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1 Introduction 

In [3] the embedding map E of the Sobolev space WI'P(O) into LP(f2) was studied 
for a new class of domains 12 in R e with irregular boundaries. These were called 
9eneralized ridged domains and include 'rooms and passages', 'interlocking combs', 
finite and infinite spirals, trumpets and horns. A characteristic feature of these 
domains is that they possess what is called a generalized ridge, this being a 
Lipschitz curve which roughly forms a central axis of the domain. The idea was 
motivated by the ridge of a set in R 2. Estimates were obtained for the quantity 

fl(E) := inf{ 11E - P II : P~(WI 'P(g2) ,  ZP(g2))}, 

where ~ LP(f2)) denotes the set of linear maps from WI'P(f2) into LV(O) 
which are bounded and have finite rank, and, in particular, these give a necessary 
and sufficient condition for E to be compact. In a subsequent paper [4] estimates 
for the approximation numbers of E were given; the case p = 2 is of special interest 
as then the approximation numbers of E are related to the eigenvalues of the 
Neumann Laplacian - A~,N of f2. 

There is a lot of current interest in domains with 'fractar boundaries, especially 
in the problem of determining the asymptotic distribution of the eigenvalues of the 
Dirichlet and Neumann Laplacians on such domains (see [7, 8, 10]). The term 
fractal is taken to mean that the Hausdorff, or more appropriately it seems, the 
Minkowski dimension of the boundary takes a value in (n - 1, hi. It is known that 
in some cases the second term in the asymptotic formula for the function N(2), 
which denotes the number of eigenvalues less than 2, depends on the Minkowski 
dimension and the Minkowski content of the boundary. In the case of the 
Neumann Laplacian it is important to know at the outset whether or not the 
spectrum of the operator is discrete. For examples like the Koch 'snowflake' this is 
a consequence of the fact that the domain is a quasi-disc and therefore has the 
Wt'~'-extension property (see [11, Sect. 1.5.1]). The map E is then compact and 
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hence the spectrum is discrete. As far as we know domains which do not possess the 
Wl"P-extension property lie outside existing theories and this is what partly 
motivates the present paper. We define a class of domains which have similar 
properties to the generalized ridged domains of [3] but now the Lipschitz curve 
which constitutes the generalized ridge in [-3] is replaced by a tree. We show that 
the ideas in [3] can be extended to this problem and give as before estimates for the 
quantity fl(E); again a special case is a necessary and sufficient condition for E to be 
compact. As in [3] our objective was to define a class of domains which exhibit the 
pathological characteristics in a natural way and which are amenable to precise 
and manageable results. We contend that the example considered in Sect. 6 con- 
firms that this has been achieved. 

Our method for analysing the embedding E : WI'P(O) ~ LP(O) hinges on the 
result that the properties of E for the class of domains considered are related to 
those of an embedding map between weighted function spaces defined on a tree F. 
This problem on a tree is of independent interest and is discussed in some detail in 
Sect. 2. Our main requirement is an analogue of the celebrated result due to 
Muckenhaupt and others concerning weighted integral inequalities for operators 
of Hardy type; however serious difficulties are presented by the tree in general and 
we have been forced to make an assumption to obtain a two-sided inequality. The 
generalized ridged domains are defined in Sect. 3 and in Sect. 4 precise estimates are 
obtained which give necessary and sufficient conditions for E to be compact and 
also for fl(E) < 1. The next step is to determine the asymptotic distribution of the 
approximation numbers and in Sect, 5 we go some way towards obtaining ana- 
logues of the Dirichlet-Neumann bracketing results which provide such a powerful 
method for analysing the distribution of eigenvalues in the case p = 2. In Sect. 6 we 
apply our abstract results to an example on a self-similar domain f2 in R 2 which 
does not have the Wl'P-extension property. We obtain asymptotic bounds for 
functions defined in Sect. 5 which determine the distribution of Dirichlet and 
Neumann approximation numbers for pE(1, oo ) and in the case p = 2 we also 
derive asymptotic formulae for the functions .•(2; - A a.n), ~Ar (~.; - & ~, u) which 
count the eigenvalues of the negative Dirichlet and Neumann Laplacians 
respectively which are less than L Of particular interest is the Neumann problem 
when the boundary of f] has outer Minkowski dimension doE(l, 2). We prove that 
as ~ ----~ o~, 

Y(2;  - &~,N) - (1t4z0112t2 ~2a~ , 

where ~ indicates that the quotient of the two sides is bounded above and below by 
positive constants. In this case the boundary of ~2 has inner Minkowski dimension 
di satisfying 1 < dt < do and as X -+ oo, 

X(;t;  - A~,o) - (1/4n)lf~12 = O(2a'/2). 

This is also a consequence of Lapidus' result in [10, Corollary 2.1] since Of 2 has 
finite d~-dimensional upper Minkowski content relative to ~2. 

An importaiat contribution to the study of the spectral asymptotics of the 
Neumann problem for elliptic operators on domains with irregular boundaries was 
made by M~tivier in [12], and this had a major influence on Lapidus' work in [113]. 
Another noteworthy reference for this problem is [6], To see the extent of the 
degree of pathology possible in the spectrum of the Neumann Laplacian, one 
should consult the paper [9] by Hempel, Seco and Simon where it is proved that 
any closed subset of the non-negative real axis is the essential spectrum of the 
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Neumann Laplacian on some subdomain of the unit ball. Estimates in the 
literature for the approximation numbers of E for general pc(l ,  ~ )  are usually 
for domains with smooth boundaries. For  domains with a WI'P(O) extension 
property, two-sided bounds were obtained by E1 Kolli in I-2] for the 
Kolmogorov numbers of E: the Kolmogorov and approximation numbers are 
equal when p = 2 and relations exist between them in general; see [1, Sect. 11.3] 
for details. 

2 Analysis on trees 

Let F be a tree i.e. a connected graph without loops or cycles where the edges are 
nondegenerate closed line segments whose end-points are vertices. We shall assume 
that F contains an infinite number of vertices and that each vertex is of finite 
degree, i.e. only a finite number of edges emanate from each vertex. For every 
x, y~F there is a unique polygonal path in F which joins x and y. The distance 
between x and y is defined to be the length of this polygonal path and in this way 
F is endowed with a metric topology. 

Lemma 2.1. Let z(F) be the metric topology on F. Then 
(i) a set A c F is compact if and only if it is closed and meets only a finite number of 

edges; 
(ii) z(F) is locally compact; 

(iii) F is the union of a countable number of vertices and edges. Thus if F is endowed 
with the natural 1-dimensional Lebesgue measure it is a a-finite measure space. 

Proof. (i) Let A be compact and hence dosed. Suppose A meets an infinite number 
of edges and choose a point tk of A on each of these edges. A subsequence of (tk) 
converges to a point t lying on some edge of F. But this would imply that in each 
neighbourhood of t there exists an infinity of edges, contradicting the assumption 
that only a finite number of edges meet at a vertex. 

Conversely, let A be closed and meet only a finite number of edges. Then the 
intersection of A with each edge is compact and A is the union of a finite number of 
compact sets. It is therefore compact. 
(ii) Any point a on F lies on only a finite number of edges. Take a closed 
neighbourhood of a with diameter less than the distance from a to the nearest 
vertex different from a. This is compact from (i). 
(iii) Let A be the mid-point of an edge. The set of finite sequences of vertices 
X 1 , . . . ,  Xk which lie on the path joining A to Xk is uniquely determined by Xk. 
Since each vertex has finite degree the result follows. 

For  a~F we define t>-ax (or equivalently x ~_at) to mean that x e F  lies on the 
path from a to teF. This is a partial ordering on F and the ordered graph so formed 
is referred to as the tree rooted at a and denoted by F(a). If a is not a vertex of F we 
make it one by replacing the edge on which it lies by two. In this way every rooted 
tree F(a) is the unique finite union of subtrees F~(a) (i~Ia) rooted at a, any two of 
which intersect only at a. The degree of a is 

Ilal:= # I ,  < co ; (2.1) 

note that if a was not an original vertex of F then t lal = 2. 
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The path joining two points x, yeF  may be parameterized by s(t) := dist(x, t) 
and for 9eL~oc(F) we have 

y 

I g(t)dt = 

x 

If F is locally Lipschitz on 
[0, dist(x, y)] and 

dist (x, .v ) 

I g(t)dt = ~ O(t(s))ds. 
t~=y 0 

r and G(s)= F(t(s)), then G is 

dist (x, y ) 

Lipschitz on 

(2.2) F ( y ) -  F(x) = I G'(s)ds ; 
0 

we may suppose that G'(s) is defined everywhere by G'(s) = 
lim sup...~ (n[G(s + n-1) _ G(s)]). If p is a measure defined on the path joining 
x, y which is absolutely continuous with respect to Lebesgue measure, it induces 
a measure on [0, dist(x, y)] and we define 

y dist (x, y) 

S q~#(dF) := ~ G'(s)ch(t(s))d#(t(s)) (2.3) 
x 0 

provided r is #-integrable. Thus, i f#  is a Borel measure on F with respect to which 
Lebesgue measure dt is absolutely continuous then 

F(y) - F(x) - i 
dt 

- x -~P # ( d F ) .  (2.4) 

Note that G'(s) depends only on t(s) (except possibly at vertices of F) and the 
direction in which the edge in which it lies is described as s increases. Except 
possibly at the vertices of F, the modulus I G' (s) l depends only on t(s) and we denote 
it by IF'(t)[. Then 

dist (x,y)  i 
IG'(s)lds= IF'(t)l d~(t). (2.5) 

0 x 

We also note the following: if s = dist(a, x) and OeLt(F) then 
O) c~(s) = ~ O(t)dt is an absolutely continuous function of s and r = O(x(s))a.e., 

(ii) ~,(s)= ~ , O ( t ) d t ,  the integral over the set {t: t e r ,  x<_ot}, is an absolutely 
continuous function on the interior of each edge and ~'(s) = - O(x(s))a.e. 

