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Abstract
We show that the spectrum of the Schrödinger operator on a finite, metric graph
determines uniquely the connectivity matrix and the bond lengths, provided that
the lengths are non-commensurate and the connectivity is simple (no parallel
bonds between vertices and no loops connecting a vertex to itself). That is, one
can hear the shape of the graph! We also consider a related inversion problem:
a compact graph can be converted into a scattering system by attaching to its
vertices leads to infinity. We show that the scattering phase determines uniquely
the compact part of the graph, under similar conditions as above.

PACS numbers: 05.45.Mt, 02.40.-k, 02.70.Hm

1. Background and notations

The question ‘Can one hear the shape of a drum?’ was posed by Marc Kac [1] as a paradigm
example for a class of problems which is of fundamental importance in many physical
applications: given the quantum spectrum, can one deduce uniquely the basic interactions
or the geometric constraints which specify the system? In Kac’s original paper, this inversion
problem is formulated for Laplacians on compact domains with boundary conditions (billiards),
and in spite of approximately 50 years of active research, the complete answer is still an
enigma. If the billiard boundary is allowed to have corners, one can draw different yet
isospectral billiards [2, 3]. Isospectral microwave cavities were also constructed [4] using
the same models. Recently, it was shown that Kac’s question is answered in the affirmative
for simply connected domains with analytic boundaries with some symmetry restrictions [5].
For boundaries in intermediate classes of smoothness the answer is not known. The existence
of isospectral systems was investigated for Laplacians on closed Riemannian manifolds [6]
and for discrete Laplacians which are formed by the connectivity matrices of graphs [7]. In
both cases, elaborate techniques were devised to identify large sets of different, but isospectral,
systems. However, if the domains are analytic surfaces of revolution, the spectrum determines
the manifold uniquely [8].
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In the present paper we address yet another class of problems which go under the name
‘quantum graphs’. The Schrödinger operator consists of the one-dimensional Laplacian on the
bonds, endowed with boundary conditions on the vertices, which ensure that the spectra are
real and discrete (see [9] for a detailed discussion and list of references). These systems
recently attracted the attention of the quantum chaos community, since, in spite of their
structural simplicity, their spectra display the complexity and statistics which characterize
generic quantum chaotic systems such as billiards. Moreover, an exact trace formula [11, 12]
can be written down in terms of the periodic orbits (PO) on the graph, which is analogous to the
semiclassical trace formula for chaotic systems. So far, this exact trace formula paved the way
for the study of spectral statistics by applying combinatorial methods to PO expansions [13,14].
Here we shall show that it also provides the key to the affirmative answer to Kac’s question,
when applied to graphs.

A graph G consist of V vertices connected by B bonds. The V × V connectivity matrix
is defined by

Ci,j = number of bonds connecting the vertices i and j . (1)

A graph is simple when for all i, j : Ci,j ∈ [0, 1] (no parallel connections) and Ci,i = 0
(no loops). The valence of a vertex is vi = ∑V

j=1 Ci,j and the number of bonds is

B = 1
2

∑V
i,j=1 Ci,j . We denote the bonds connecting the vertices i and j by b = [i, j ].

The notation [i, j ] and the letter b will be used whenever we refer to a bond without specifying
a direction. Hence, b = [i, j ] = [j, i]. To any vertex i we can assign in a unique way the set
s(i) of bonds which emanate from it:

s(i) = {all bonds [i, k] : Ci,k = 1} card[s(i)] = vi. (2)

We shall refer to s(i) as a topological star, since its definition does not require any metric
information. For simple graphs,

Ci,j = Cj,i = card[s(i) ∩ s(j)]. (3)

Directed bonds will be denoted by d = (i, j), and we use the convention that the bond is
directed from the first to the second index. The round brackets and the letter d are reserved to
denote the directed bonds. The reverse bond to d = (i, j) is denoted by d̂ = (j, i). In analogy
to (2), we define the sets of directed bonds outgoing from or incoming to i:

s(i,+) = {all directed bonds (i, k) : Ci,k = 1}
s(i,−) = {all directed bonds (k, i) : Ck,i = 1} (4)

respectively. Note: card[s(i,+)] = card[s(i,−)] = vi . A directed bond d ′ is defined to
follow the directed bond d at the vertex i if d ∈ s(i,−) and d ′ ∈ s(i,+). It is convenient
to define a directed connectivity matrix F , with Fd,d ′ = 1 if d follows d ′, and Fd,d ′ = 0
otherwise. Any directed bond d = (i, j) belongs to the two sets, s(i,+) and s(j,−), and
Ci,j = card[s(i,+) ∩ s(j,−)] = card[s(j,+) ∩ s(i,−)].

