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Abstract

The purpose of this text is to set up a few basic notions concerning
quantum graphs, to indicate some areas addressed in the quantum
graph research, and to provide some pointers to the literature. The
pointers in many cases are secondary, i.e. they refer to surveys in [77]
or elsewhere.

1 Introduction

We use the name “quantum graph” for a graph considered as a one-dimensional
singular variety and equipped with a differential (in some cases pseudo-
differential) operator (“Hamiltonian”). There are manifold reasons for study-
ing quantum graphs. They naturally arise as simplified (due to reduced di-
mension) models in mathematics, physics, chemistry, and engineering (e.g.,
nanotechnology and microelectronics), when one considers propagation of
waves of various nature (electromagnetic, acoustic, etc.) through a quasi-
one-dimensional system (often a “mesoscopic” one) that looks like a thin
neighborhood of a graph. One can mention in particular the free-electron
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theory of conjugated molecules in chemistry, quantum wires, dynamical sys-
tems, photonic crystals, thin waveguides, and many other applications. We
will provide the necessary references later on in this text. The paper is in-
tended to serve as a survey, a literature guide, and an introduction that could
be useful for reading other articles of this volume that are devoted to quantum
graphs and their applications. One can find surveys and collections of papers
on quantum graphs and related issues in [27, 31, 109, 123, 124, 128, 129, 140–
144, 188].

2 Graphs and metric graphs

A graph Γ consists of a finite or countably infinite set of vertices V = {vi}
and a set E = {ej} of edges connecting the vertices. Each edge e can be
identified with a pair (vi, vk) of vertices, its endpoints. In most cases of
interest, directions of the edges will be irrelevant, although it is sometimes
more convenient to have them assigned arbitrarily1. Loops and multiple
edges are allowed.

We denote by Ev the set of edges incident to the vertex v (i.e., containing
v) and will always assume that the degree (valence) dv = |Ev| of any vertex
v is finite and positive. Thus, vertices with no incident edges are not allowed
(it will be clear later that for the quantum graph purposes such vertices are
irrelevant).

We introduce now an additional structure that makes Γ a topological and
metric, rather than purely combinatorial, object.

Definition 1. A graph Γ is said to be a metric graph2, if its each edge e
is assigned a positive length le ∈ (0,∞] (edges of infinite length are allowed).

An edge e can be identified with a finite or infinite segment [0, le] of the
real line. We will fix such an identification for each edge, which introduces
a coordinate xe along it3. When this cannot lead to confusion, the subscript
e will be omitted and the coordinate will be denoted x. This defines natural

1In studies devoted to quantum chaos on graphs, it is common to count each edge
twice, i.e. with both directions.

2Sometimes the notions of a weighted graph or R-graph are used instead.
3This also introduces a preferred direction on the edge. As we have mentioned before,

in some cases it is convenient to introduce two copies of each edge, which are equipped
with opposite directions and correspondingly reversed coordinates.
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topology on the graph, which makes Γ a topological space (1D simplicial
complex). This space is the union of all edges, where the ends corresponding
to the same vertex are identified. Graph Γ can also be equipped with a
natural metric. If a sequence of edges {ej}M

j=1 forms a path, its length can
be defined defined as

∑

lj . For two vertices v and w, the distance ρ(v, w) is
defined as the minimal path length between them. It is also easy to define
the natural distance ρ(x, y) between two points x, y of the graph that are
not necessarily vertices. We leave this to the reader.

In the case of infinite graphs (i.e., graphs with infinitely many vertices),
sometimes the following additional condition of finiteness arises:
• Finite ball volume. For any positive number r and any vertex v there is
only a finite set of vertices w at a distance less than r from v. In particular,
the distance between any two distinct vertices is positive, and there are no
finite length paths of infinitely many edges. This matters only for graphs
with infinitely many edges and is usually satisfied in applications.

In some cases (e.g., when studying fractals or infinite quantum trees),
this assumption is too restrictive and needs to be abandoned.

If infinite edges are present, in most cases the following condition is as-
sumed:
• Infinite leads. The “infinite” ends of infinite edges are assumed to have
degree one. Thus, the graph can be thought of as a graph with finite length
edges with one or more additional infinite “leads” or “ends” going to infinity
attached to some vertices. This situation arises naturally for instance in scat-
tering theory. These “infinite” vertices are usually not treated as vertices, so
one can just assume that each infinite edge is a ray with a single vertex.