Let LP(F, dl~), (1 6 p _-< ~ )  denote the set of complex-valued functions F on 
F which are measurable with respect to # and for which IIr ]lp, r,d, < 0o, where 

~(~r[F(t)[Pdl.t(t)) lip if 1 _-< p < oo, 
I[F[le, r,d~ := [/.1 -- suprlF(t)l if p = oo ; 

when/~ is Lebesgue measure we denote the space and norm by LP(F) and [1" [Ip, r 
respectively. Let L~'P(F, dl~) denote the set of functions F which are locally 
Lipschitz on F and IF'IeLP(F,d#). Then IJF'llp.r.au defines a pseudo-norm on 
L~'P(F, alia). Moreover, ifp + 1 and qJ := dt/dl~L~c(F, dp), p' = p/(p - 1), we have 

dist (x, at) y 

I F ( y ) -  F(a)l ~ ~ IG'(s)tds = ~tF'(t)l~,(t)dl~(t) 
0 a 

/y  \lfp' 
~! l~b(t)lP'd#(t)) ]lF'll,,r.d.. (2.6, 
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Hence, if ~beLP'(F, dl~), IF(" ) - F(a)l is bounded on L~'P(F, d#) for any fixed aeF. 
Furthermore, if #(F) < 0o then L~" P(F, d#) ~ LP(F, d#). In subsequent sections we 
shall be concerned with LLP(F, d#):= L~'P(F, d#) n LP(F, dla). The above remarks 
show that LI'P(F, d#) = L~'P(F, d~) if ~eL~'(F, dlO and/~(F) < oo. 

Let l < p < q <  0o and 

Set 

Then 

and 

x 
(Taf)(x) := v(x) f u(t)f(t)dt (xer(a)) .  (2.7) 

a 

f ( t)  = IF'(t)l~(t) -1/~, u(t)= r l/p, v(t)= qt(t) -1/q . (2.8) 

IF (x) - F(a)l~t(x)-1/q <= ( T j ) ( x )  , 

11F - F(a)Ilq,rt~).du ~ I[ Zafllq,rc~l (2.9) 

U f II p,r~a) = II F'H p,r~a),du. (2.10) 

The efficacy of our method rests heavily on Proposition 2.4 below which, in view of 
(2.9) and (2.10), is related to the properties of Ta as a map from LP(F) into L~(F). 
The result we require is a consequence of the following extension to trees of 
a celebrated result due to Muckenhaupt; see [11, Sect. 1.3]. 

Proposition 2.2. Let F = F(a) be a tree rooted at a and suppose that 

0 =< u~L~oc(F), 0 _< wLq(F),(1 =< p =< q =< oo) , (2.11) 

where p' = p/(p - 1) / fp  > 1 and p' = 0o otherwise. Define 

J(Za):~SxUP{(!uP'(t)dt)l[P'(t~axf)q(t)dt)l/q t (2.12) 

for 1 < p < q < 0o and with the usual interpretation for p = 1 and q = ~ .  Suppose 
that there exists c = c(q) such that for all t~F 

S vq(x) dx ~ c S vq(y)dy �9 (2.13) 
x>'at L Y>'a --I y~at 

Then the operator Ta defined by (2.7) is a bounded linear map of LP(F) into Lq(F) if 
and only if J(Ta) < 0o. Furthermore 

1 < IITalIIJ(To) < cl/q(q') 1rr (1 < p < q < ~ )  (2.14) 

I<IITalIIJ(T,)<{~_ = if q =  oo i f p = l  } . (2.15) 

Proof The proof is similar to that in [11, Sect. 1.3.1] and we consider the case 
l < p ~ q < o o  only. 

Let 

h(x) := ( ! u(t)P'dt) I/q'" . 
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Then 

v(x) ! u(t)f(t)dt dx~ 

< !vq(x)~,![f(t)h(t)lPdt)~!lu(y)/h(y)l"dy) dx (2.16) 

by Hflder 's  inequality. Next we use the following consequence of Minkowski's 
inequality for non-negative functions r and ~b and r > 1: 

=  ,lt) a t .  (2.17) ok(x) I//(t)dt dx~ < x~_,t 

To establish this, note that the left-hand side is equal to 

r162 x ) ) d t )  , 

where F(a, x) = {teF: t-<~ x}, which by Minkowski's inequality in the form 

! G(., t)dt r , r  <: r [" JIG(., t) llr, rdt,  

is majorised by 

! ( !  [r F(a, x)) ]" dx) l/'dt 

whence (2.17). With r = q/p, 0 = (If[h) p and 

( !  " V/"  
r = v(x) q lu(y)/h(y)lP'dy) 

we obtain from (2.16) and (2.17) that 

/ x \~jp' )p/~ 

From Remark (i) below (2.5) we see that 

I (u(y)/h(y))"dy = q' u"(t(r))dr 
a 

Hence, from (2.18) we obtain 

I F ~ , -I~/p'4' )p/q 
l]TafH~,r ~ (O')'/P'! lf(t)h(t)lP xStvq(x)L!uP(y)dy j clx~f dt 

< (q) 'J(T.) 'IIf(t)h(t)l v'(x) I vq(y)dy 
F LX~a! y~ax 

P/, ' / P  P/q P [ ~  t p/qz <_< c (q ~' 'J(To) 'fflf(t)h(t)l vq(y)dy dr, 
I-Y~a 
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by (2.13), 

( / i k l l p '  [" "~ltq ]P l I  
=cPiq(q')piP'J(Ta)'/r I Stv ' (y)dy ) ~ dt 

F t . \ a  / k y ~ a  

< cVia(q') v/v' J(T,) p ~l f ( t ) fd t .  
r 

Thus if J(T,) < oo, I", : LP(F) ~ Lq(F) is bounded and the second inequality in 
(2.14) follows. 

Conversely, suppose that T,:LV(F) ~ Lq(F) is bounded, that is, for allf~LV(F) 
there exists K > 0 such that 

!u(t)f(t)dt dx~ <= K If(xlPdx) . (2.19) 

For some ye t  set f(t) = uP'-l(t)X(t; F(a, y)). Then f eLV(F) since ueL"'(r(a, y)) 
and (2.19) yields 

< K ( ! u " ( x ) d x )  /  xj> : 

and so 

(! I )'/" uP" (t)dt ) ( v"(x)dx < K . 
i \ >'~y 

This gives J(T,)  < oo and hence the first inequality in (2.14). 

Remark 2.3. We have been unable to obtain a necessary and sufficient condition 
for the boundedness of Ta without the assumption (2.13). If F is a line segment the 
assumption is redundant and (2.15) holds with c = q since - v~(x) is the derivative 
of the inner integral on the left-hand side. However for a tree F this inner integral is 
not even continuous at a vertex and hence the same simple argument does not 
apply. Note that (2.13) is only required to establish that J(T,) < oo is a sufficient 
condition for Ta to be bounded and the right inequalities in (2.14) and (2.15). 
Without (2.13) it may be seen from the proof of Proposition 2.2 that a sufficient 
condition for Ta to be bounded is that 

( ! '  \q/P'q' ") 
K(T,) := sup t ( i u " ( s ) d s )  1/'" j vq(x) u p (y)dy) dx~ < ~ (2.20) 

t ee  [ \ a x~_=t 

in which case 

IIToII/K(T.) tlq < ~!q,)llp" if l < p < q < c r  (2.21) 
= ( 1  i f p = l  or q = ~ .  

Note that K(T,) > J(T,p. 

Proposition 2.4. Let dt be locally absolutely continuous with respect to the Borel 
measure # on F - F(a), 1 < p < q < ~ , and suppose that ~O:= dtld#~L~oc(F ). Define 

J(F(a)) : :sup [ ,u(x) ]  1/'s +'"'(t)dtJ ~,  (2.22) 
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where p(x) = Is{t: t>-.x},  and suppose that 

(1/#(t)) f [#(x)]-l /q'dlz(x) < c#(t) -1/"' . (2.23) 
x~at 

Let F' be any subtree o f f  whose complement in F is also a tree and which is such that 
#(F ' )  ~ #(/ ' ) /2.  Then 

sup { tl F - Fr I[~,r.a, : F~LI'P(F,  air), It F'  IIp.r.~ = 1} 

< 2cl/q(q') l/p" J ( r (a) )  (2.24) 

> (1 - 2 -  ~/~') J(F'(a)) (2.25) 
where 

Fr := # - ~  ! F(t)d#(t) . 

Proof  O n  apply ing  P r o p o s i t i o n  2.2 to  (2.9) with Ta def ined by  (2.7) and  (2.8) we 
have  that  

]1F - F (a) [[q,r, au < cl/q(q')l/P" J (F(a) ) IJ F'  []p,r,d~ . 

The  inequa l i ty  (2.24) fol lows on  no t ing  tha t  

[[ F - Fr Ilq.r.a~ < II F - F(a)[Iq,r,d, + ][ (F - F(a))r II~.r.d, 

< l[ f - F(a)II~,r,d. + I ( f  - F(a))rlIs(F(a)) 1/q 

< 2 t] F - F(a)llq,r,d,. 

T o  p rove  (2.25) we first observe  that  by  P r o p o s i t i o n  2.2 appl ied to F ' ,  given 
e > 0 there  exists 9ELP(F ') such tha t  

It G [[q,F.,djt ~_~ [ J ( F ' ( a) ) - e] tl 9 lip,r, (2.26) 

-,-a/ptt~ t dt where  G(x) = ~,~.~,t~r'q' , ,O( ) (xeF') .  Let  f ( x )  = 9(x) for  x ~ F '  a n d f ( x )  = 0 
otherwise.  T h e n  

i ~G(x) ,  xEF '  
F(x)  : = .  01/P(Of(t)dt = (0 ,  x~ F'  

and  IF '(x)l  = I~a/P(x)f(x)l. Hence  

liE - Fr l[q,r.du ~ II F ll~,r,a, - [ F r I # ( F )  a/q 

= II G II~,r',d, - ~ ( r )  -~/q' ~r, G(t)dl~(t) 

=> [[ G II~,r',au - [.(r')/u(r)] 11G Ilq, r',au 

-> (1 - -  2 - 1 / , ' )  II a Ilo.r.,, 

> (1 -- 2 - ~ / q ' ) [ J ( r ' )  - ~] II 0 lip,,-, 

by  (2.26), 
= (1 - 2 - ' I q ' ) [ J ( r ' ( a ) )  - ~] [[ft[p,r 

= (1 - 2 - a / q ' ) [ J ( F ' ( a ) )  - e] [[ F' Ilp, r,a.. 

Since e is a rb i t r a ry  (2.25) is p roved .  
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Remark 2.5. As in Remark 2.3, (2.23) is only required for (2.24). Without (2.23) the 
right-hand side of (2.24) becomes 

2(q') 1/p' K(F(a)) ~/~ 
where 

K(F(a)) = ~P'/P) d#(x)~.  
t+r ( ",, a ~-~ a 

We shall see in the example in Sect. 6 that it is possible for K(F(a))~/q~J(F(h)) 
without (2.23) being satisfied. 

