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Abstract

A brief survey on graph models for wave propagation in thin struc-
tures is presented. Such models arise in many areas of mathematics,
physics, chemistry, and engineering (dynamical systems, nanotechnol-
ogy, mesoscopic systems, photonic crystals, etc.). Considerations are
limited to spectral problems, although references to works with other
studies are provided.
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Introduction

This article! aims to survey some parts of a field that has been emerging in the
last couple of decades, namely modeling propagation of waves in thin, graph-
like structures by differential or pseudo-differential equations on graphs. We
will be in particular concerned with the spectral behavior of the correspond-
ing operators. Although spectral problems are far from being the only ones
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studied, it is probably unrealistic to try to cover the whole range of problems
discussed in this area of research. We present the references to the litera-
ture where the interested reader can learn about other facets of the existing
studies.

The motivation for studying wave propagation in thin structures comes
from various areas of mathematics and sciences, some of which will be dis-
cussed in more detail elsewhere in this article. Here we only mention briefly
some of these topics. Historically, probably the first graph model of the type
discussed above was developed in chemistry [98, 99, 142, 162]. We address
it in more detail below in Section 2.1. One can also refer to the mesoscopic
physics and nanotechnology. Mesoscopic systems (e.g., [3, 9, 42, 67, 95, 102,
105, 134, 178]) are those that have some dimensions too small to be treated
using purely classical physics, while too large to be conveniently considered
on the quantum level only. More precisely, these are physical systems whose
one, two, or all three dimensions are reduced to a few nanometers. They
hence look as surfaces, wires, or dots and are called correspondingly quantum
walls, quantum wires, and quantum dots. While quantum dots are probably
most familiar to general scientific public, in this article we will be concerned
with circuits of quantum wires only. Such circuits, due to recent progress
of microelectronics, are subjects of intensive studies. We will also consider
thin graph-like acoustic or optical structures [16, 80, 81, 84, 117, 120, 121].
Interest in such systems comes from the thriving area of photonic crystals
(see [106, 117, 146, 165] for surveys of this topic). In this case the word meso-
scopic would be abused, since the characteristic dimensions of such systems
are normally much larger than nanometers.

One can expect that transport of electronic, electromagnetic, or acoustic
waves in thin graph-like media could be studied using some approximate
models on graphs (when the “thin” dimensions are ignored). This is exactly
the direction that we choose in this paper. Besides the ones mentioned
above, there are quite a few other cases when one wants to use a graph
model. One can think, for instance, of thin acoustic, electromagnetic, or
quantum waveguides (see e.g., [50, 67, 70, 30, 31, 131, 182]). Another option
is to use graph models as test grounds for studying the features that depend
upon or are influenced by multiple connectedness of the material, for instance
Aharonov-Bohm effect [3, 13, 15], quantum chaos [17, 23, 112, 176], Anderson
localization [11], and scattering [1, 5, 12, 54, 93, 94, 109, 110, 111, 126, 130,
140, 145]. Yet another source of such models is averaging in dynamical
systems in the presence of a slow motion in graph directions and a fast one



across the graph. Then averaging naturally leads to the models of the kind
described above. One can find a very interesting discussion of the origins of
and results on such problems in [86, 87]. There is a large variety of other
topics that also lead to differential operators on graphs (e.g., [2, 12, 29],
[32]-[36], [43], [45]-[79], [97, 127, 128, 135, 136, 137, 147, 148, 149, 166, 171,
175, 179, 180]). One should also mention books [115, 129], where important
techniques for PDE problems in thin domains are developed.

It is practically impossible to provide even a brief survey of all existing
studies of the kind described above, so according to the author’s own in-
terests, we will concentrate on some spectral problems only, while providing
references to other topics.

We would like to mention that in this article graphs are considered as one-
dimensional singular (due to presence of vertices) varieties, rather than purely
combinatorial objects, as is customary in standard graph theory. Correspond-
ingly, our graphs will be equipped with differential rather than difference
operators. In order to emphasize this difference, such graphs are sometimes
called in physics literature quantum graphs. In the mathematics literature
sometimes the name metric graphs is used. The reader should be aware, how-
ever, that there is no commonly accepted name for such objects, and in most
cases researchers use neither of the above notions. At the same time, spec-
tral theory of difference operators on (combinatorial) graphs is well developed
(e.g., [37, 40, 41, 132]) and has been used in a variety of applications from
random walks theory to solid state physics, to spectral geometry, to scatter-
ing (see for instance [25, 26, 27, 38, 39, 91, 92, 132, 138, 139, 140, 152, 181],
albeit this list is rather arbitrary and a complete list would be huge).