The graph is not assumed to be embedded into an Euclidean space (or
Riemannian manifold). In some applications such a natural embedding does
exist (e.g., in modeling quantum wire circuits or photonic crystals, see further
sections), and in such cases the coordinate along an edge is usually the arc
length. In some other applications, there is no natural embedding.

It is useful to picture a metric graph Γ as a one-dimensional simplicial
complex, each 1D simplex (edge) of which is equipped with a smooth struc-
ture, with singularities arising at junctions (vertices) (see Fig. 1).

The points of a metric graph are not only its vertices, but all interme-
diate points x on the edges as well. When we say a “function f(x) on Γ,”
we mean that the values f(x) are defined along the edges, not just at the
vertices, as is the case in discrete models. Having the coordinate x, one can
define the natural Lebesgue measure dx on Γ. The notions of measurability
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Figure 1: A metric graph Γ.

and integrability can be now introduced, which enable one to define some
standard function spaces on the graph:

Definition 2. The space L2(Γ) on Γ consists of functions that are measurable
and square integrable on each edge e and such that

‖f‖2
L2(Γ) =

∑

e∈E

‖f‖2
L2(e)

< ∞.

In other words, L2(Γ) is the orthogonal direct sum of spaces L2(e).

The finiteness of the sum condition is relevant for infinite graphs only.
Due to the presence of the coordinate x along the edges, one can discuss

differentiability of a function f on each edge (but not on the whole graph).
This leads to the following definition:

Definition 3. The Sobolev space H1(Γ) consists of all continuous functions
on Γ that belong to H1(e) for each edge e and such that

∑

e∈E

‖f‖2
H1(e) < ∞.

The continuity requirement in the definition of the Sobolev space H1

means that the functions on all edges adjacent to a vertex v assume the same
value at v. This is a natural condition for one-dimensional H1-functions.
However, there seems to be no natural definition of Sobolev spaces Hk(Γ)
of order k higher than 1, due to the lack of natural conditions at vertices.
As we will see, these conditions might be different for different Hamiltonians
(see details later on in the following sections). Again, the finiteness of the
sum condition is superfluous, unless the graph is infinite.
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An interesting moduli space of metric graphs4 with a fixed fundamental
group was introduced twenty years ago in [56] (see also [34, 136] and the
survey [210]). It was used for studying outer automorphisms of free groups
(that is why the name “Outer space” is common). In particular, various
natural compactifications of this space have been introduced and studied.
Although this space has never been used in quantum graphs research, the
author has a feeling that in some problems its use might become beneficial.

3 Quantum graphs

In order to make a metric graph a quantum one, an additional structure is
needed: a differential (or sometimes more general) operator (Hamiltonian)
on Γ, which is mostly, but not always, required to be self-adjoint. The most
frequently studied operators of interest are acting as follows:
the negative second derivative

f(x) → −d2f

dx2
, (1)

a more general Schrödinger operator

f(x) → −d2f

dx2
+ V (x)f(x), (2)

or a still more general magnetic Schrödinger operator

f(x) →
(

1

i

d

dx
− A(x)

)2

f(x) + V (x)f(x). (3)

It is clear that the definition of such an operator is not complete, till its do-
main is described. For “decent” potentials V and A, the natural requirement
coming from the standard ODE theory is that f belongs to the Sobolev space
H2(e) on each edge e. What is still missing, is having appropriate boundary
value conditions at the vertices (vertex conditions). We will address these
in the next section.

Possibilities of more general scalar or matrix differential or pseudo-differential
operators will be mentioned at a later stage. We will concentrate here on the
most common scalar second order differential operators, and for simplicity of
exposition on (1).

4The name R-graphs was used there.
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Definition 4. A quantum graph is a metric graph equipped with the oper-
ator H (Hamiltonian) that acts as the negative second order derivative along
edges5 and is accompanied by “appropriate” vertex conditions.

4 Vertex conditions

We will describe now what kind of boundary conditions one can add to the
differential expression (1) in order to create a “reasonable” operator. In most
cases, being “reasonable” will mean being self-adjoint.

Standard Sobolev trace theorems say that a function f ∈ H2(e) and its
first derivative have correctly defined values at the endpoints of the edge e.
Already the second order derivatives of H2 functions do not have traces at
the vertices. It is thus clear that the vertex conditions may involve only the
values of f and df/dx at a vertex v. In principle, the conditions can mix the
values at different vertices (e.g., periodicity condition for a function f on a
segment e does exactly that). We, however, will concentrate at the moment
on the local vertex conditions only, i.e. those that involve the values of
functions and their derivatives at a single vertex at a time. We will see soon
that the general, non-local, case can be reduced to the local one.