We shall now define the Schrödinger operator on G, and collect a few facts which will be
used in the following. For a detailed exposition see, for example, [9]. We assign the natural
metric to the bonds, and each bond is endowed with a length Lb. The Schrödinger operator
consists of [

−i
d

dx
− Ab

]2

(5)

on all the bonds, and Ab are constants which are introduced to break the symmetry between
the counterpropagating waves on the bond. The differential operator is supplemented by
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boundary conditions which are imposed in the following way. The most general solution of
the Schrödinger equation on any bond b = [i, j ] is

ψb(x) = ad̂ei(k+Ab)x + ade−i(k−Ab)x ∀ b ∈ s(i) (6)

where d, and d̂ denote the two directions on the bond b, and ad , ad̂ are yet unspecified complex
numbers. The boundary conditions impose the relations

∀d ∈ s(i+) : ad =
∑
d ′∈s(i−)

σ
(i)
d,d ′ad ′ (7)

where the vertex scattering matrix σ (i) is a unitary, vi × vi matrix. σ (i) can be either an
arbitrary k independent unitary matrix, or of the general class of (possibly k dependent)
matrices derived from matching conditions at the vertices [9, 10]. The matrix σ (i) will be
called properly connecting if none of its matrix elements vanishes. The transition probabilities
W
(i)
d,d ′ = |σ (i)d,d ′ |2 appear in the classical dynamics analogue, which is a random walk model

on the directed bonds, with transition probablilities W(i)
d,d ′ . As an example, consider the most

commonly used and discussed quantum graphs, where the vertex scattering matrices are derived
by imposing Neumann boundary conditions at the vertices. In this case σ (i)d,d ′ = −δd ′,d̂ + 2

vi
and, but for the trivial vertices with vi = 2, these scattering matrices are properly connecting.

Combining the boundary conditions for all the vertices results in a secular equation for
the wavenumbers kn which consists of the spectrum of the Schrödinger operator. The secular
equation is

det(I − S(k)) = 0 (8)

where S(k) is a 2B × 2B unitary matrix, whose rows and columns are labelled by the directed
bond labels. It is defined as

Sd,d ′(k) = Fd,d ′ei(k+Ad)Ld σ
(i)
d,d ′ . (9)

The index i denotes the vertex at which d follows d ′, and Ld = Ld̂ is the bond length which
is independent of the direction of propagation. However, Ad = −Ad̂ , which distinguishes
between the directions of propagation. S(k) can be interpreted as a quantum evolution operator
describing the scattering of waves with wavenumber k between connected bonds. The wave
which scatters at the vertex i from d ′ ∈ si,− to d ∈ si,+ with an amplitude σ (i)d,d ′ gains the
phase (k+Ad)Ld during the propagation along the outgoing bond d. With the next application
of S(k) the wave scatters again on the vertex to which d is directed. If all σ (i) matrices are
properly connecting, the waves on G propagate between all the topologically connected bonds.
The unitarity of the matrices σ (i) guarantees that S(k) is unitary for real k. This is also why
the Schrödinger operator is self-adjoint and its spectrum is pure-point and unbounded on the
real line.