The article is structured as follows. We introduce the pertinent math-
ematical objects in Section 1. Then we present in Section 2 in a little bit
more detailed fashion than in this introduction some of the motivations for
studying such systems. In the next Section 3, results are described that con-
cern approximations of the spectra of the original problems by spectra of
certain graph models. Finally, some token examples are presented in Section
4 of effects one can discover using such models (these examples are far from
exhausting all known cases). We also supply a bibliography on the subject,
which in spite of being rather extensive, is probably still incomplete.



1 Main mathematical objects

As was mentioned in the introduction, we will be dealing with gquantum
graphs, i.e. with graphs considered as one-dimensional singular varieties, and
correspondingly equipped with differential (or sometimes “pseudo-differential”)
operators.

1.1 Quantum (or metric) graphs

The graphs will be interpreted as one-dimensional varieties with singularities
at the vertices, rather than purely combinatorial objects. In other words,
a graph I' with finite valences of all its vertices v; will be assumed to be
embedded into R? (albeit higher dimensional analogs also exist) in such a
way that all edges e; are sufficiently smooth (usually C? suffices) finite length
curves with transversal intersections at vertices. We also assume that every
compact domain contains only a finite number of edges and vertices. In most
cases our graphs of interest will be finite or periodic with respect to a lattice
in R?.

Figure 1: Graph I

Each edge ¢, is equipped with the arc length coordinate z; that will often
be denoted by x, which should not lead to any confusion. The functions f(x)
on I' are defined along the edges (rather than at the vertices as in discrete
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models). One can define in a natural way the space Ly(I") of square integrable
measurable functions on I'. Our spectral problems will be introduced for some
operators in this space.

1.2 Operators

The operators of interest in the simplest cases are:
the second arc length derivative

& f

f(z) — " da? (1)
a more general Schrodinger operator
d’f
flz) = —az V(z)f(z), (2)
Ty

or a magnetic Schrodinger operator

2
10 = (G - 4W) + V(@) 3
it dx

The (vector and scalar) real potentials A and V' will be assumed sufficiently
smooth and in the case of infinite periodic graphs also periodic. Precise
conditions can be found in the cited literature and partly below. In order
for the definition of the operators to be complete, one needs to describe
their domains. The natural conditions require that f belongs to the Sobolev
space H? on each edge e;, however one also needs to impose boundary value
conditions at the vertices. It is possible to describe all the vertex conditions
that make these operators self-adjoint (see [67] and references therein and also
[109, 110]). This is done either by using the standard theory of extensions
of symmetric operators, or by a more recent version of it that amounts to
finding Lagrangian planes with respect to the symplectic boundary form
that corresponds to the maximal operator (see for instance [5, 100, 126, 140,
144] for the accounts of this approach). Self-adjointness guarantees that the
quantum probability current is conserved at the graph vertices. One standard
type of such “Kirchhoff” boundary conditions is

{ f(z) is continuous on T

at each vertex v, one has ) %fj(vl) =of(u) » (4)

{jlvice;}



where the sum is taken over all edges e; containing the vertex v;, and deriv-
atives are taken in the directions away from the vertex. Here a; are some
fixed real numbers. The most common case is when oy = 0, i.e.

at each vertex v; one has ) %fj(vl) =0 - (5)

{ f(z) is continuous on T
{jlvi€e;}

There are many other plausible vertex conditions, and one of the questions
to consider is which of these conditions (if any) arise in the asymptotic limit
of a problem of interest in a thin domain.

We will also have to face more general operators, including those of higher
order, the ones with more general boundary conditions, and also “pseudo-
differential” operators (whatever such an operator on a graph could mean).