To avoid some technical details, we restrict ourselves here to finite graphs.
I.e., we assume that the number of edges |E| (and hence the number of ver-
tices |V |) is finite. The edges are still allowed to have infinite length. One
can find discussion of infinite graphs in [47, 75, 145, 150, 180, 204, 205], as well
as in Section 7.3.

A typical vertex condition is what is often called the “Kirchhoff”6 condi-
tion:











f(x) is continuous on Γ
and

at each vertex v one has
∑

e∈Ev

df

dxe

(v) = 0
. (4)

Here the sum is taken over all edges e incident to the vertex v and the
derivatives are taken in the directions away from the vertex (we
will call these “outgoing directions”)7. Sometimes (4) is called by the more

5More general Hamiltonians also arise and will be discussed later in this text.
6This name, albeit often used, is not too appropriate.
7We will adhere to this agreement about outgoing differentiations in all cases when

these conditions are involved.
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appropriate name Neumann condition (to satisfy all the parties, we will
use the conciliatory name Neumann-Kirchhoff conditions). Indeed, at
the “loose ends” (vertices of degree 1) it turns into the actual Neumann con-
dition. Besides, as the Neumann boundary condition for Laplace operator,
it is natural. I.e., as we will see later, the domain of the quadratic form
of the corresponding operator does not require any conditions on a function
besides being in H1(Γ) (and thus continuous). Another useful remark is that
under the boundary conditions (4) one can eliminate all vertices of degree 2,
connecting the two adjacent edges into one smooth edge.

For local vertex conditions, it is sufficient to address the problem of de-
scribing the conditions for a single junction of d edges at a vertex v (a “star
graph”). Since along each edge our operator acts as a second order operator,
one expects to establish two conditions per an edge, and hence at each ver-
tex the number of conditions must coincide with the degree d of the vertex.
As we have already mentioned, for functions in H2 on each edge, the condi-
tions may involve only the boundary values of the function and its derivative.
Then the most general form of such (homogeneous) condition clearly is

AvF (v) + BvF
′(v) = 0. (5)

Here Av and Bv are d×d matrices, F (v) is the column vector (f1(v), ..., fd(v))t

of the values at the vertex v that function f attains along all edges incident
to v (e.g., if f is continuous, all these values will be the same), and F ′(v) =
(f ′

1(v), ..., f ′

d(v))t is the column vector of the values at v of the derivatives
taken along these edges in the outgoing directions. The rank of the d × 2d
matrix (Av, Bv) must be equal to d (i.e., maximal) in order to ensure the
correct number of independent conditions.

One can describe completely all conditions (5) that guarantee self-adjointness
of the resulting operator. This can be done by either using the von Neumann
theory of extensions of symmetric operators (as for instance described in
[6]), or by its more recent version that amounts to finding Lagrangian planes
with respect to the complex symplectic boundary form that corresponds to
the maximal operator (see for instance [66–68, 116, 176, 182, 189] for the ac-
counts of this approach that goes back at least as far as [169]). The next
theorem contains three different descriptions of all self-adjoint vertex con-
ditions. It combines the results from [104, 116, 128, 144]. Experience shows
that all three of these descriptions are useful in various circumstances.
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Theorem 5. Let Γ be a metric graph with finitely many edges. Consider the

operator H acting as − d2

dx2
e

on each edge e, with the domain consisting of

functions that belong to H2(e) and certain local vertex conditions involving
vertex values of functions and their derivatives. The operator is self-adjoint,
if and only if the vertex conditions can be written in one (and thus any) of
the following three forms:

A Conditions (5) at each vertex, where {Av, Bv | v ∈ V } is a collection of
matrices of sizes dv × dv such that

• The dv × 2dv matrix (Av Bv) has the maximal rank.

• The matrix AvB
∗

v is self-adjoint.

B For every vertex v of degree dv, there exists a unitary dv × dv matrix Uv

such that the vertex conditions at v are

i(Uv − I)F (v) + (Uv + I)F ′(v) = 0, (6)

where I is the dv × dv identity matrix.

C For every vertex v of degree dv, there are two orthogonal (and mutually
orthogonal) projectors Pv, Qv operating in Cdv and an invertible self-
adjoint operator Λv operating in the subspace (1 − Pv −Qv)Cdv (either
Pv, Qv, or Cv := 1−Pv −Qv might be zero), such that the functions f
in the operator domain satisfy at each vertex v the following boundary
conditions:











PvF (v) = 0 - the “Dirichlet part”,

QvF
′(v) = 0 - the “Neumann part”,

CvF
′(v) = ΛvCvF (v) - the “Robin part”.