Similarly we obtain from Proposition 2.2 

Proposition 2.6. Let the hypothesis of Proposition 2.4 be satisfied except that either 
p =  l or q =  o~. Then 

(1 - 2-a/r < sup{ IIF - Frllq,r,a~:FeZLP(F, d#), IIF'llp, r,a~ = 1} 

~2cJ(F(a)) if  p = 1 
< . ,  

= ( 2 J ( r ( a ) )  i f  q = ~ 

3 Generalized ridged domains 

Let 0 be a domain (i.e. an open connected set) in R"(n > 1) and denote by 
W 1' P(12)(1 < p < ~ ) the Banach space of (equivalence classes of) complex-valued 
functions f i n  LP(12) with weak first derivatives in LP(g2) and having the norm 

II/[ll,p,~ := (llVfll~,~ + Ilfll~,~) 1/p , (3.1) 

where Vf=  (Of/Oxl . . . . .  Of/dx,) is the gradient of f i n  R" and IIf tlp, a denotes the 
usual LP(O) norm. We denote the natural embedding WL((f2) q LP(O) by E and 
define 

fl(E) := inf{ I[ E - P If : P ~  (W~'"(D), LP(f2))}, (3.2) 

where ~ (WI'P(f2), LP(O)) denotes the set of linear maps from WI'P(f2) into LP(O) 
which are bounded and of finite rank. Since LP(O) has the approximation property, 
E is compact if and only if fl(E) = 0. It was proved in [3, Theorem 2.3] that 
fl(E) = 1 if [12l, the n-dimensional Lebesgue measure of 12, is infinite. Hence, 
hereafter we shall assume that If21 < oo. 

We shall denote by B(x, r) the open ball {Y:IY - x[ < r} in R", where I" I is any 
norm on R": different norms only affect the absolute constants involved in the 
estimates obtained. A tree F is defined as in Sect. 2, having an infinite number of 
vertices each of finite degree. Note that since F has an infinite number of edges its 
completion is not compact, by Lemma 2.1(i). 

We recall from Sect. 2 that the derivative of a function which is locally Lipschitz 
on F may be defined everywhere. 

Definition 3.1. A domain t2 with IOl < ~ will be called a oeneralized rideed domain 
if there exist real-valued functions u, p, z, a tree F and positive constants 
a, fl, y, 6 such that the following conditions are satisfied: 
(i) u : F ~ f 2 ,  p : F ~ R  + = (0, oo) are Lipschitz; 
(ii) z: I2 --. F is surjective and for each xef2 there exists a neighbourhood V(x) such 
that for all y~V(x), I~(x)-  ~(Y)lr < y l x -  Y[, where ['[r denotes the metri~ on 
F : thus  z is uniformly locally Lipschitz; 
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(iii) Ix - u o z(x)l < ~p ~ z(x) for all xeO; 
(iv) lu'(t)t + [p'(t)l ~ fl for all teF; 
(v) with Bt := B(u(t), p(t)) and c~(x):= {y:sy + (1 - s)x~2 for all s~[0, 1]}, we 
have that for all x~f2, B~tx) c t2 and c~(x) c~ B~x) contains a ball B(x) such that 
In(x)l/In~tx~l > ~5 > O. 
The curve t~--~u(t):F ~ f2 will be called a generalized ridye of f2. 

Many domains which are defined by an iterative process are of the above type. In 
Sect. 6 we give a detailed description of such a domain. The Koch snowflake, the 
domain whose boundary is the Koch curve (see [5, Sect. 8.3]), with the excision of 
certain line segments, can similarly be described as a generalized ridged domain. 
One begins with a regular hexagon and constructs on the middle third of each 
of its sides another regular hexagon, connecting them by removing the common 
boundary. The process continues indefinitely unless blocked by the presence of an 
already constructed hexagon. The underlying tree consists of the centres of the 
hexagons and the line segments joining them. We do not include details of the 
analysis as it is similar to that of Sect. 6; also our method merely recovers 
results which are already known because the snowflake is a quasi-disc; see [10, 
Theorem 4.1] and [11, Sect. 1.5.1]. Another example of a generalized ridged 
domain is provided by a branching spiral domain. Take polar co-ordinates r, 0 in 
the plane and let O = D\S, where D is the open unit disc punctured at the origin 
and S the union of a set of equiangular spirals defined by 

S = {(r, 0):0 < 0 < 2~, 

r = e x p { - 0 - - 2 r c ( n - - p / 2 ~ ) ; p = 0 , 1  . . . . .  2 ~ -  1 ; n = 0 , 1  . . . .  }. 

Thus O is a labyrinth of ever-narrowing passages spiralling inwards, each of 
which divides into two after circling the origin once. The underlying tree may 
be taken to consist of edges of unit length and vertices of degree two except for 
one vertex which has degree one. It is easy in this example to define suitable 
functions u, p, ~. 

The above definition differs from that in [3] only in that the interval d in [-3, 
Definition 4.1] is now replaced by the tree F. 

As in [-3], the map z in Definition 3.1 defines a positive Borel measure/~ on F as 
follows: for F~Co(F) 

F (t)dla(t):= ~ (Fo ~)(x)dx. 
F 0 

For any open subset Fo of F we have 

~(ro )  = I~- ' tro) l  

The map F ~ F o z: Co(F) ~ LP(I2) extends by continuity to a map 

T: LP(F; d#) ~ LP(f2) (3.3) 

which satisfies TF(x) = F o ~(x) for a.e. xet2 and Tis an isometry when LP(F, d#) is 
endowed with the norm I1" Ilp, r ,~ .  Note that by [11, Sect. 1.2.4], if Vz does not 
vanish on a set of posit ive  measure, 

~(FoT)(x)dx= ~ F(t) I IVz(x)[-lda(x) dt 
~2 F t- a {0 
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where ~r denotes (n - 1)-dimensional Hausdorff  measure. Hence # is absolutely 
continuous with respect to Lebesgue measure and 

d~ 
dt = ~ IVz(x)l-ldcr(x). (3.4) 

- 1 (0 

If T- 1(0 is a rectifiable curve in f2 when n = 2, its l-dimensional  Hausdorff  measure 
is equal to its length l(t) (see [5, Lemma 3.2]) and hence, since ]Vz(x)l ~_ 7 by 
Definition 3.1 (ii), we have 

dl~ > ~- if(t). 
dt = "  

Consequently,  dt is absolutely continuous with respect to d/~ on any compact  
subset of F on which l(-) is positive. 

In the remainder of the paper we shall assume that 1 < p < oo, that s is 
a generalized ridged domain and that dt is absolutely continuous with respect to 
d#. Also we shall assume that F is ordered, i.e. F = F(a) for some aeF. 

Let 

1 S f ( x ) d x ( t e F )  ' (3.5) (Mf)(t) := ]-~t] B~ 

where B, = B(u(t), p(t)). The main feature of  our technique for determining the 
number  fl(E) is the reduction of the problem to an equivalent one on the tree F for 
which precise results can be obtained on using the estimates in Sect. 2. The maps 
T and M defined in (3.3) and (3.5) respectively are the tools we use to establish the 
equivalence and the following three lemmas provide the key to the analysis. They 
are analogous to the results in Lemmas 4.2-4.5 in I'3] and we omit the proofs as 
they are similar. 

Recall that LI'e(F, d#) denotes the set of functions F which are locally Lipschitz 
on F and are such that F, F'eLP(F, d#). In what follows K will denote various 
constants which depend only on n and the constants e, fl, 8 in Definition 3.1. 

Lemma 3.2. The map T defined in (3.3) is a bounded linear map of Ll"p(F,d#) into 
WI'P(f2) and for F~LI'p(F, d#) 

II V(TF) IIp,,~ --< ~ II F' I]p,r,a,, (3.6) 

where ? is the constant in Definition 3.1(ii). 

I, emma  3.3. The map M defined in (3.5) is a bounded linear map of WI'P(f2) into 
L I'P(F, d# ) and, for f e WI'P(f2), 

II M y  IIp, r,d~ <---- g 11 f He, a, [[ (M f) '  Ilp, r,a~ < g ]l V f  I1~,~ �9 (3.7) 

Lemma 3.4. Let 01 be a measurable subset of  l2 and 

k(f20 := sup {fl o ~(x)} < oo. (3.8) 
fit 

Then for all f e  WI"P(I2) 

I l f -  TMfllp, a~ < Kk(12~)llVfllp, a . (3.9) 

F rom 1'3, Theorem 2.6], fl(E)< 1 is equivalent to the Poincar6 inequality on 
W~'~(f2), that is, there exists a constant  K such that  

Ilf-fallp,~ < gl[Vfllp,  a (feWl'P(12)), 
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1 
where fa:= ~-~ Saf(x)dx. It follows that when fl(E) < 1, 

IlfllM, o: = IlVfltp, a 
defines a norm on 

W~i~(O) := {f~ W"P(l/) :fa = 0} (3.10) 

which is equivalent to I1" Ilx,.,~. If cg denotes the set of constant functions, we have 
the topological isomorphism 

w~"(a) = ~r ~ wl i ' (o )  

and W~ P(Q)is topologically isomorphic to the quotient space W~'P(~)/~; see [3] 
for details. Let I denote the embedding 

I :  W~/P(O) ~ L~t(O ) := { f~U'(~): f ,  = 0} (3.11) 

and define 
fl(l) := inf{ I[ I - P 11 : P ~ ( W ~  P(Q), LP(O))} . 

Then fl(E) and fl(I) are related by 

Bff)'/(1 + IIJII0 </~(E)" < fl(1)'/(1 +/~(O0 ; (3.12) 

see [3, Theorem 2.10]. It follows that E and I are compact together. 

4 Upper and lower bounds for ~g(1) 

The first step is to define and analyse what we regard as the singular part of the 
boundary of f2, bearing in mind that the domains we study may be singular in 
many (even all) directions. The boundary in the Stone-Cech compactification of 
f2 is what motivates the following. 

Let 

d ( F ) : =  {A ~ F:A is closed and F \ A  is a compact subtree o f F }  , (4.1) 

~r := {z- I (A) :Aed(F)} .  (4.2) 

Note that the boundary of F \ A  is finite for any Azd(F) ,  by Lemma 2.1(i) and 
hence A is a finite union of closed, disjoint (and rooted) subtrees of F. 

Lemma 4.1. The set d(f2) in (4.2) is a filter base of relatively closed subsets of 
1"2 which satisfy the followin9 conditions: 
(i) for each A~r the embedding Wa'P(12) ~ Lv(12\A) = LV(t-2) is compact, 
(ii) ~r is finer than the filter base 

~r {A:A = 12\12', t2' = = 12}. 

