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A B S T R A C T  

We prove that, for a metric graph different from a polygon, the spectrum 
of the Laplacian is generically simple. 

1. I n t r o d u c t i o n  

Let F be a connected finite graph; by V we denote the set of its vertices, and 

by E we denote the set of its edges. In a contrast  with a combinatorial  graph, 

each edge e is considered to be a line segment of length l(e). Sometimes, it is 

convenient to t reat  each edge as a pair of oriented edges; then, on an oriented 

edge, one defines a coordinate xe tha t  runs from 0 to l(e). If  - e  is the same 

edge, with the opposite orientation, then X-e = l(e) - x e .  If an edge e emanates  

from a vertex v, we will express it by writing v -~ e. A good survey of operators  

on metric graphs and numerous references can be found in [Ku]. 

A function r on F is a collection of functions r162 defined on each edge 

e. We say that  it belongs to L2(F) if each function r belongs to L 2 on the 

corresponding edge; then 

11r = Z Ihr 2. 
e 

The Sobolev space H 1 (F) is defined as the space of continuous functions on F 

tha t  belong to H 1 on each edge. The Laplacian on F is given by the differential 

expression - d 2 / d x ~  on each edge. To define an operator ,  one has to specify 
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the domain. For the domain, we take continuous functions that  belong to the 

Sobolev space H 2 on each edge and that  satisfy the Kirchhoff condition 

(1.1) ~-'~ ~ e  (v) = 0 
e ~ v  

for every vertex v. The operator is induced by the quadratic form 

defined on Hi (F) .  

eigenvalues 

~e ]" e dee(x) 2dx e dxe 

This operator is self-adjoint, and its spectrum consists of 

0 = Al(r) <  2(r) 5 A3(r) 5 

of finite multiplicity. The eigenvalues are the numbers for which the problem 

d 2 Ce 
(1.2) - -  + ACe = 0, 

subject to the Kirchhoff conditions (1.1), has a non-trivial solution. For the 

sake of brevity, we call {Aj(F)} the spectrum of the metric graph F. 

The question that  we address in this paper is whether generically these eigen- 

values are simple. This question has been studied for operators on manifolds 

(see [A], [BU], [BW], [U]). Let us formulate the question in more precise terms. 

We fix the combinatorial structure of F. Then the graph depends on [El pos- 

itive parameters l(e). The question is, whether for a generic choice of these 

parameters the spectrum is simple. 

If F is a polygon then our problem is equivalent to the spectral problem for 

the Laplacian on the circle of the same circumference, and positive eigenvalues 

are always double. Therefore, with no additional assumptions, the genericity 

theorem does not hold. We will show that ,  for all other graphs, the spectrum 

of the Laplacian is generically simple. 

Suppose that  v is a vertex of degree 2 in F. One can remove this vertex and 

replace two edges el and e2 incident to v by one edge of length l(el)+/(e2). It is 

easy to see that  the spectrum of the resulting graph coincides with the spectrum 

of F. Therefore, with no lost of generality, one can assume that  a graph does 

not have vertices of degree 2. In the example from the previous paragraph, all 

vertices are of degree 2; if all of them are removed, one obtains a circle that  we 

consider to be a metric graph with no vertices. 
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THEOREM: Let F be a connected metric graph that is different from a circle. 
Suppose that it does not have vertices of degree 2. Let 34 be the set in the 
parameter  space R;  El of metrics, for which all eigenvalues o f f  are simple. Then 
the set 34 is residual. 

2. P r o o f  o f  t h e  T h e o r e m  

First, if ]E I = 1 then we are dealing with the spectrum of the Neumann Lapla- 

clan on a segment, which is known to be simple. Therefore, we assume that  

IEI _> 2. 
It is well known that  a genericity theorem follows from the fact that  a multiple 

eigenvalue can be split by a small perturbation. Let us formulate it precisely. 

Suppose that  I is a multiple eigenvalue of F for a certain value of (l(e)), and 

there are no other eigenvalues of F in an e-neighborhood of ,~. We say that  it 

splits by a small perturbation of parameters if there exists a continuous curve 

(l(e, t)) in the parameter  space such that  l(e, O) = l(e), and there are at least 

two eigenvalues of F in an e/2-neighborhood of ,~ for sufficiently small values of 

t different from 0. 

LEMMA: Suppose that the edge lengths l(e) are rationally independent. Then 
every multiple eigenvalue of r splits. 

First, we deduce the theorem from the lemma. The argument is standard, 

and we give it for the sake of completeness. Let .Adk be the set of all (l(e)) for 

which the first k eigenvalues of P are simple. The eigenvalues are continuous 

functions of l(e), so the set Adk is open. We will show that  it is dense. Let 

(l(e)) E I~1+ El. Fix 6 > 0. We have to show that  there exists (l'(e)) E Mk 

such that  [(/(e)) - (/'(e))[ < 6. Let Aj be eigenvalues of (F, (l(e))) and X} be 

eigenvalues of (F, (l'(e))). There exist numbers e > 0 and 51 > 0 such that  if 

[(/'(e)) - l(e))[ < 61 then 

(1) 2e is smaller than the smallest distance between different eigenvalues Aj, 

j = 1 , . . . , k ;  

(2) all eigenvalues A} that  are smaller than Ak + e lie in the union of 

(,,~j -- e, ,,~j -t- e) ,  j ---- 1 , . . . ,  k; 

(3) the total multiplicity of the eigenvalues ~ that  lie in (Aj - e, ~j + e), 

j = 1 , . . . ,  k, equals the multiplicity of Aj. 