(7)

Remark 6.
1. It is not hard to notice that the representation (5) of vertex conditions

is not unique: multiplying matrices A and B from the left by any invertible
matrix C does not alter the conditions. On the other hand, (6) or (7), which
clearly are particular cases of (5), parametrize conditions uniquely.

2. Equivalence of (6) and (7) is rather straightforward. It is also not hard
to show that (5) can be reduced to (6) or (7).
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Vertex conditions can be described also in a different manner, usually
adopted in studying quantum chaos on graphs [109, 132, 133]. It involves
prescribing how waves scatter at each vertex. One can find discussion of
relations between these descriptions and of the ones in the theorem above in
the paper [25] in [77].

4.1 Quadratic form

It is easy to describe the quadratic form of the operator H corresponding
to the (negative) second derivative along each edge, with self-adjoint vertex
conditions written in the form (C) of the preceding theorem.

Theorem 7. The quadratic form h of H is given as

h[f, f ] =
∑

e∈E

∫

e

| df

dx
|2dx +

∑

v∈V

〈ΛvCvF, CvF 〉, (8)

where 〈, 〉 denotes the standard hermitian inner product in C
dim Cv . The do-

main of this form consists of all functions f that belong to H1(e) on each
edge e and satisfy at each vertex v the condition PvF = 0.

Correspondingly, the sesqui-linear form of H is

h[f, g] =
∑

e∈E

∫

e

df

dx

dg

dx
dx +

∑

v∈V

〈ΛvCvF, CvG〉. (9)

4.2 Examples of boundary conditions

In this section we list some examples of vertex conditions that arise rather
often.

4.2.1 δ-type conditions

These vertex conditions are defined as follows:










f(x) is continuous on Γ
and

at each vertex v ,
∑

e∈Ev

df

dxe

(v) = αvf(v)
. (10)

Here αv are some fixed numbers. One can recognize these conditions as an
analog of conditions one obtains for the Schrödinger operator on the line
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with a δ potential, which explains the name. The self-adjointness condition
is satisfied if and only if all numbers αv are real. When αv = 0, one arrives
to the previously considered Neumann-Kirchhoff conditions.

4.2.2 δ′-type conditions

These are similar to the δ-type ones, with the roles of the vertex values of
functions and their derivatives switched:











The values df

dxe

(v) are independent of e at any vertex v.

and

at each vertex v ,
∑

e∈Ev

fe(v) = αv
df

dxe

(v)
. (11)

When dv = 2, these conditions correspond to the symmetrized version of what
is usually called δ′ conditions at a point. The true counterpart is provided
in [71].

4.2.3 Decoupling conditions

There exist vertex conditions that essentially split the graph into unrelated
edges. One can consider for instance the vertex Dirichlet conditions,
that force the functions from the domain of the operator to vanish at all
vertices. Then the operator is the direct sum of the operators on each edge e
with Dirichlet conditions at the ends. Similar thing happens if one enforces
vertex Neumann conditions (not to be mixed up with the Neumann-
Kirchhoff conditions), requesting that derivatives along each edge vanish at
the vertices. In both these cases, the topology of the graph is irrelevant from
the quantum graph point of view.

4.3 Non-local conditions and turning a quantum graph
into a single “rose”

The above discussion of the decoupling conditions leads to the understanding
that the whole topology of the quantum graph is contained in the vertex
conditions only. In particular, one can identify all vertices of a quantum
graph into one “super-vertex” v0, so the graph becomes just a “rose” of
several petals (each edge bends into a loop), and all vertex conditions are
written at this single vertex (see Fig. 2). If one starts with some special type
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Figure 2: Graph Γ turned into a single “rose.”

of vertex conditions, for instance Neumann-Kirchhoff ones, this procedure
will not preserve this special type. On the other hand, if one needs to work
with most general vertex conditions, then one can as well assume that the
graph is just a rose of several loops at a single vertex. This also shows
that non-local conditions can be turned into local ones at this single “super-
vertex”, and thus description of self-adjoint local conditions given in Theorem
5 can be applied to non-local conditions as well.