Proof Suppose ~e~r  Then for some A ~ I ( F ) , F  = z ( I 2 ) = F \ A .  Since 
F does not have compact completion we conclude that ~ r  ~r Let Ai = 
1:- l(Al), i = 1,2 belong to M(t2). Define F \ A  to be the union of F\Ax and :\A~ 
and a path connecting them. Then A~sC(F) and 

: ' ( A )  _= ~ - ~ ( A , )  r, T-~(A2)  = A1 c~ A2 �9 

Consequently ~'(f~) is a filter base. 
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Let A = r - l ( A ) e d ( O ) .  Then D\A = z-*(F\A) and hence z(f2\A) ~ F\A. It 
follows from Definition 3.1 that D\A is bounded and on it p o ~ is bounded away 
from zero. Thus by Definition 3.1 (v), f2 \ A lies in a bounded open subset of f2 which 
satisfies the cone condition and consequently Wz'P(D\A)~ LP(D\A) is compact. 
Thus (i) is proved. 

Finally, let O' c = 12. Then T(f2') is compact and is contained in a compact 
subtree of g and hence r(O') c (F') ~ the interior of some compact subtree F' of F. 
Let A = F/(F') ~ = F\F'. Then A ~ ( F )  and 

~-'(A) = ~ \~ -~ [ ( r ' )  ~ _ o \ ~ '  _= ~ \ a ' .  

The lemma is therefore proved. 
Since ~'(O) is a filter base it is directed by reverse inclusion, that is, by the order 

relation ~- where A, ~-A2 if A1 - A2. If {$a } is a family in R indexed by ~r the 
pair ({$A }, >') is a net in R It converges to a limit ~k in R, written lim~,(~) 6A = 6, if 
for every neighbourhood U of 6 in R there is an Aoesr such that $a~ U for all 
A ~- Ao in a'(O). Similarly ~r is a filter base directed by reverse inclusion and 
lima(r) ~ba = q5 is defined. 

Let AGed(F) and A = z-  *(A)~I(D). As noted above, A is the finite union of 
closed disjoint (and rooted) subtrees of F, Ai(i~NA) say. Set Ai=,-I(A~), 
i~NA =- NA, these being disjoint closed subsets of O and 

A=z-t(A)= ~ Ai. (4.3) 
i E N  A 

Let 
HAF:= ~ Z(AI)FA, (4.4) 

i~ N A 

hA f:= ~ z(Ai)fa~ (4.5,4.6) 
i ~ N  x 

where Z denotes the characteristic function and 

1 
F (t)d#(t) (4.7) Fa, := p,(Ai) a, 

1 
S fix) dx (4.8) 

I ,1 A, 

Lemma 4.2. Let Aesl(f2) and define 

OA := sup{ II f - -  haf  [IF, A :fe W~i'(12 ), If V f  IIp,~ = 1 } .  (4.9) 

Then 
fl(I) < inf 0a < limsup OA < 2fl(l) .  (4.10) 

~r s/(o) 

Proof. The operator ha: W~P(I2)~ LP(D) is compact since it is bounded and of 
finite rank. It therefore follows from I-3, Corollary 2.9] that for any fixed Ao~M(O) 
and 

0,~ := sup { I] f -  hao f II p,A :fE W~dP(f2), II V f  l[r,o = 1 } 

we have 
fl(I) = inf 0~ = lim 0 ] .  (4.11) 

A~a'(f*) a'(f~) 
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Hence fl(I) < 0 ~ for any Aor which implies -40 

fl(1) < inf OA ~ lim sup 0`4. 

Furthermore 
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[ I f -  h a f  l[p,a < [ I f -  hAof llp,a + I[hAof -- ha f lfp,A 

and since ~ N .  x(Ai) = 1 on A, 

]thA~ -- hAfll~'A = ~u Z(A~)[haof - fA , ]  I,A 
i ,4 

= E IIhAof--fA, IIg,A, 
i E N  A 

= E I[(haof-f)`4,llP,A, 
l e N A  

< ~ IlhAof-f[l~,`4, 
i ~ N  a 

by H61der's inequality, 

Hence 

= Ilf-- hAofll~,a. 

[ I f -  haftlp,a ~ 21If-- hAofllp,A 

and by (4.11) 

(4.12) 

lim sup 0a < 2 lim 0] = 2/~(I). 
~r at(t~) 

This and (4.12) completes the proof. 
The connection we seek between the problem on O and the analogous one on 

F is provided by the next theorem. 

Theorem 4.3. For A ~ sr (F) and A = z -  1 (A) ~ sr (t2) deft ne 

~bA:= sup{ I[ F -- HAFIIp, a,a,:F~LI"P(F, dtt), ]l t'llp.r,d~ = 1}, (4.13) 

where Ha is defined in (4.4), and let Oa be oiven by (4.9). Then there exists a 
positive constant K, dependin9 on n and the constants ~, fl, 6 in Definition 3.1, 
such that 

y - l  dpA < Oa < K{k(A) + ~)A} , (4.14) 

where k(A) = SUpA{p ~ Z(X)}. 

Proof For FeLI"P(F, dlt), we have that TF = F o ~ WI'P(f2) by Lemma 3.2 and 
note that, since ~t(Ai) = IA~I, 

THAF = hA(TF) . (4.15) 

Furthermore, i f f~  WI'P(I2), then f - f a e  WLP(O) and 

I l f -  h A f  llp, A = II(f - fa) - hA( f  -- fo)llp.A 

=< 0a [I Vf  IIp,~. 
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Consequently 
II F -- HAF II~,a.d. = II TF -- ha(TF) IIp,.~ 

_-< OA I[ V(TF)[[e.a 

< ~'OA II F' Ilp, r,a. 

by (3.6), whence q~A < 70a. 
F o r f e  Wl'P(f2), MfsLt 'P(F,  d#) by Lemma 3.3 and 

l l f -  hafll , ,A < Ilf-- TMfII,,a + II T M f -  ha(TMf)l[,,  A 

+ 11 hA f - -  ha(TMf)IIp,a 

= t l f -  TMfIIv,A + II M y - n a ( M f ) l l p ,  A,du 

, II~,A, }l /p + I.~a-,'~ ' l ( f -  TMf)A. 

by (4.15), 

by (3.9) and (4.13), 

=< 2 J I f -  ZMftlp, a + HMf - HA(Mf)Ile, A,a~ 

Kk(A) II V f  ][e,a + ~A II (M f ) '  II~,r,a. 

_< K{k(A)  + ~)A} II vftlp,~ 

by (3.7). The proof is therefore complete. 

Corollary 4.4. Define 

4~ + := lim sup 4~A, 
~r 

Then 

_ := lim inf (~A " (4 .16 )  
~t(r) 

1 
(9 < fl(I) < K(b_ + ~ (4.17) 

Proof. If ko:= lim~(a) k(A) = 0, we see that (4.17) is a consequence of (4.10) and 
(4.14). It is therefore sufficient to prove fl(l) = 0 when ko 4:0 for (4.10) and (4.14) 
would then imply that ~b+ = 4)_ = 0. The proof of the analogous result in 
[3, Corollary 4.8] remains valid, mutatis mutandis, and we give only a brief sketch 
of the argument. 

Let 

s(x, y) := inf{length of P(x, y) : P(x, y) a polygonal path in t2 joining x and y} 

and 
D:= sup{s(x, y): x, y e O }  . 

IfD < oo it follows from Definition 3.1 that F is bounded and as p is Lipschitz on 
F, ko = lim~e(r)[infAp(t)]. Thus ko > 0 implies that p is bounded away from zero on 
F and by Definition 3.1, f2 satisfies a cone condition. Since t2 is also bounded when 
D < ~ we conclude that E and I are compact and so fl(I) = O. 

If D = oo there exists a path ~ in F such that 

sup  s ( u ( t l ) ,  u ( t 2 ) )  = ~ . 
t l  , t 2 ~  
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From this fact and ko > 0 we deduce that there exists a sequence of disjoint balls in 
s'2 with radii bounded away from zero. But this contradicts the assumption 
If2[ < oo made throughout the paper. The corollary is therefore proved. 

Corollary 4.5. The following are equivalent: 
(i) for some C(12) > 0 

l i f - fo l lp ,  o =< C ( f 0 l l V / l l p ,  a ( f~wl 'P ( f~ ) ) ,  

(ii) for some c(F) > 0 

l ie  - Fr li, r ~  < c ( r ) l l  F' [Ip r ~. (F~LI"P(F, d#)). 

Moreover the least constants C(f2), c(F) satisfy 

7-ae(F) < C(12) < K{k(12) + c(r)} 

for some K > O. 

Proof. The proof of Theorem 4.3 applies. 
The next step is to estimate q~+ and q~_ by means of Proposition 2.4. Recall that 

any A e d ( F )  is a finite union of closed, disjoint and rooted subtrees of F. If 
{ai:i~Na} are the vertices of F which constitute the boundary of F \ A  then 
A = Ui~NaA~(ai), where the subtrees Ai(ai) are rooted at as: note that the partial 
ordering on Ai(a~) is that induced by the partial ordering on F. 

For each i~NA let A'i~d(Ai(ai)) be given by 

1 
A~ = U A; j (Ci j ) ,  ~(A;j(eo)) < -~l~(A~(ai)), 

JeNA; 

where the A~j(cij),j~.Na,~, are closed, disjoint subtrees of Ai(aO, rooted at cij~Ai(a~). 
Then if 

A'= UA; 
lENA 

we have A ' ~ d ( F )  and A' c A. On applying Proposition 2.4 to F(a) = A~(ai) and 
with q = p, we have 

sup  { II F - FA,(a,)[[p,A,(.,),au : F ~ L l ' l ' ( A i ( a i ) ,  d#), II F' Ilp, A,f~,),au = 1} 

<= 2cX/'(P'lt/r J(A~(a*)) ), (4.18) 
> ( 1 - 2 - ' / f )  J(A;) J 

where (2.23) is satisfied, 

J (Ai(ai)) = 

and 

{ E sup [l~{t:t>'~,x}] lip OPrP(t)dt 
x~A~(az) 

J(A[) = m a x  J(A~j(c~j)) 
j~Na~ 

o 1 ?. 
xEAI k L t~ax, t~A'* 

Our main result is 

(4.19) 

(4.20) 
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Theorem 4.6. Let (2.23) be satisfied and let dt be absolutely continuous with respect 
to d# on F = F(a) and ~ := dt/d#~L~or , d#), where p' = p/(p - 1), 1 < p < oo. 
Then 

fl(I).~ lira J(A) (4.21) 
~r 

where ~ indicates that the quotient of the two sides is bounded above and below by 
positive constants. In (4.21) 

xEA t ~  a ,t~A 

The same result holds if instead of(2.23) we assume that K(Ai(a~)) lip = O(J(Ai(ai)) 
for atl i~Na, in the notation of Remark 2.5. 

