Now we are ready to prove our theorems.

Proof of Theorem 3. The necessity of the condition has been shown in Lemma 13. The suf-
ficiency follows from the fact that SLO∗-trees are uniquely determined up to isomorphism
(Lemma 2). �
Proof of Theorem 2. Let π = (d0, d1, . . . , dk−1,1, . . . ,1) be the degree sequence of G, where
d � d0 � d1 � · · · � dk−1 are the degrees of the interior vertices. Define a new degree sequence
by π◦ = (d, d, . . . , d, d◦,1, . . . ,1) where d◦ = d + ∑

v∈V0
(dv − d). Then π ′ � π and we can

apply Lemma 10. The necessity of the condition follows analogously to the proof Lemma 13.
The sufficiency follows from the fact that SLO∗-trees are uniquely determined up to isomorphism
(Lemma 2). �
Proof of Theorem 1. This is an immediate corollary of Theorem 2 as T = T2. �
Remark 7. The procedure that was used for the proof of Theorem 3 can also be stated by the
algorithm below.

Algorithm Rearrange.

Input: Tree G(V,E) ∈ Tπ .
Output: Tree G∗(V ,E∗) ∈ Tπ with SLO∗-ordering ≺ and λ(G∗) � λ(G).

1: Compute non-negative eigenfunction f of lowest Dirichlet eigenvalue.
2: Enumerate vertices v0, v1, . . . , vn−1 such that f (vi) � f (vj ) if i � j .
3: Define a well-ordering ≺: vi ≺ vj if and only if i < j .
4: Set s ← 0.
5: for r = 0, . . . , k − 1 do
6: for i = 1, . . . , d0 if r = 0 do [i = 1, . . . , dr − 1]
7: Set s ← s + 1 (increment s).
8: if vs is not adjacent to vr then
9: Select an edge (vr ,wr) such that vs ≺ wr .

10:
Select an edge (vs,ws) such that vs ≺ ws and ws is in the geodesic path from vr to vs

if and only if wr is not.
11: Apply switching such that the new graph Gs has edges (vr , vs) and (wr,ws).
12: end if
13: end for
14: for all (v, vr ) ∈ E with vs ≺ v do
15: Apply shifting such that edge (v, vr) is replaced by edge (v, vr+1).
16: end for
17: end for
18: Return G∗ = Gs .



ARTICLE IN PRESS YJCTB:2405
JID:YJCTB AID:2405 /FLA [m1+; v 1.60; Prn:12/06/2006; 10:45] P.15 (1-16)
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4. Further results

One might ask what happens when we relax the conditions in the classes T (n,k) and T (n,k)
d .

We then get the following classes:

T (n,·) = {
G is a tree, with |V | = n

}
, (17)

T (n,·)
d = {

G ∈ T (n,·): dv � d for all v ∈ V0
}
, (18)

where we keep the total number of vertices fixed, and

T (·,k) = {
G is a tree, with |V0| = k

}
, (19)

T (·,k)
d = {

G ∈ T (·,k): dv � d for all v ∈ V0
}
, (20)

where we keep the number of interior vertices fixed. Using the arguments from the proofs of our
theorems we find the following characterizations for graphs with the Faber–Krahn property.

Theorem 8. A tree G with boundary has the Faber–Krahn property:

(i) In T (n,·) if and only if it is a path with n vertices. (This is the result of [12].)
(ii) In T (n,·)

d if and only if it is an SLO∗-tree where exactly one interior vertex has degree d◦
with d � d◦ < 2d and all other interior vertices have degree d . (This is the SLO∗-tree in
T (n,·)

d with the greatest number of interior vertices.)
(iii) In T (·,k) if and only if it is a path with k + 2 vertices.
(iv) In T (·,k)

d if and only if it is an SLO∗-tree where all interior vertices have degree d .

G is then uniquely determined up to isomorphism.

For the classes Tπ we cannot give a similar theorem. However, we can ask whether we can
compare the least first Dirichlet eigenvalue in classes with the same number of vertices. From
Lemma 10 we can derive the following result.

Theorem 9. Let π and π ′ be two tree sequences with |π | = |π ′| and let G and G′ be trees
with the Faber–Krahn property in Tπ and Tπ ′ , respectively. If π ′ � π then λ(G) � λ(G′) where
equality holds if and only if π = π ′.
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