4.4 Non-selfadjoint conditions

It is sometimes needed to consider more general Hamiltonians than the self-
adjoint ones. For instance, one might be interested in accretive or dissipative
Hamiltonians. The paper [131] in [77] provides criteria under which the
vertex conditions lead to such operators.

4.5 Conditions involving spectral parameter

Sometimes vertex conditions arise that involve the spectral parameter λ.
This usually happens when the ideal vertex corresponds to an object with
some internal structure in a real world problem, see [79, 80, 140, 147, 151] for
various examples.
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4.6 Realization of vertex conditions

It is an interesting, and not completely resolved question of which of all
possible vertex conditions can arise in practical problems leading to quantum
graph models. See, for instance, [51, 70, 87] for some partial results.

5 Motivations for quantum graph models

As it has already been mentioned, quantum graph models (often under differ-
ent names, e.g. quantum networks) come from various areas of mathematics,
physics, and engineering, e.g. see the survey [140] for details. Here we just
provide some token (and incomplete) pointers to applications in dynamical
systems and probability theory [93–95], spectral theory of differential oper-
ators on manifolds and in singular domains [53, 64, 65], chemistry (including
studying carbon nanostructures) [9, 73, 111, 112, 126, 127, 149, 192, 197, 198],
superconductivity theory [8, 61, 194–196], photonic crystal theory [14, 89, 90,
139, 146, 147, 177], microelectronics and waveguide theory [78, 82, 84, 88, 122,
135, 161, 162, 164, 184, 185, 213], biology [48, 49, 171], acoustics [42], quantum
Hall effect [41], and many others. Another reason for studying quantum
graphs is that they often offer a simplified, but still non-trivial models for
complex phenomena, such for instance as electron propagation in multiply
connected media [11, 13], Anderson localization [1–5, 76, 120], quantum chaos
[109, 124, 132–134], and some problems of quantum field theory [19, 28, 101–
103, 105, 211]. Quantum graph (also called quantum network) models have
also been used for quite a while as toy models for quantum mechanics [166].

6 Justification of the quantum graph model

for waves in narrow branching media

One of the most important sources of quantum graphs is an attempt to model
waves of various nature (acoustic, electromagnetic, electron, etc.) propagat-
ing in thin (often mesoscopic or nano-scale) branching media by waves prop-
agating on graphs. Mathematically speaking, one deals with a partial differ-
ential operator (say, Laplace operator, or more general Schrödinger operator
with Dirichlet or Neumann boundary conditions) in a narrow branching do-
main that resembles a fattened graph (see Fig. 3). Since studying such an
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Figure 3: A narrow branching domain (shaded) with the approximating
graph (dotted lines.)

operator is very hard both analytically and numerically, one wonders whether
one can approximate properties (e.g., the spectrum) of the operator by those
of an operator on a graph itself. This turns out to be a highly non-trivial
question, which has attracted attention of many researchers. Survey [110]
in [77] provides a nice overview of the exciting recent developments in this
problem and of the mathematics involved, as well as comprehensive refer-
ences.

7 Spectral properties

Among the properties of quantum graph Hamiltonians that have attracted
most attention are those related to their spectra: the types of spectra that
can arise, spectral gaps, spectral asymptotics and statistics, regular and gen-
eralized eigenfunctions, scattering theory, etc. In this section, we will glance
over the various topics that have been considered.

7.1 Finite graphs

In the case of a compact graph (i.e., a finite graph with all edges of a fi-
nite length), standard Sobolev embedding theorems imply discreteness of
the spectrum (see, e.g., [144] for this trivial folklore result). One of the main
achievements have been explicit trace formulas that can be derived for the
quantum graph case and which are the cornerstone for many further develop-
ments, e.g. inverse problems and quantum chaos studies. See, for instance,
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[109, 132–134, 193, 212] and the survey [32] in [77].
Another large area of research is “quantum chaology” on quantum graphs,

which deals with the spectral statistics of quantum graph operators. It is
surveyed in [109], as well as in [124] in [77].

Generic and extremal properties of quantum graph spectra, e.g. simplicity
were studied in [98, 99].

Determinants of quantum graph Hamiltonians are considered in [7, 100].
Index theorems for quantum graphs in relation to heat kernel asymptotics

were considered in [104].