The secular equation (8), with the form (9) for S(k), leads naturally to the exact trace
formula [11, 12]

d(k) ≡
∑
n

δ(k − kn)

= L
π

+
1

2π

∑
p

(Apeiklp + A∗
pe−iklp ) (10)

where L = ∑B
b=1 Lb is the total length of G. The sum extends over all the POs on the graph,

and goes over primitive POs as well as their repetitions. The length of a PO is denoted by lp.
The coefficient Ap is a product over all the scattering amplitudes σ (i)d,d ′ , encountered along the
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PO, times the length of the primitive PO, of which p is a repetition. It is also endowed with a
phase factor exp(i

∑
AdLd). The length of a PO is

lp =
B∑
b=1

q
(p)

b Lb qb ∈ N0. (11)

The length spectrum is the Fourier transform of (10):

d(l) ≡
∑
n

e−ilkn = 2Lδ(l) +
∑
p

(Apδ(l − lp) + A∗
pδ(l + lp)). (12)

2. Hearing the shape of the graph

After reviewing the necessary background, we are in a position to formulate the answer to
Kac’s question for graphs.

Theorem 1. The spectrum of a Schrödinger operator on a metric graph determines uniquely
the graph connectivity and the length of the bonds, provided that

• the graph is finite and simple,
• the bond lengths are rationally independent,
• the vertex scattering matrices are properly connecting.

Before presenting the formal proof, we shall sketch its main idea: the length spectrum (12)
is constructed from the Schrödinger spectrum. Its singularity at l = 0 provides the total
length of the graph L, which, in turn, gives an upper bound to the individual bond lengths.
The conditions that the lengths are rationally independent, and that whenever d follows d ′

at vertex i, σ (i)d,d ′ �= 0, ensure that the lengths of all the POs which are consistent with the
graph connectivity appear as δ singularities in the length spectrum, and their corresponding
coefficients Ap do not vanish. Moreover, POsp, p′ which traverse the bonds different numbers

of times (q(p)b �= q
(p′)
b for some b in (11)) have distinct lengths. We use these facts to isolate

two classes of PO. The 2-POs of the type [d, d̂] provide the lengths of the bonds. The 4-POs
of the type [d(l), d̂(l), d(m), d̂(m)] for a fixed l and for all possible m are used to identify the
topological star at the vertex i where d(m) follows d̂(l). Once all the topological stars s(i) are
found, we apply (3) to get the connectivity. Thus, the shortest, and structurally simplest, POs
are used to extract the parameters which determine the ‘shape’ of G.

The proof of the theorem proceeds as follows:

(i) Use the spectrum to construct the sum (12). Its singular support R consists of l = 0 and
the infinitely many points lp of the form (11) on the real axis. The weight of the singularity
at l = 0 is 2L.

(ii) Generate a finite set P which consists of all the strictly positive lengths lp ∈ R, which are
less than 2L. Exclude any length which can be expressed as an integer multiple of any
other length, with a multiplier larger than 1. P is the (finite) set of lengths of primitive
POs on G, with lengths in (0, 2L].

(iii) Define the basisQ ⊂ P , which consists of the minimum number of lengths λq ∈ P such
that

∀lp ∈ P lp = 1
2

card[Q]∑
q=1

nq λq nq ∈ N0. (13)

P is a finite set, and therefore Q can be constructed in a finite number of steps. Because
of the rational independence of the bond lengths, the basis is composed of the lengths of
2-POs [d, d̂], with λq = 2Lq where Lq are the lengths of the bonds. card[Q] = B is the
number of bonds, and

∑
λq = 2L.
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(iv) In what follows we shall construct metric stars which will be shown to be in one-to-one
correspondence with the topological stars (2): define two lengths λq and λq ′ ∈ Q to be
connected if λq + λq ′ ∈ P . A length in Q cannot be connected to itself since repetitions
were excluded from P . The lengths in Q, which are not connected to any other length,
correspond to disconnected bonds, which are identified this way, and excluded from the
subsequent analysis. Given a length λr ∈ Q, consider all the clusters Cm(λr) ⊂ Q

satisfying the following requirements: (a) λr ∈ Cm(λr). (b) All the lengths in Cm(λr)
are pairwise connected. (c) Cm(λr) is maximal—adding another λs ∈ Q will violate (b).
Denote the number of Cm(λr) by N(λr). Metric stars are special clusters defined as
follows. If for some λs , N(λs) = 1 we shall define {λs} as a metric star consisting of a
single element. If card[Cm(λs)] = 2 then it is a metric star with two elements. All other
Cm(λr) are metric stars if, for any three elements λl , λm, λn ∈ Cm(λr), λl + λm + λn ∈ P .
P is pruned of repetitions. Hence, this condition excludes repeated triangular POs from
being considered as stars. Using all the λr ∈ Q as reference lengths, we construct all
the different metric stars in Q. The bond lengths are rationally independent. Thus, the
metric stars S(i) are in 1 ↔ 1 correspondence with the topological stars (2). The proof is
completed by writing the connectivity matrix in analogy with (3):