Proof From (4.18), for any F~LI'P(A, dp), with A = U ~ a A i ( a i ) e d ( F ) ,  

- -  - -  P I[F naFIl~,A,d~= ~ liE FA,~,)II~,A,r 
ieNa 

< 2cl/'(p')l/P'max {J(Ai(ai I[F' IIg, A,r 
i~Na i~Na 

= [2ct/"(P')I/P'J(A)] p I[ F' I Ig ,~ ,a .  �9 

Hence in (4.13), 

~bA < sup { IIF - HaVllp, a,d, :F~LLP(A, dI~), IIV'llp, A,d~ = 1} 

< 2ea/P(p')~/P'J(A). (4.23) 

Given ~ > 0, there exists FELI'P(F, dl2) with support in A~(ai) such that  

l[ F -- HAF I]p,a,d. ----- I[F - Fa,~.,)Ilr,a,(~,),a, 

__> [(1 - 2-x/f)J(A'i) - e] liE' IIp, r, du 

by (4,18). Hence 
ff)A ~ ( l  - -  2-1 / f ) J (A ' ) .  ( 4 . 2 4 )  

The theorem follows from (4.17), (4.23) and (4.24); the final part is a consequence of 
Remark 2.5. 

Corollary 4.7. Under the hypothesis of Theorem 4.6 we have 
(i) fl(E) < 1 if and only if J (r )  < ~ ,  

(ii) E and I are compact if  and only iflima~r)J(A) = O. 

Proof (i) Choose b~F such that F(b) = O i ~  Fi(b) and ll(Fi(b)) < (1/2)#(F). Then 
it follows as in the proof of Theorem 4.6 that for all F~LI'~(F, dl2) and 
[]F'llp,r.d~ = 1. 

[l V - Fr Ilp, r,d~ ~ J(r(b)) .  

Also, J(F(b)) < ~ if and only if J(F) < oo. By Corollary 4.5, we therefore infer 
that J(F) < ~ is equivalent to the Poincar6 inequality 

IIf-f~l lp,~ < KIIVfHp, o (f~WI"P(f2)) 

and this is equivalent to fl(E) < 1 by [3, Theorem 2.6]. Thus (i) is proved. 
(ii) This is an immediate consequence of (3.12) and (4.21). 
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5 Diriehlet.Neumann bracketing in L p 

Let g2 be an open subset of R" and denote by am(Q), a~ the ruth approximation 
numbers of the embedding maps I:  W~P(I2) ~ L~, Io: W~';(O) ~ LP(f2) respect- 
ively, that is 

am(t2):= inf{ [ l I -  ell : Ps~(W~'P(f2), Z~(f2)), rank P < m} 

and similarly for a~ Define 

v~(~) := max {m: am(Q) > ~} 

v~ max {m: a~ > e}. (5.1) 

Since the embedding I is injective it follows that if S is a finite dimensional subspace 
of W~P(g2), the restriction of I-~ to 1(S) is a bounded linear operator with bound 
ct(S) > 0 say, that is 

~(s):= sup { II Vx Ilp,~l II Ix  L,o} �9 (5.2) 
xES  

Let d(S) denote the dimension of S and define 

#~(e):= max {d(S) :~(S) < I/e} . (5.3) 

Similarly we define #~ with respect to the embedding Io. 
We now study how the numbers vo(e), v~ #a(e) and #o(~) are related and their 

behaviour when I2 is a finite union of sets with disjoint interior. Our objective is to 
obtain a technique for determining the asymptotic behaviour of va(e) and v~ as 
e --* 0 which is analogous to that of Dirichlet-Neumann bracketing in the case p = 2 
for determining the asymptotic distribution of the eigenvalues of the Dirichlet and 
Neumann Laplacians. I fp  = 2 and 1, Io are compact we shall see that/~a(~),/t~ 
coincide with vt~(e), vo(e) respectively. 

Lemma 5.1. We have 
v~ <= va(e) + 1 (5.4) 

~(~)  __< v~(~), (5.5) 
~,o(~) ____ vO(~). (5.6) 

Proof. Let P e ~:(W~/P(f2), L~(f2)) have rank r(P). Then P0 defined by 

P o f  := f~ + P ( f  - f~) 

maps W~'F(I2) into L p and has rank r(Po) < r(P) + 1. Suppose r(P) + 2 < v~ 
Then r(Po) <-_ v~ - 1 and so 

IIIo - Poll -> avg,)(g2) ~ ~. 

Hence, for any t /<  e there exists #e  Wol'P(I2) such that 

tlg - g o  - e ( e  - co) Ilp,~ _>- • l i v e  I[~,,a �9 

Since e - e~e  w~P(t2), we infer that Ill - ell > ~/and so I ] I -  ell > e. As this is 
true for any P of rank r(P) satisfying r(P) + 1 < v~(~) - 1, (5.4) follows. 

Let $ be a subspace of W~P(fl) of dimension d(S) and P a bounded linear map 
of WfdP(f2) into L~( f l )  of rank r(P) < d(S). Then if el . . . . .  edtS~ is a basis of 



Frac ta l s ,  t rees  a n d  the  N e u m a n n  L a p l a c i a n  511 

S there exist 2~ . . . . .  2a(s), not all of which are zero, such that P(Z~s l  2,e,) = 0. 
Hence, with ~ = E~s[  2,e, we have 

11(I - P)~O ]lpm = [1Ir ][pm > 0~(S) - 1  IlV~O tlp,~ 

and consequently ] [ I -  P[I > a(S) -~. It follows that aa(s)(O) > a(S) -~ and 
au,(~)(12 ) > e. Therefore (5.5) is proved. A similar proof holds for (5.6). 

Lemma 5.2. Let p = 2 and suppose that I and lo are compact. Then 

~,,(~) = ~(~), ~g(~) = ~o(~). 

Proof From [1, Theorems II.5.7, I1.5.10] we have that am(12) =/~m(1) = #,,(I*), 
where/~,~(T) denotes the mth singular number of T, that is, the ruth eigenvalue (the 
eigenvalues being arranged in decreasing order and repeated according to multi- 
plicity) of the positive compact self-adjoint operator IT] = ( T ' T )  1/2. Thus 
a~(O) = 2,.(I*I), the mth eigenvalue of I*I, a compact self-adjoint operator in 
W~ 2(0). Consequently, by [1, Theorem II.5.6] 

v~(e) = Z 1 
a,,,(fl) => e 

= ~ 1 
).m(I*l)~e z 

= max{dim R: R ~ ( e 2 ) }  , 

where 9~(e 2) is the set of closed linear subspaces R of W~P(O) such that, for all 
x ~ R ,  

e 2 []Vx][~.a ~ (I*lx,  X)w~2(a) 

= lllx[l~,~ �9 

Therefore, ~(R) < 1/e and d imR </~n(e) for all R~J~(e2),  whence vo(e) ~ #a(~). 
The reverse inequality has already been established in Lemma 5.t and so 
vn(~) = /~ (z ) .  The proof of v~(e) = / ~ ( ~ )  is similar. 

Lemma 5.3. Let g2 = ( ~  ~= 1 12i) ~ N where the g2i are disjoint open subsets of R" and 
N is a null set. Then 

q 

rate) + 1 ~ ~ I-v~,(e) + 1] .  
i = 1  

Proof Since av~,(~) + l(f2t) < e, there exists a bounded linear 
Pi: W~/P(12i) ~ L~t(t2i) with r(Pi) < va,(~) + 1 and such that 

here I~ is the embedding W~iP(I21)~ L~t(f2i). Let 

q 

P f  = Y~ za,{fo, + e d f - f n , ) }  ( f~ W~P(12)) �9 
i=1  

operator 
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Then 
q 

[ I f -  Pf[l~,a = ~. H f - f a ,  - P , ( f  -fa,)II~,,a, 
i = 1  

q 

< ( max ~i) p ~ IlVfll~,~, 
l < i < q  i = 1  

< ePllV//l~,~ �9 

Also, since ()~a,-)Ce:)  . . . . .  ( ) ~ e , _ , - ) ~ )  spans the range of the map f~-+ 
2~=,  f~,)~, : W~P(Q) -'* L ~ ( ~ ) ,  it follows that 

q q 

r(P) < 2 r(P~) + q -  l < ~ vn,(,) + q - 1 .  
i= l i= ~ 

Therefore 

where 1 = ~ = 1  va,(e) + q, and so 

q 

va(e) < ~ v~,(~) + q - -  1 , 
i = l  

whence the result. 

Lemma 5.4. Under the hypothesis of Lemma 5.3, 

q 

i = 1  

Proof. For  each i there exists a subspace S~ of W~'P(I2i) of dimension ~~ and 
such that e(&) < 1/e. The direct sum S of the S~ is a subspace of W~'P(f2) of 
dimension ~ =  1 t~~ and e(S) < i/e, whence the result. 

Lemma 5.5. Let 12 = 01 u f2 a u N, where 1"21 and 02 are disjoint open subsets o fR  n 
and N is a null set. Suppose that for all f e W ~' v( f2 ), 11 f II p. ~= =< ~ [I V f II p, o2. Then for 
all rl > e, 

v~ _-< v~,(n) + 1 

Proof. Let P e ~ (  W~ P(121), L~(f21)) have rank r (P) and define 

Q f  = {f~, + P ( f - f , , ) } ) ~ a ,  ( f 6  W~'P(12)) �9 

Then  rank Q < r(P) + 1 and 

I1(Io - Q)f[[g,a = I [ ( f - f o , )  - P( f - fm) l [g ,a~  + Ilfllg.~2 

=< IIio, - ellPllVfllg, o, + ~PllVf[Ig,~= 

where In,:  W~P(O1)~L~(Ol ) ,  

_~ { m a x ( l l / n ~  - P[I,  e)ll  V f l i p . o }  p , 

whence 
t1Io - QII < m a x ( [ l l n ~  - PII,  e ) .  



Fractals, trees and the Neumann Laplacian 513 

If r(P) + 1 <__ v~ - 1, it follows that IIio - QII > r /and hence IIIu, - Pll ~_ q. 
Since P is arbitrary, we infer that r(P) + 1 < vo,(r/), whence the result. 

Lemma 5.6. Let f21 be the imaoe of f2 under an affine transformation of R" 
which magnifies distances by a factor 2. Then vnl(~) = vt~(e/2) and similarly for v ~ 
#o and #. 

Proof. Since f21 is obtained from f2 by a similarity transformation t ~ a + 2t the 
result is straightforward. 