7.2 Finite graphs with infinite leads attached

Assume now that several infinite leads are attached to a compact graph. One
can think of this situation as of a simple “star graph”, where an “obstacle”
(a compact graph) is inserted into the vertex. Then the natural questions
to study are about limiting absorption and scattering. These have been
addressed in quite a few publications, e.g. in [106, 107, 130, 160, 174–176,
179, 183]. One of the simple but crucial ideas in this topic in particular, and
in quantum (as well as combinatorial) graph research in general, is usage
of the so called Dirichlet-to-Neumann map that enables one to eliminate the
scatterer sitting at the vertex and replace it with an energy dependent vertex
condition, see for instance [92, 145, 161, 179] for the quantum and [113] for
the combinatorial graph case. This trick, also well known in matrix theory as
Schur complement and in physics as Feshbach formula, is particularly useful
when treating self-similar (e.g., fractal) structures. It is also responsible for
the “decoration” mechanism for spectral gap opening, discussed below.

7.3 Infinite graphs

The case of an infinite quantum graph (i.e., a graph with infinitely many
edges), even under the finite ball volume condition, is rather complex and
not much can be said about it in general. For instance, all kinds of spectra
can arise: pure point, singular continuous, and absolutely continuous. There
are only a few general things that can be established. First of all, due to
the presence of continuous spectrum, one cannot test whether a given point
λ belongs to the spectrum by checking existence of a corresponding eigen-
function. However, there exist two types of PDE theorems that help with
this difficulty, allowing one to test the spectrum by looking for generalized

14



eigenfunctions, i.e. those that do not decay fast enough (or do not decay
at all) to be true eigenfunctions.

The first type are the generalized eigenfunction expansions (see [24, 202]
and references therein) which say that under some conditions on a self-adjoint
partial differential operator in Rn, there exists a set of values of λ of the full
spectral measure and for each point of this set a generalized eigenfunction
of a controlled (usually polynomial) growth, which form a complete family
in L2. One can find a general framework of this kind of theorems nicely
described in an appendix to [202]. This general technique can be, and has
been applied to quantum graphs [120].

In a converse direction, Schnol’ type theorems [59, 108, 200] claim that
existence for some λ of a sub-exponentially growing generalized eigenfunc-
tion implies that λ is in the spectrum. A Schnol’ type theorem holds also
for infinite graphs under some mild conditions [145]. Notice that Schnol’
theorem needs to be transferred from PDEs in Rn to infinite graphs with
some modification [145]. Direct transfer would lead to the requirement that
the volume of the ball of radius r grows sub-exponentially with the radius,
which would exclude the case of trees.

Another statement that does not depend on the specific structure of an
infinite graph is the “decoration” method of gap opening, due to [199] (in
the combinatorial case)8. Assume that one “decorates” a combinatorial or
quantum, finite or infinite graph Γ0 by attaching to its each vertex a fixed
finite graph Γ1 (Fig. 4). Then, under mild conditions, the spectrum of the so

Figure 4: Two types of “decorations” of a graph Γ0. On the left, a copy of Γ1

is attached to each vertex of Γ0. In the one shown on the right, each vertex
of a regular graph Γ0 is replaced by a fixed graph Γ1.

8Some indications of the presence of this effect were discussed previously in [12, 182]
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decorated graph has mandatory gaps near the eigenvalues of the decoration.
The reason is that one can eliminate the decorations, as it was described be-
fore, by replacing them with their Dirichlet-to-Neumann maps. These maps
depend on the spectral parameter in a singular way: they are meromorphic
with poles on the spectrum of the decoration. This introduces a vertex “po-
tential” that blows up at some points, thus preventing the spectrum from
appearing near these points. One can find the details for the combinatorial
case in [199] and for the quantum one in [145].

These are probably the only general results about spectra of infinite quan-
tum graphs that are known to the author. However, for special subclasses of
infinite graphs, a more detailed analysis is possible, which usually dwells on
some kind of a symmetry.

7.3.1 Radial trees

In the case when the graph is a rooted tree, whose properties (degrees of
vertices and lengths of edges) depend only on the distance from the root, a
simple harmonic analysis is possible, which essentially reduces the problem
to a weighted ODE problem on the half line. One can find the corresponding
results in [167, 168, 203–205].