Ci,j = card[S(i) ∩ S(j)] L[i,j ] = 1
2 (S

(i) ∩ S(j)). (14)

The length spectrum can be used to get more information about the graph [15]. The coefficients
of the δ singularities provide constraints on the values of the elements of the vertex scattering
matrices. Assuming that the σ (i) are symmetric, one can determine the transition probabilities
W
(i)
d,d ′ from the coefficients of the lengths of three classes of simple POs. Denote b = [i, j ], b′ =

[i, k], b′′ = [i, l] and correspondingly d = (i, j), d ′ = (i, k), d ′′ = (i, l). They belong to the
same star. The three types of POs are [d, d̂], [d ′, d̂ ′, d, d̂], and [d ′′, d̂ ′′, d ′, d̂ ′, d, d̂], with
lengths 2Lb, 2(Lb + Lb′) and 2(Lb + Lb′ + Lb′′), with corresponding coefficients:

A[d,d̂] = 2 Lb σ
(i)

d,d̂
σ
(j)

d̂,d
(15)

A[d ′d̂ ′,d,d̂] = 2 (Lb + Lb′) σ
(i)

d ′,d̂
σ
(k)

d̂,d
σ
(i)

d,d̂ ′σ
(j)

d̂ ′,d ′ (16)

A[d ′′,d̂ ′′,d ′,d̂ ′,d,d̂] = 4 (Lb + Lb′ + Lb′′) σ
(i)

d ′′,d̂
σ
(k)

d̂,d
σ
(i)

d,d̂ ′σ
(j)

d̂ ′,d ′σ
(i)

d ′,d̂ ′′σ
(l)

d̂ ′′,d ′′ . (17)

Dividing (16) and (17) by (15) we get ratios of the matrix elements of a single σ (i) of the form

A[d ′d̂ ′,d,d̂]

A[d,d̂]A[d ′,d̂ ′]

2LbLb′

(Lb + L′
b)

=
σ
(i)

d ′,d̂
σ
(i)

d,d̂ ′

σ
(i)

d̂,d
σ
(i)

d̂ ′,d ′

. (18)

Ratios of products of three matrix elements can also be formed. Using this information one
can construct the matrices σ (i) uniquely, up to a phase factor since the ratios of the type (18)
are invariant under a right and left multiplication by arbitrary diagonal matrices. Hence, one
obtains only absolute values: in other words, the transition probabilitiesW(i)

d,d ′ . When σ (i) are
real, LbAbmod2π can also be computed from the weights of simple POs.

3. Application to non-compact (scattering) graphs

A related inversion problem, is encountered when the compact graph is turned into a scattering
system by coupling to its vertices leads (bonds) to infinity [16]. It is assumed throughout that
each vertex can be attached to at most one lead. The definition of the Schrödinger operator
can be extended naturally to the non-compact case, and the coupling to the leads is achieved
by modifying the vertex scattering matrices to include coupling to the leads. Let N be the
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number of vertices to which leads are attached, and the leads are denoted by the index of the
vertices to which they are connected. Then, for every wavenumber k one can find a solution
to the Schrödinger equation which on the leads takes the form

ψl(x) = Il(k)e−ikx +Ol(k)e
+ikx (19)

and the outgoing amplitudes Ol(k) are related to the incoming amplitudes Il(k) by

Ol(k) =
N∑
l′=1

Tl,l′(k)Il′(k) (20)

where T (k) is the N × N scattering matrix. The conservation of flux ensures the unitarity
of T (k). An explicit expression for the scattering matrix is given in [16]. Here, we shall be
concerned with the scattering phase defined by