We are now able to give our main results about the asymptotic behaviour of vQ 
and v S. 

Theorem 5.7. Let Q be an open cube in R". Then 

lim {2-"vQ(1/2)} = inf {2-n[vQ(1/2) + 1]}. (5.7) 
~.~oo ) . > 0  

Proof. For simplicity we shall prove the result for the case when Q is a square of 
side 1 in R 2, the general case being proved similarly. 

Let R be a rectangle in R 2. For the embedding W~iV(R)~ LP(R) we have from 
the Poincar6 inequality that al (R) < c diam R for some absolute constant c. Hence 
vR(e) = 0 if diam R < ~/c. 

With ). > 20 > 1, we write 2 = [2/2o]20 + 02o, where [ . ]  denotes the integer 
part and 0 < 0 < 1. Then 2Q can be expressed (modulo a null set) as a disjoint 
union of [2/20] z open squares congruent to 20 Q together with an L-shaped region 
which can be cut up into 212/2o] + 1 rectangles each of diameter less than x/~2o. 
Each of these rectangles R~ is the union of ([c2o,~/2~ -1] + 1} 2 congruent 
rectangles of diameter less than ~/c and hence in view of the previous paragraph 
and Lemma 5.3, 

+ I < - I ]  + I # .  

Therefore, by Lemma 5.3, 

vxQ(e) + 1 <= [2/2o]2(VxoQ(e)+ 1) + {21-2/2o] + 1} {[C2ox/~e - t ]  + 1} 2 

and 
2-={vzQ(~) + 1} < 2o~-{vaoQ(~) + 1} + 0(4,1,o4-'[1 + e-z]) 

or, in view of Lemma 5.6 and with ~ = 1, 

2-2{vQ(1/2} + l} __< 2o2{VQ(|/2o) + 1} + 0(40/4) .  (5.8) 

Given 6 > 0, choose 2o such that 

2o:{VQ(1/2o) + 1} < inf{2-ZEvQ(1/2) + 1]} + 6 .  

Then (5.8) yields 

lim sup {2-2[va(1/2)+ 1]} _~ inf {2-2[vr 1]} + 5 
4-*00 ~ > 0  

whence the result. 

Theorem 5.8. Let Q be an open cube in R". Then 

lira { 2-"itS(I/2)} = sup {4-"try(I/2)}.  (5.9) 
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Proof. As in the proof of Theorem 5.7 above (with n = 2 and 2 > 2o >= 1) we 
express 2Q as a union of [2/2o ]2 open squares congruent to 20 Q together with an 
L-shaped region. Then, by Lemma 5.4, 

#~(1/~) -- ~~ > [2/2o]2~~ ) 

= { ( ~ / ~ o ) ~  - l b , ~ ( l t ~ o )  

and so 

This implies 

(5.10) 

liminf{2-2#~(1/2)} => sup {2-2~t~2(1/).)} 
.a,~ oo A > 0  

and hence (5.9). 

Corollary 5.9. I f  Q is an open cube in R" then as 2 ~ o~ 

p~(1/2), vg(1/:.), vo(1/2 ) ~ 2". (5.11) 

Proof. This follows from Theorems 5.7, 5.8 and 

#~(1/2) __< v~(1/;t) __< vQ(lf~) + 1 . 

Similar proofs yield the same results in Theorems 5.7, 5.8 and Corollary 5.9 
when the cubes are replaced by equilateral triangles and their n-dimensional 
analogues. 

Suppose that p = 2. Then am(Q) is the ruth singular number o f /*  and II* is the 
inverse of the Neumann Laplacian - ~ Q . N  restricted to L2(Q). Consequently 
am(Q) = 2,~ 1/2(0  , N), where 2,.(Q, N) is the mth positive eigenvalue of - A a. g and 
vQ(I/2)=~,,CQ.N)__<~I. Similarly t t~( t /2)=v~(1/2)=~, ,~Q,v)<~l ,  where 
;t,,(Q, D) is the ruth eigenvalue of the Dirichlet Laplacian - A Q, o. Therefore when 
p = 2 we have the well-known result 

lira (2-"vQ(l/2)} = lim {2-"/t~(1/2)} = (Dr)-"co, lQI, (5.12) 

where co, is the n-dimensional Lebesgue measure of the unit ball in R". For general 
p we are unable to prove whether or not the limits in (5.7) and (5.9) are equal. 

6 A domain without the W I'p extension property 

6,1 The domain 

We construct a domain f2 in R 2 from a succession of finite sets (generations) Om of 
closed congruent rectangles Qm of edge lengths 2~,, x 2fl,, (~,, < ft.,) and with 
disjoint interiors; see Fig. 1. The generation Do consists of a single rectangle as does 
O1, a short edge of Q1 being attached to the middle portion of a long edge of Qo. 
For m -> 1, Om contains 2"-  ~ rectangles and to each long edge of Qm is attached 
a short edge of a rectangle Q,, + 1, these 2" rectangles Q,. § 1 being the members of 
Ore+ 1. The domain 12 is the interior of the connected set O constructed in this way: 

a=O~ - - ~ (U{Q,.:Q,, ,~O,.}) .  (6.1) 
m~No 
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Fig. 1. 
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We shall assume that for all m e No, 

gm <=/8.,, 0 < c51 <= ~,~+1/o~., <= 1, ~8"+1~tim ~ 62 < 1, 2/8m+2 < 18., - ~ m + l  �9 (6.2) 

Note that in (6.2) the condition 2tim+2 < flra- 0~m+l ensures there is no over- 
lapping; also I~1 < ~ .  

The major and minor axes of each rectangle make up a tree F of finite degree 
and this is taken to be the generalized ridge of f2 with u : F -+ ~2 the identification 
map. The portion of u ( F )  in Qm-1 u Qm L.~ Qm+ 1 is shown in Fig. 2. In O P A L  ~ is 
defined to be the projection of P A  onto O L  and in L B C R  T is the projection of B C  
onto LR.  If t denotes the distance from O along F we have u(t)  = t. Since I2 is 
covered by regions like O P A L  and L B C R  it is enough to analyse the properties of 
f2 vis-a-vis Definition 3.1 in these regions. 

In Fig. 3 the co-ordinates are: P(~m-l ,~ ' ) ,  A(~ , , - l+ /8 , , -~m+~,~m) ,  
L(~m-1 q- tim, 0) and it is easy to see that X is the point (~,,-~X=, amZm), where 
Z,, = (am-1 + flm)/(~m-1 + ~m+l). Thus in Fig. 3 

tan ~b = ~mXm/(gm- 1X,~ -- t) . (6.3) 
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Fig. 3. 0 

X 

/ 
/ \ 

/ \ A  
P / x / �9 (~,y) \ 

/ 3 * ,  3 *  \'~r 
T ( t ,  o) s 

For  any (x, y ) e I2  lying on the line X T  we have z(x, y) = t and so 

t = x -  y c o t r  

It  follows that  

and hence 

Ot 0r Ot 
O-x = 1 + y(csc 2 r  ~xx = 1 + y(csc 2 r162  Ox 

Ot & 
Oy cot r + y(csc 2 r Oy 

[1 - y(csc 2 q~)r y) = (1, - cot ~b). 

Since (csc 2 40 r  = 1/amXm from (6.3), we obtain 

IVy(x, Y)I = l1 - Y/~mZml- 1CSC r  

By (6.2), 

and so 

1 > t - Y/amZ. > fin - ~=+ 1 > 
- -  = a m - 1  "t" tim - -  

1 - -  (~2 

1 + 6 i  -1 

IVz(x, y ) l~csc~b  �9 

Also in Fig. 3, e t  =< r ~ r and hence 

1 ~ c sc r  _-< max(cscr r  

. 2  1,v2-11/2 E1 + ~2+1 /~23m)  = max(J1  + ~,~,_ tt~,,,, , 

- + ~ , , , - d ~ m ]  �9 
- -  E1 2 2 1/2 

Therefore 

(6.4) 

(6.5) 

(6.6) 

JVz(x, y)[ ~ 1 .  (6.7) 

In O P A L  we define p(t)  to be the distance from T(t,  0) to PA. It is straightforward 
to check that  p is piecewise C t and Ip'(t)[ _~ 1. 
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From (3.4) and (6.6) 

dIt 
d--t = ~ I V z ( x , y ) l - ' & r  

- 1 ( t )  

(csc 4 ) -  t [~ ,  csc ~b] = ~,,. (6.8) 

Thus dt is absolutely continuous with respect to dIt on OL. The other requirements 
of Definition 3.1 are easily seen to be satisfied on OPAL.  Similar considerations 
apply to the region L B C R  and in particular (6.8) remains true. 

We now estimate J(A), A ~ ,~(F) .  In the notation used in the proof of Theorem 
4.6, A = t,.)i~NaAi(ai) where ai ~(a x for all x ~ Ai(ai). Let ai ~ Qk, and r ~ Q~ c~ Ai(ai), 
s > ki. Then by (6.8) 

a i R l = k i  

~, fl,~,P'l~' (6.9) 
m = k i  

on using (6.2). Also 

Hence 

#{ t : t>-=,r}= [. (dIttdt)dt 
t >-.cr 

~, 2"-%.[~,._~ +/7.,3 
i l i = s  

m = s  

(6.10) 

f /  ~o \ l i p /  s \ l / p " l  

k i _ - < s < m  

In Remark 2.5 we have 

sup 
k i < s < ~  ra=kt mffis n=k t  

(6.12) 

Also, in (2.23), we have if t e Q, 

It(t)~ ~ 2"-'~mtl,. 
i l l = r  

and 

I 
x > - ~ t  

It(x)- 1/p" dIt = S It(x)- uP'(dit/dx)dx 
X ~ a t  

/ ~ \ -  tjo' 
s - - r  rn--sO~ 

~. / | \ -  t/p' 
• 

S = g  \ n l = s  / 
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Hence (2.23) is satisfied if 

2~_,~fl~ ( , , ~  ~ \ -~fp '  \~ip 
2"~-'~t, f l ,  ) ~ (m~=" (6.13) ,=, 2 " - ' ~ , .  ft . ,)  . 

F rom Theorem 4.6 we therefore have 

Theorem 6.1. Let f i  be the domain (6.1) subject to (6.2), and suppose that 
either (6.13) is satisfied or K ( A i ( a i ) ) =  O(J (A i (aO)  p) for all i~Na.  Then 
f l ( l ) .~l im~,(r)J(A),  where J ( A ) =  maxi ,N~J(&(ai))  with A = ~i~lvAAi(ai) and 
J(A~(ai)) satisfying (6.11). 