Let 52 = min{6,51}. Choose ([(e)) such that  I([(e)) - (l(e)) I < 62/2 and the 

numbers [(e) are rationally independent. If one out of the first k eigenvalues 

of (F, ([(e))) is multiple then, by the Lemma, one can make it split and find 
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a point ([l(e)) in a <~2/4-neighborhood of ([(e)) such that  the number of differ- 

ent eigenvalues out of the first k eigenvalues of (F, ([~(e))) is bigger than it is 

for (F, ([(e))). Because the set of points in ]~ IEI with rationally independent 

components is dense, one can assume that  the numbers [~(e) are rationally in- 

dependent. If one out of first k eigenvalues of (F, (it(e))) is still multiple, one 

repeats the procedure, and, after at most k steps, one gets a point (l'(e)) E fl4k 
that  lies in a ~l-neighborhood of (l(e)). We have proved that  the set fl4k is 

open, dense. Therefore, the set f14 = NkA4k is residual. 

Proo[of  the Lemma: Let A be a multiple eigenvalue of (F, (l(e))). By MA we 

denote the corresponding space of eigenfunctions. Fix an edge e0 and consider 

a family of metric graphs with l(eo, t) = l(eo) + t; the lengths of all other edges 

are kept unchanged. To apply the perturbation theory (e.g., see [Ka]), it is 

convenient to reduce the problem to the problem about a family of operators on 

a fixed metric graph. To do the job, for small values of Itl, we introduce a family 

of diffeomorphisms f ( t )  : [0,/(e0)] --+ [0, l(eo) + t] that  depends on t smoothly, 

and such that  

(1) f (0 ,x)  = x; 

(2) f ( t ,  x) = x when 0 < x < l(eo)/3; 
(3) f ( t ,  x) = x + t when 21(eo)/3 < x < l(eo). 

Let g(t, x) be the family of inverse diffeomorphisms. We are using this family, 

rather than doing a linear rescaling, to keep the Kirchhoff conditions (1.1) un- 

changed. The Laplacian on (F, (/(e, t))) is unitarily equivalent to the operator 

A(t) on (F, (l(e))) given -d2 /dx  2 on the edges e # eo, 

(Og(t  ' d 2 
- \ -~x  f(t'x))-d--xx) 

on the edge eo, and boundary conditions (1.1). 

The question of whether a multiple eigenvalue A splits in linear approximation 

is equivalent to the question of whether the quadratic form (Ar r is given by 

a scalar matrix on M~. By a dot we denote the t-derivative evaluated at t = 0. 

Let us compute this quadratic form. First, (02g/Ox2)(O, x) = 0, so 

t=0- O--S~ ~U'x); 

we denote this function by h(x). The function h(x) vanishes when x is close to 

0 or to l(eo) because of conditions (2) and (3) on ]( t ,  x). We claim that  

l(e0) 
(2.1) h(x)dx = -1.  

J0 
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In fact, if y = g(t, x) and 0 < t < l(eo)/3 then 

~ol(eo)--t l(eo) g~ 
l(eo) - t = dy = f 0 X) dx. JO 

To get (2.1), one differentiates the last equality in t and sets t = 0. The operator 

.4 is given by 0 on all edges e r eo and by 

d 2 d h ( x ) d  
- h ( x )  dx 2 dx 

on eo. Therefore, for r E Mx, 

(2.2) (Ar r = f h(x)[(r + 
J e  o 

Here, we have used (1.1), and we have done integration by parts. On e0, the 

function r is of the form 

(2.3) r = C(r e0) s in(v~x + s(r e0)) 

where C(r eo) _> 0 and s(r eo) are constants. Then, (2.1) and (2.2) imply 

(2.4) (,J,r r = -AC(r  eo) 2. 

From this point, we assume that  dim M~ _> 2, and the eigenvalue A does 

not split. This assumption will lead us to a contradiction. The quadratic form 

(Ar r is given by a scalar matrix on M~, so 

(2.5) c(r e) = C(r e) 

for every edge e E E and for every pair of eigenfunctions r r E M~ such that  

I1r = I1r = 1. Let C(e) = C(r where r E M~ and I1r = 1. 
First, we show that  

(2.6) C(e) # O, e E E. 

In fact, suppose that  C(e) = O. Let v be a vertex incident to e, and let el 

be another edge that  has v as its endpoint. Every normalized eigenfunction 

r e M~ vanishes at v, so it is of the form •  sin(yr~x) on el. Let r be a 

smooth one-parameter family of normalized functions from M~. All of them are 

equal to each other on el, so r = 0 on el. However, r E M~. Therefore, 

C(el) = 0. We conclude that  if C(e) = 0 then C(el)  = 0 for every edge el 
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that  is adjacent to e. Then C(~) = 0 for every edge ~ E E because the graph is 

connected. This is impossible. The contradiction proves (2.6). 