7.3.2 Periodic graphs

If an abelian group acts freely and co-compactly on the graph, abelian har-
monic analysis (akin to the standard Floquet theory for PDEs [63, 138, 191])
is possible, which proves completeness of the so called Floquet-Bloch gen-
eralized eigenfunctions, the band-gap structure of the spectrum, Liouville
type theorems, etc. There are some differences with the continuous case,
though. For instance, while in the periodic elliptic PDE case the spectrum is
absolutely continuous [138, 191], this is not true anymore in the graph case,
where compactly supported eigenfunctions arise [137, 145]. Also, localized
perturbations of periodic structures and operators can lead to existence of
eigenvalues embedded into the continuous spectrum, which does not happen
in the PDE case. One can find these and other discussions of periodic graph
problems in [12, 22, 69, 71, 86, 92, 118, 137, 139, 145–149, 178].
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7.3.3 Other classes of infinite graphs

There are studies of spectral properties on some other classes of infinite
combinatorial and quantum graph structures, such as the so called limit
operators, operators of quasi-crystal type, random operators, etc. (e.g., [1–
5, 76, 114, 120, 190] and references therein).

7.4 Inverse problems

One can ask the natural question, analogous to the famous problem of spec-
tral geometry “Can one hear the shape of the drum?” In the quantum graph
setting, the question is of whether one can reconstruct the topology, ver-
tex conditions, and potentials of the Hamiltonian of a finite quantum graph
from the spectral data, or, if some infinite leads are attached, from scatter-
ing data. It is known that in general this is impossible (see [23, 33, 153]).
However, the beautiful construction of [115] shows that “one can hear the
shape of a quantum graph” if one assumes rational independence of edges’
lengths. See also [17, 18, 45, 97, 152, 187, 214] for the control theory approach
and other discussions of the inverse problem.

7.5 Nodal domains

An important part of spectral theory of differential operators is studying
nodal domains of eigenfunctions of a differential operator with discrete spec-
trum. In dimension one, i.e. on a finite interval, this is done by the well
known oscillation theorems that essentially claim that the nth eigenfunction
has n nodal domains. In higher dimensions, this becomes an upper bound
(and not a sharp one) for the number of nodal domains [55, 119]. Many
“simplest” questions still do not have their answers, e.g. that the number of
nodal domains cannot be bounded over the whole spectrum, or that the nodal
set for the second eigenfunction in a simply-connected domain always hits
the boundary (Payne conjecture). Many researchers have been interested
in studying nodal domains of eigenfunctions on combinatorial or quantum
graphs. Recently, counting of nodal domains was suggested as a tool to re-
solve the problem of isospectrality of non-isomorphic graphs. See [26, 30] and
[15] in [77] for surveys, recent results, and references.
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7.6 Relations to discrete operators

This introductory survey is devoted to the new area of quantum graphs and
their spectra. On the other hand, the combinatorial counterpart of this
theory, which is sometimes called discrete geometric analysis, is a rather
well established topic (see e.g., books [29, 52, 54, 57, 58, 207] and the surveys
[121, 163, 208]). One wonders whether there is a relation between the two.
The answer is a “yes,” although the relation is not always straightforward.

We will show now how spectral problems for quantum graphs can some-
times be transformed into the ones for difference operators on combinatorial
graphs. This observation goes back at least to [8, 61] (see also [50, 72, 145, 180]
for more detailed considerations).

Let us consider the simplest case of Γ a finite graph (the procedure works
for infinite graphs as well, but needs to be done more carefully [180]) with
the Hamiltonian H defined as the negative second derivative with Neumann-
Kirchhoff conditions (4). Since the spectrum σ(H) is discrete, we need to
look for eigenfunctions, i.e. solutions of the equation

Hf = λf (12)

with f ∈ L2(Γ). Let v be a vertex and e one of the outgoing edges of length
le with the coordinate x counted from v. Let us denote by we the other end
of e. Then along this edge one can solve (12):

fe(x) =
1

sin
√

λle

(

fe(v) sin
√

λ(le − x) + fe(we) sin
√

λx
)

. (13)

This can be done as long as λ 6= n2π2l−2
e with an integer n 6= 0 (the formula

can be interpreted for λ = 0), i.e. when λ does not belong to the spectrum
of the operator on the edge e with Dirichlet conditions at the edge’s ends.

The last formula allows us to find the derivative at v:

f ′

e(v) =

√
λ

sin le
√

λ

(

fe(we) − fe(v) cos le
√

λ
)

. (14)

Substituting these relations into (4) to eliminate the derivatives, one reduces
(4) to a system of discrete equations that involve only the vertex values:

T (λ)F = 0. (15)

Here T (λ) is a square matrix of dimension
∑

v

dv.
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One can notice that (15) is a system of second order difference equations
on the combinatorial version of the graph Γ, where at each vertex v we
have a dv-dimensional value F (v) of the vector function F assigned. The
components of this vector are labeled by the edges adjacent to v. Notice
that if the graph is not regular (i.e., if dv is not constant throughout Γ), then
the dimensions of the vector values are changing from vertex to vertex. One
concludes that the following statement holds:

Theorem 8. A point λ 6= n2π2l
(−2)
e belongs to the spectrum of H if and only

if zero belongs to the spectrum of the matrix pencil T (λ).