6.2 Example 

6.2.1 General estimates. 
and C I+aIp+p/p'2 < 112 when ~ > p/p'. Then (6.2) is satisfied. Also 

2"-'a,.,,,6',, = 2- '  ~ (2cl+~')'~c 0+''* 
m = s  m = s  

and 

Let ~,~ = c ~'~, tim = cm(m~No),  where a > 1, c ~ + 2c 2 < 1 

[jnltZ~np'lp= ~ C(1-r 
m=k m=k 

I c 1 -~'/P)~ if ~ > p/p' 

{c(1-,p'ip)k if Ot < p/p ' ,  
! 

( s  -- k if a -" p /p ' .  

These estimates yield, as s -+ co,  

\ l ip f �9 \lip" 
Jk,,:= - -  2 " - ' ~  I~ I I V f l , ~ , "SP)  (6.14) 

I C if a > PtP' , 

~. Ck +(1 +~)(~-k)/p if a < p/p' , 

((S -- k)lSP'c (I +~)'/p if a = p/p' . 

Consequent ly  J(A~(aO) --+ 0 as k~ -0 m and l im~w)J (A)  = 0. It remains to analyse 
(6.12) and (6.13). Let 

KI, s := c ( 1 - ap' /p)m 2 m - s C ( 1 + i )  m C (1 - ~t,' lp)n . 

k m=s \ n = k  

For  ~ < p/p', it is readily shown that  Kk.s~ .J f . s  and this continues to be true for 
~t > pip' as long as 2c I+'/p+p/p'' < 1. In order for (6.13) to be satisfied we need 
2Pc1+" < 1: note that c~+'/P+P#'= c(a+~)/P+P/f< c c~+'~/p. This example shows 
that (2.23) is not  necessary in Proposi t ion 2.4 - see Remark 2.5. We have therefore 

I +~/P+PlP 2 p proved that  if 2c ' < 1 when a > pip then I is compact.  
l f~  = 1, ga can be shown to be a quasi-disc (see [11, Sect. 1.5.1, Example 1]) and 

hence has the W ~' r-extension property,  which in turn implies that I is compact.  
However,  if a > 1, flm/~m "* ~ as m-+  m and so O is not  a quasidisc. The 
compactness  of  I established above  is not  therefore attributable to the 
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W x, P-extension property. It may well be that there exists a continuous extension of 
WLP(f2) to a space V(R z) which is compactly embedded in LP(O) but this is far 
from obvious. 

6.2.2 The inner and outer Minkowski dimensions of  012. Let 

(00)~:= {xeO:dist(x ,  Og2) < O} , 

(~O)]:= { x e R " \  f2: dist(x, 6f2) < O} , 

J/r ~(Of2):= lim sup O -t2-d) I (~f2)~], 
J ~ 0  

di:= inf{t: J//~(012) < ~ } ,  

and define Jf~ do similarly. Then Jgia(00), ~ '~(0~)  are the upper 
Minkowski contents of 0f2 relative to f2 and R"\f2 respectively, and di, do 
are respectively the inner and outer Minkowski dimensions of ~I2; see [10, Sect. 2]. 
Let integers M, N be such that Cr < O < a M ,  flN+l <O <fiN. Then, 
as O ~ 0, 

and 

log(l/O) log(l/O) 
M = - - + � 9  N - - - + � 9  

log(l/c) log(l/c) 

l(Oga)~l = 4{(Cto + / 8 o ) -  2= ,}6  - 0 ( 6  =) 

M 

+ Y', 2k-a {[4(ilk -- ~Zk+,) + 2~Zk]O + 0(62)} 
k = l  

N 

+ 2 2k-l{4~,~(b'k -- ~,+~) + O(&t,,)} + 
k = M + l  

M 

k = O  k = M + l  

It follows that 

Hence 

k = N + l  

[(0f2)~[ x f~  log(l/6) 

~ 6 1  - log 2c/ct log (1/c) 

if 2C < 1,  

if 2C = 1,  

if 2C > 1.  

2 k - 1 (4~k ilk) 

1 i f =  c < 1/2, (6.15) 
di= 1 +log2c/otlog(1/c) if = c > 1/2. 

Note also that Jl~,(dI2) = 0o if 2c = 1 and is otherwise finite. 
To calculate ~'~o(dQ) and do we choose N to be the largest integer such that  

26 < fln+l - an+2. Then N = log(l/O)/log(1/c) + �9 and for all k > N we have 
/~k = �9 (6). It follows that 

t [((?t2)][ - SN[ _--< K022 N , 
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where, with no = 1 and nk = 2 k- 1 for k > 1, 

N 

s , ,  = E ,~{4( /~k - ~k+1)6 + 2~k6} 
k = 0  

N 

~ 6  Y. (2c) k . 
k=O 

This readily yields 

I 6 if 2c < 1 ,  

t(80)~1~ 61og(1/6) if 2c = 1 ,  

61-Iog(2c)/log(1/c) if 2C > 1 . 

Hence 

{ I  if 2 c < 1 , }  (6.16) 
do = 1 + log(2c)/log(1/c) if 2c > 1.  

Moreover ,  ,,r ~ if 2c = 1 and is otherwise finite. Note  that  if 
2c > 1, 1 < di < do < 2 since 2e 2 < 1 and the assumption c ~ + 2c 2 < 1 implies 
that ~ > 1. 

6.2.3 Asymptotics of  va(e) and l~~ for 1 < p  < oo. Let 

2'* 

f2,,:= ~ Q~, f2\f2~ = ~ A~,,,. (6.17) 
QiE~l ,  i<m i= 1 

Then, for each i, Ai,,~ is a generalized ridged domain  which is similar to f2 with 
generalized ridge A~, ~ say, which is a subtree of F rooted at the point  S in Fig. 2. 
The map z is now the projection of PA onto  SL and not OL in Qm but is otherwise 
the same as before: this modification does not  affect the estimates from Sect. 6.2 
used below. 

By Theorem 4.3 and (4.18), for all f s  W~P(Ai, m), 

[If--A,.. I1,,~,.. _-< K[_k(A,,m) + ~i)A,,.]I V f  v,a,. 

< KUk(ai, m) + J(A,.m)] [IVfl[p,A,, (6.18) 

where k(A,,, .)  = supa,,.[(p ~ z)(x)].  Hence 

k(Ai, . )  ~ O:m + 1 ~ C "m (6,19) 

and from (6.11) and (6.14) it is easily seen that  

J(A~, ,,3 ~ c m . (6,20) 

We now have that  there exists Ko > 0 such that 

l l f  - fa,.. lip, A,,. < g o c ' l l V  fllp, A,,. ( f ~  14"r~dP(hi, m)) 

< 8 IIVfllp, A~. 

if Koc  ~ < 8, tha t  is, m > log(Ko/~)/log(1/c). Therefore 

vA,,.(e) = 0 if m = F l ~ 1 7 6  + 1 (6.21) 
[ log( l /c)  J 
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and by Lemma 5.3, 
2 ra 

v a ~ f i . ( e ) + l <  ~ 1 = 2  ~ 
i = 1  

= C) (~,--Iog2/l~ (6.22) 

Fur thermore ,  with no = 1 and nj = 2 ~- 1 for i > 1, 

v~,,(e) + 1 < ~, ni(vQ,(e) + 1). (6.23) 
i = 0  

We now estimate vQ,(~) in (6.23). Let U denote the square (0, 1) x (0, 1) and set 

Lv := lim 2-Zvv(1/2),  (6.24) 
3.~00 

R(2) :=  2-2[vv(1/2) + 1] - Lu ; (6.25) 

note  that  R(;t) > 0 from Lemma 5.7. For/~ > 0 define M = [22fli/~], N = [22a~//1] 
so that 

22fl, = M/~ + 0#, 22~, = N# + q~/t (0, q~ ~ [0, 1)) ; 

we allow both of M and N to be zero. In (6.23) with e =  1/2, 
2fl~ > 2tim = 2c" > c/Ko. We now subdivide 2Q~ into M N  squares of side # and an 
L-shaped strip S which is the union of M rectangles of sides ~b# x/~, N rectangles of 
sides 0/~ x # and a rectangle of sides 0/~ x ~b#. Further ,  we subdivide each rectangle 
in S into k(/~) say small rectangles T for which vr(1) = 0. Hence, by Lemmas 5.3 
and 5.6 

vQ,(l/2) + 1 = vxq,(1 ) § 1 < MN(v~,v(1) + 1) + (M + N + l)k(/~) 

= ,t21Q, t(L~ + R(U)) + {2U-1~(~, + fl,) + 1}k(~). 
It follows that 

lira sup {2-2vQ,(1/2)} < IQiI(Lv + R(#)) 

and since R(#)  ~ 0 as # ~ ~ ,  

lim sup {4 -2 vo,(l/,~)} ~ [Q~ILv. 

From (6.22), (6.23) and (6.26) with e = i/2, 

/~2[VO(~ )"dl- 1] < ~ ni{[Qil(Zv + R(lt)) + [2/4-1e(ai + ,Oi) + ~2]k(/t)} 
i = 0  

log2 

+ O ( e ~ - ~ )  
log2 

< (Lv + R(t~))ll21 + 2 # - l e k ( p )  (2c) I + O ( e 2 - ~ ) .  
i = 0  

F r o m  (6.21) 

221Q,l(~-2{Vuu(1) + 1}) § {2#-a2(a ,  + fl,) + 1}k(/~) 

(6.26) 

if c < 1 /2 ,  

if c = 1 /2 ,  

if c > 1 /2 .  

=-1 (Oil) 
Z (2c)' = ~�9 

t = 1 | l o g 2  

(6.27) 



522 W.D. Evans and D.J. Harris 

Since 2c ~ < 1 we have 2 log2 
- -  > 0 and hence 
log(l /c)  

limsup{e2[vs~(e) + 1]} < (Lv + R(#) ) IO[ .  
8 - " 0  

On allowing # ~ ~ we obtain 

lim sup e 2 va(e) < LvlOI �9 (6.28) 
~"~ 0 

To obtain the lower limit we argue in a similar way using Lemma 5.4. Using the 
same nota t ion as above we now have 

i = 0  

and 

where 

#~ > MNl~~ 

> { / I -2221Q,1-  2#-~,~(~, + fl~)}U~ 

= {2ZIQ,I - 22~(~, + fit)} { L~  + R ~  

L ~  lim 2 - 2 # ~  R~ = A-2/z~ - L ~ ; 

note that R~ < 0 by Theorem 5.8. Arguing as before, we obtain as e-- ,0,  
log 2e 1+~ 

~2#g(e) _> (L ~ + R~ - /1~ - � 9  

and 

(6.29) 

l iminfe2t t~ >- L~ (6.30) 
~ 0  

We have therefore proved 

Theorem 6.2. Let ~tm = c ~", tim = c ~' for m > O, where ~ > 1, c ~ + 2c 2 < 1 and 
c l+~/v+plv~ < 1/2/fct  > p/p'. Then 

(i) I is compact, 
(ii) l imsup~_.oe2VD(8)~Lo[O[, where U is the square (0 ,1 )x (0 ,1 )  and 

Lv  := lim~_. ~ ~ -  z vo(1/2), 
(iii) liminf~_.oe2/a~ > t~ where L ~ = lim~_.~2-z~~ 
6.2.4 Asymptotics o f  va(n) when p = 2. When  p = 2 we can obtain more precise 
information as follows. Let ~(Ai,,,) = Ai, m. Then  from (6.10) 

/a(a~,,,)~. ~ 2"- ' (c1+~) ~ 
n m ~ l  

~ ,  C(1  + ~ ) m  . 