Let r and r be two normalized functions from M~ that  are orthogonal to 

each other. Consider the family r = cos tr + sin tO. Let v be a vertex. If 

r = r = 0 then the functions r and ~b coincide on every edge e that  is 

incident to v (see the previous paragraph). Then, r  r = 0 on e, and C(e) = 0, 

which contradicts (2.6). Therefore, for almost all values of t, the function r 

does not vanish on all vertices. By redefining r and ~, one can assume that  the 

function r does not vanish on all vertices. 

On an edge e 

(2.7) r xe) = C(e) sin( v~xe  + s(t, e) ) 

(see (2.3)). Therefore, 

(2.8) Ct(t, xe) = s t ( t ,e)C(e)cos(v~xe + s(t,e)), x e e. 

The function Ct belongs to M~, and it is normalized. Its amplitude equals C(e). 
We conclude that  

(2.9) 

and, therefore, 

(2.10) 

d8 
= + 1 ,  

r Xe) = C(e) sin(v/-~Xe + s(e) + t) 

Let v be a vertex, and let e be an edge that  emanates from v. We differentiate 

(2.8) with respect to xe, and set t = 0, xe = 0: 

(2.11) d--~--C (v) = -st(O, e)C(e)v/~sin s(O, e) = -st(O, e)x/'~r 
dxe 

From the last equality, from the fact that  r ~ 0, and from (1.1), we conclude 

(2.12) E s t ( O , e ) = O .  
e~v 

Equations (2.9) and (2.12) imply that  the degree of each vertex is even. The 

graph does not have vertices of degree 2, so the degree of each vertex is at least 

4. Moreover, it follows from (2.11) that  there exist numbers a(v) > 0 such that  

(dr = a(v) for half of the edges that  emanate from v (we call these 

edges v-positive), and (dg,/dx~)(v) = - a ( v )  for the second half of the edges that  

emanate from v (we call this edges v-negative). Here, the edges are thought to 
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be oriented, and a loop that emanates from v and terminates at v is counted 

twice, as e and - e .  

We call two (oriented) edges, e and e', that  emanate from the same vertex 

v neighbors if (d~ /dxe ) (v )  = - ( d ~ / d x e , ) ( v ) .  It follows from (2.10) that  then 

(dr  = - ( d r  for all values of t. We start  from a vertex 

Vl. Let el be an edge emanating from Vl. Denote by v2 its terminal vertex. 

Choose an edge e2 that  emanates from v2 such that  e2 and - e l  are neighbors. 

Continue the process. We get a sequence of vertices vj and a sequence of edges 

ej connecting vj with vj+l such that  ej+l is a neighbor of - e j .  At some point, 

we hit the same vertex twice. We assume that  vl = vk+l is the vertex that is 

repeated the first time; otherwise, we rename that  vertex by vl. All the vertices 

v l , . .  �9 ,vk are different. We map the union of edges e j,  j = 1 , . . . ,  k onto the 

interval [0, l], l = / ( e l )  + . . .  + l(ek), by the formula 

(2.13) x~, ~ l(el)  + . . .  + l ( e j - 1 )  + xe, .  

By r y) we denote the function r on P, transplanted to [0, l] according 

to (2.13). The function r  is continuous, it is differentiable because the 

adjacent edges are neighbors, and it satisfies the differential equation Cy~ + 

Ar = 0. On the interval [0,/(el)] it is given by (2.10), with xel replaced by y. 

Therefore, 

r  = C(el)  s in (v~y  + s(el)  -4- t). 

The endpoints of the interval [0, l] correspond to the same point vl on F, so 

r 0) = r l), and 

sin(s(e,) + t) = s in ( /v~  + s(el)  + t) 

for all values of t. Hence, 

and 

Iv"X ~ 2~-Z+, 

(2.14) l (el)  + . . .  + l ( ek )  = 2~A-1/2p, p E Z+. 

Now, we start  the same procedure a second time from a vertex wl. We use 

the same rules to construct a sequence of vertices wl, w2, . . ,  and a sequence of 

edges f l ,  f2 , . . . ,  with one addition: on each step, an edge should be chosen to 

be different from e l , . . .  ,ek. Because not more than two edges from O , . . . ,  ek 

are adjacent to each vertex, the degree of each vertex is at least 4, and the 

number of v-positive edges equals the number of v-negative edges, the process 
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can be continued all the way up to a moment when a repetition in the sequence 

wl, w2, . . ,  arises. Then, we get another cycle ( f l , ' " ,  fro) of neighbors, and 

(2.15) l ( f l )  + . . .  + l ( f m )  = 27rA-'/2q, q e Z+. 

The edges ej are different from the edges fi, so (2.14) and (2.15) contradict to 

the assumption of the lemma that  the numbers l(e) are rationally independent. 
| 
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