((k) = 1

2π i
log[det T (k)]. (21)

The scattering phase is the counterpart of the spectral counting function for compact systems.
This can be best seen by considering the function dR(k) = d((k)

dk . It assigns a normalized
Lorentzian to each scattering resonance, and it is the counterpart of the spectral density (10).
An exact trace formula for dR(k) was derived in [16]:

dR(k) ≡
∑
n

1

π

γn

(k − kn)2 + γ 2
n

= L
π

+
1

2π

∑
p

(Ãpeiklp + Ã∗
pe−iklp ) (22)

where kn − iγn are the poles (resonances) of T (k) in the complex k plane. As in the compact
case, L = ∑B

b=1 Lb is the total length of the bonds in the compact part of the graph. The sum
extends over all the POs on the compact part of the graph, and goes over primitive POs as well
as their repetitions. The length of a PO is denoted by lp. The amplitude Ãp is a product over all
the scattering amplitudes σ̃ (i)d,d ′ , encountered along the PO, times the length of the primitive PO
of whichp is a repetition. It is also endowed with a phase factor

∑
AdLd . The vertex scattering

matrices σ̃ (i) in the space of the directed compact bonds are sub-unitary (| det σ̃ (i)| � 1). To
complete σ̃ (i) to a unitary matrix a row and a column should be added to take into account the
coupling of the compact bonds to the lead. For this reason, the rows of the classical transition
matrix W̃ (i)

d,d ′ = |σ̃ (i)d,d ′ |2 do not sum up to unity, which take into account the flux which escapes

through the leads. The same mechanism is responsible also to the reduction of |Âp| relative
to the corresponding |Ap|. This accelerates the convergence of (22) and pushes its poles away
from the real axis. A length spectrum similar to (12) is obtained from the Fourier transform
of (22), and its singular support consists of 0 and the length spectrum of the compact part of
the graph. The following result can be proved using the same argument as above:

Theorem 2. The scattering phase ((k) of a non-compact metric graph, determines uniquely
the connectivity and the bond lengths in the compact part of the graph, provided that

• the graph is composed of a finite and simple compact part, with leads to infinity. A vertex
can be coupled to at most one lead.

• The bond lengths in the compact part are rationally independent.
• The vertex scattering matrices are properly connecting.

The proof follows verbatim the proof of theorem 1.
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(II)
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2a+2b
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a b
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Figure 1. Two isospectral graphs. The bond lengths are expressed in terms of the two arbitrary
lengths a and b.

4. An example of isospectral graphs

We have shown that the spectral density (for compact graphs) and the resonance density (for
scattering graphs) determine uniquely the bond lengths and the connectivity, provided that
the bond lengths are rationally independent, and the vertex scattering matrices are properly
connecting. We shall now construct a non-trivial example of two different, yet isospectral,
graphs, obtained when the requirement of rational independence is relaxed.

Extending the geometric construction of [3] we produced the pair of graphs shown in
figure 1. This is done by taking the basic shape used by Chapman to produce his figure 14,
in the limit where its width goes to zero and the resulting two arms are assigned the lengths
a and b, respectively. Their bond lengths are rational combinations of two arbitrary lengths a
and b, as shown in the figure. Neumann boundary conditions are imposed at the vertices. The
spectra of the two graphs are the zeros of the corresponding secular functions (8), which for
the present cases are

Z(I)(k) = tg(2 (a + b) k)

+
2 tg(a k) + 2 tg(b k) + tg((2 a + b) k) + tg((a + 2 b) k)

1 − (2 tg(a k) + tg(b k)) (tg(b k) + tg((2 a + b) k) + tg((a + 2 b) k))
(23)

Z(II)(k) = tg(2 a k)

× 2 tg(a k) + 2 tg(b k) + tg((a + 2 b) k) + tg((2 a + 3 b) k)

1 − (tg(a k) + tg(b k) + tg((a + 2 b) k)) (tg(a k) + tg(b k) + tg((2 a + 3 b) k))
.

(24)

We were not able to show directly that these two different functions vanish at exactly the
same values of k. However, the theorem which underlies their construction [3] guarantees this
fact.
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