Thus for l sufficiently large, and independent  of m, /z(Ai, m+l) < 1/2/a(A~,m) and 
~u(A~,,,+,)~c ~ + ' ) ' .  Hence, from Proposi t ion 2.4 and Remark 2.5, and the fact that  
K(At , , , )~ .JV(Al , , , ) .~ .c  mp by (6.20), there exists FeLI 'P (A i ,  m) and a constant  
K~ > 0 such that  

IIF - FA,..t 2,a,..,a, > 2KlcmllF'l[2.a,..,a,. (6.31) 
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Since 
II F - Fa,,. II z.~,.,~. --< 2 [[ f - F(0)112,~,...a. 

we have with G = F - F(0) that G(0) = 0 and 

II G I[ z. Aa,..d,u ~- Ka c" II G' t l 2 , ~ , . , d , ,  �9 (6.32) 

Let f =  Goz. Then f s  Wl'2(Ai, m) and 

llfll2,A,.. = II G[[2,a,,.,au 

>= KI cmII G' II2,A,,.,a. 

> T-Xklc m 11Vf lie, A,.. (6.33) 

on using (3.6). Moreover f = 0 on the base of Ai. m, i.e. the edge of Ai, s which meets 
f]m. Choose m to be the largest integer such that ?-~Klc"e -1 > 1; this gives 

log(l/e) 
m = - -  + �9  (6.34) 

log(l/c) 

We have therefore established that for each i e{1 ,2  . . . .  ,2"}  there exists 
f ~  W 1' 2(Ai.m) such that 

IrA [12.a,. _-> ~ll VA 112,A,... (6.35) 

On setting fi = 0 outside Ai.~ it follows that f~e WL2(O). 
For  i < m 

{ p2 q_22 n4_~e2, p, qEN ) 
v~(a) = :~ (p, q) : ~2 + fl/2 < 

t = 0 if 2a~ 
> (1/4ne2)lQd - �9 + fli)e-1) otherwise.  

Hence, by Lemmas 5.2 and 5.4 

v~ >- ~ n~v~,(~) 
i = 0  

k 

i=0 

it  o.ows that where k is the largest integer such that L-~-e _ 1 = 

log(l/s) 
k = - -  + o(1) 

alog(1/c) 

and 

= (1/41te2)[ ~2[ - O (~ - 2 R ( 8 ) )  (6.36) 
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where 

R ( ~ ) =  elog(1/e) 

where di is given in (6.15). 

if c < 1/2)  

if c = 1/2~ 

if c > 1/2J 

(6.37) 

which yields 

Let  N = v~ = #~, js) ,  Then there exists a subspace S of W~' 2 (f2,,) such that  
dim S = N and ~(S) ~ ~-1 in the nota t ion of (5.2). Extend S to W~' 2(0)  by setting 
its members  to be zero outside f2r, and denote S ~ span{f~ :i = 1, 2 . . . . .  2 m) by U. 
Then  d i m U  = N + 2 m, U c Wl, z(f2) and for all f e U  

Ilfllz,~ > ell Vfl]2,~. (6.38) 

We claim that  va(e) > N + 2 m - 1. To  prove this suppose that  P.e~(W~i2(t2),  
Lu(O ) )  has rank n < N + 2 '~ - 1 and set 

Q . f  = f o  + P . ( f  - f~)  

for f e  W l' 2(0).  Then  rank Q, < n + 1 and if {f~:i = 1, 2 , . . . ,  N + 2 "~} is a basis 
of U, there exist constants 2i, i = 1,2 . . . . .  N + 2", not  all zero, such that 

N + 2  m . N+2r~ . . 
Q . ( ~ t = i  2 ~ )  = 0. Thus, with f =  Z i = l  2~fi we have m view of(6.38) that  

e II Vfll2,~ < t[fll2,~ 

= I I f -  Q.f l t2 ,~  

= I I ( f - f o )  - P.( f - fn) l l2 ,o .  
Consequently a~+zm_i(f2) > e and va(8) > N + 2" - 1 as asserted. Hence, from 
(6,36), 

82v~(e) - (1/4~)1~91 ~_ 822 - - -  C) ( R ( e ) )  

log 2 

> K l e 2 - ~  - K2R(8) . (6.39) 

We obtain an upper  bound  from (6.22) and (6.23) where we now have 

{ p2 q2 ~'~--~82, } vq,(*) = ~ (p, q):~-~2 + < P, q e N o ,  (p, q) :~ (0, 0) 

~ (I/4neZ)lQi] + 2(a, + fli)8 -1 . 

Thus we have 

m loll 2 

vn(~) + 1 s Z n~(vQ,(~) + 1) + O ( ~ - ~ )  
i=O  

< lal + 48-1 (2c) i + � 9  
f---O 

log 2 

8Zv~(e) - (1 /4n )1Oi  =< K 3 8 2 - ~  q- K,IR(~,) . (6.40) 

From (6.37), (6.39) and (6.40) we obtain 
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T h e o r e m  6.3. Let  the hypothesis o f  Theorem 6.2 be satisfied. Then as e ~ 0 

= Q(e)  if c < 1 /2 ,  

e2vo(e ) - (1 /4 r01 t? l  -- O(glog(1/e)  if c = 1 /2 ,  

.~e 2-a~ if c > 1/2,  

where do is given in (6.16). 
If ~1/'(2; - Aa, N) = ${m:2,~(O, N)  < ~.}, we obtain, as 2 ~ oo, 

~r - A~,N)-- (1 /4~)IOI2 = Q(21/21og2) if 2c = 1,  (6.41) 

;~d,t2 if 2 c -  1.  

The c > 1/2 case, when Or2 is fractal in the sense that the inner and outer  
Minkowski  dimensions lie in (1, 2), is particularly interesting as we obtain the 
precise growth rate of the error term in (6.41). This improves on the general result in 
[10, Theorem 2.1] where the error  is shown to be o(Ad~ I f c  < 1/2 the error  in 
(6.41) is smaller than that in [10]: when c < 1/2 Lapidus'  result implies the error  
O(2t /Zlog2)  and when c =  1/2 he obtains O(2S121og2) for any s >  1, since 
~ o ( 8 t 2 )  = oo in this case. 

6.2.5 Asymptotics  ofv~ when p = 2. From Lemmas 5.2 and 5.4 and (6.36) we 
obtain 

~2 vO(e) > (114rc)1~21 - �9 ( R ( e ) )  ( 6 . 4 2 )  

where R(e)  is given in (6.37). 
To  obtain an upper bound for v~(e) we use Lemma 5.5 with O1 = t2m and 

f22 = f2\Om. We first prove that there exists K~ > 0 such that, for all f s  W~'2(O) 

Ilfll2,m --< g ~ ,  IIVf 112,~= �9 (6.43) 

Consider the region O P A L  in Fig. 3, set y = rsin ~b and let l(t) denote the length of 
z - l ( t ) .  We change co-ordinates to (t, r) where 

x = t + r c o s ~ b ,  y = r s i n ~ b  (~b=~b(t)) .  

Then 

I f ( x ( t ,  r), y(t,  r))l = 

< 

'!) (~l&)f(x(t,z), y(t,  z))dz I 
" )  ~)dz ! ( f t  cos th + f2  sin 

t(t) \1/2 
f iV/I 2 d z )  l(t) 't2 . 

Also, since ~b' = (sin 2 q~)/CtmX,, in the notat ion of Sect. 6.1, we have 

~(x, y) 
- -  = sin ~b - r~b' 
a(t, r) 

= aml(t) -1 (1 - r/l(t))~m) 

> (~r,,l- ~)(1 - llz,,,) ~ (amfl) t,i + ai -1)  
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by (6.2), where l = maxo~r~ , l ( t )~a r , .  Hence 

c~(x, y) > K > 0 
~.,/t(t) > O(t, r) = 

and 
~_ l(t) /t(t) 

S~ ] f ( x , Y ) l Z d x d y 5  l(t) [V f l :dz  (oc,./l(t))drdt 
OPAL 0 

< gct,1 I I  IV f l2dxdy  
OPAL 

< K~ 2 f.~ I V f l 2 d x d y .  
OPAL 

Since t22 is made up of regions like OPAL,  (6.43) follows. 
Choose m to be the smallest integer such that KI~,, = K l c  ~ " <  z/2. Then 

log(l/e) 
m = ~-O(1) and, by Lemma 5.5, v~  1. Also, as in 

ctlog(1/c) 
Sect. 6.2.4, 

vt~,,(~) + 1 < (1/4n~Z)lf21 + 4e -x ~ (2c)' + ~ 2' 
i = 0  i = 0  

< (1/4n~2)lt2t + O(e-2R(e) ) .  

We have therefore proved 

Theorem 6.4. Let the hypothesis o f  Theorem 6.2.be satisfied. Then, as ~ ~ 0 

[O(e)  if 2 c < 1 , }  

e2v~ = ~O(elog(1/e)) if 2c = 1, . 

~Q(e 2-a') if 2c > 1. 

If s f f ( 2 ; -  An, o) = ~{m: 2re(t2, D) < 2} then our result yields 

.(O(21/2) i f 2 c <  1 i}  
sV'(2; - A~,9) - (1/4rc)l~212 = ~O(21/21og~) if 2c = 1 (6.44) 

~O(2 d'/2) if 2c > 1 

In the case c > 1/2, (6.44) is included in [10, Corollary 2.1"1. Similar remarks to 
those made for the Neumann problem at the end of the last subsection also apply 
to (6.44), namely that (6.44) gives better estimates than those of Lapidus in [I0-1 
when c < 1/2. 
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