This theorem shows that spectral problems for quantum graph Hamilto-
nians can be rewritten as spectral problems for some difference operators on
the combinatorial counterpart of the graph. In general, though, (15) might
look complicated. It simplifies significantly for some frequently arising situ-
ations. Indeed, if we assume that all edges are of same length l, then (15)
becomes at each vertex

∑

e=(v,w)∈Ev

fe(we) = cos l
√

λF (v). (16)

This means that λ 6= n2π2l(−2) belongs to the spectrum of the quantum graph
Hamiltonian if and only if cos l

√
λ belongs to the spectrum of the discrete

Laplace operator that maps {f(v)} into {
∑

e=(v,w)∈Ev

fe(we)}. This enables

one to transfer known spectral results from discrete geometric analysis to the
quantum graph situation. In the case of infinite graphs, though, the question
arises of whether the various types (pure point, singular continuous, abso-
lutely continuous) of the spectrum are preserved under this transformation.
The positive answer can be found in [180].

The author would like to take this opportunity to mention the often for-
gotten important paper [201], where a discrete analog of pseudodifferential
operator technique is developed with important applications to spectral the-
ory and Greens function estimates in discrete setting.

8 PDE and Control problems

Problem of boundary control of partial differential equations on graphs has
been considered by several authors, due to many applications in engineering.
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Here as the boundary of a graph one considers its vertices of degree 1. The
bottom line of these studies can be roughly summarized as follows: presence
of cycles in a graph prohibits controllability, so one tries to apply control on
trees only; on trees, one should control either all, or all but one boundary
vertices. One can find the details and references in [16, 60, 62, 154, 173] and
in the survey [10] in [77].

A variety of other PDE problems on quantum graphs have been con-
sidered, see details and references in [20, 21, 43, 44, 46, 131, 156–159, 172, 186,
188].

9 Various generalizations of quantum graphs

Many generalizations of quantum graphs have been studied due to various
applications. The operators we have considered so far were scalar (i.e., spin
was not taken into account). However, matrix operators such as Dirac
operators and Rashba Hamiltonians have also been considered, see the survey
[117] in [77] for details and references.

Differential operators of orders higher than 2 were considered, due
to the needs of photonic crystal theory, in [147].

Both photonic crystal theory and quantum waveguide theory have lead
(albeit in somewhat different manner) to the necessity of considering the
problems, where the particle is not strictly confined to a graph, but rather
attracted to it by a delta-type potential along the graph. This, in particular,
allows for tunneling between distant parts of the graph, rather than forcing
the quantum particle to move through the vertices, as in the standard quan-
tum graph theory. This explains why these systems are sometimes called
leaky graphs. One can find a detailed survey on leaky graphs in [74] in
[77] and considerations of such systems as coming from the photonic crystals
in [89, 90, 146, 147]. The leaky graph operators can usually be written as
“pseudo-differential” operators of first order on graphs [90, 147, 177].

In many applications, it is interesting to study analogs of quantum graphs
that consist of cells of a higher dimension, for instance branching surface
structures (sometimes called “open book structures”). Such necessity arises
in dynamical systems, fluid dynamics, as well as in photonic crystal theory.
It is also interesting to allow combinations of cells of different dimension,
e.g. one-dimensional edges attached to two-dimensional surfaces or three-
dimensional volumes. These are the so called multistructures. One can find
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some information on such objects in [35, 36, 81, 85, 96, 155, 159, 188], although
the theory here is not nearly as well developed as for quantum graphs.

Another interesting direction related to quantum graphs both in spirit
and in terms of some shared techniques, is analysis on fractals. One can
find basic introduction to this analysis and references in [125, 206] and a
survey of some exciting recent developments in [170] in [77].
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[78] P. Exner and H. Kovař́ık, Magnetic strip waveguides, J. Phys. A 33
(2000), no. 16, 3297–3311.

27



[79] P. Exner and O. Post, Convergence of spectra of graph-like thin man-
ifolds, J. Geom. Phys. 54 (2005), no. 1, 77–115.

[80] P. Exner and O. Post, Convergence of resonances on thin branched
quantum waveguides. J. Math. Phys. 48 (2007), no. 9, 092104, 43 pp.
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