1.3 Spectral problem

We consider wave propagation through a system that looks like a narrow
neighborhood of a graph I". Such propagation can be governed by different
types of operators: Laplace (or more general Schrédinger), Maxwell, acoustic,
etc. As it has already been indicated, we will be particularly interested in
the spectra of these operators. For instance, the presence of spectral gaps is
of interest. Existence of such a gap means that waves of certain frequencies
(electrons of certain energies) cannot propagate through the system. This is
known to be one of the major considerations in the solid state theory [8] and
in the theory of photonic crystals [106, 117, 165]. It is clear that studying
these spectra in the domains of such a complex nature most probably will
turn out to be very complicated. The main thrust of this paper is to discuss
the possibility of approximating the spectra of such operators by the spectra
of appropriate operators on I', which should be much easier to study, due to
reduced dimensionality of the problem.

2 The origins of the problem

There are manifold reasons for studying the operators on graphs of the type
described in the previous section. They naturally arise as simplified (due
to reduced dimension) models in chemistry, physics, engineering (nanotech-
nology) and mathematics. We have already mentioned in particular the



free-electron theory of conjugated molecules in chemistry, quantum chaos,
quantum wires, dynamical systems, photonic crystals, scattering theory, and
a variety of other applications. We will address at some length only a few
of them, leaving it to the audience to look up the rest in the literature (the
reader can refer to the introduction for the pertinent references).

2.1 A free-electron theory of conjugated molecules

Although the origins of this approach go probably back to [142] (see the
references on p. 1566 in [162]), we will follow the formulation of the graph
model given in probably the most complete form in [162] (see also [98, 99,
142]). Some organic molecules like the one of naphthalene shown in Fig. 2,
contain systems of conjugated (i.e. alternating single and double) bonds.

Figure 2: Naphtalene molecule.

Every atom contributes three electrons for chemical binding. In the first
approximation one thinks that two of those (so called o-electrons) form bonds
that maintain the “skeleton,” or the frame of the molecule, i.e. the graph
obtained by eliminating the doubling of bonds (Fig. 3).

This “skeleton” creates a potential in which the remaining so called -
electrons (one per each atom) move through the entire structure. So, the
m-electrons can be thought of as confined to the “skeleton” graph by the



Figure 3: The “skeleton” of the naphtalen molecule.

potential. It was suggested in [162] that one can obtain a simplified approxi-
mate model for studying the motion (in particular, the spectra) of m-electrons
using a second order (ordinary) differential Hamiltonian on the skeleton I'. In
order to obtain such a model the authors of [162] assumed first that the sin-
gle particle Hamiltonian for a 7-electron is the Laplace operator (an electric
potential can also be added) in a narrow tube around I' with zero Dirichlet
condition on its boundary. The Dirichlet conditions are responsible for con-
finement of the 7 electrons to a vicinity of I'. Then the width of the tube was
allowed to tend to zero. In this case, because of the presence of transversal
modes in the narrow tube, the ground energy increases to infinity, so one
needs to subtract it to shift the spectrum back to zero. An heuristic argu-
ment was provided in [162] in order to support the claim that after the shift
the asymptotic limit of the spectrum is given by the spectrum of the second
arc length derivative on ' (1) with the boundary conditions (5). The bound-
ary conditions were interpreted as conservation of the quantum-mechanical
current density. Then this much simpler model was used for studying the
orbitals of 7-electrons.

Let us briefly address the heuristic derivation of the boundary conditions
presented in [162]. Consider a small neighborhood {2 of a junction that looks
as shown in Fig. 4 below.

Let ® be an eigenfunction of the Dirichlet Laplacian in the branching tube



Figure 4: A junction neighborhood.

and A be the corresponding eigenvalue. Then the Green’s theorem applied
to €2 together with the Dirichlet conditions on the tube’s boundary give:

_ 0
/|V(I>\2dx—Z/(I)a—ds:)\/|€[>|2dx.
— 8(13]'
¢ 0

Here z; is the axial coordinate along the jth tube. When one simultaneously
shrinks the width of the tube and diameter of 2 to zero, it was argued in
[162] that now the volume integrals tend to zero faster than the surface one,
and so in the limit one gets the condition

and hence

at the vertex. It is clear that some assumptions are implicitly applied here,
for instance that the eigenfunction does not concentrate around the vertex.
In particular, one has to exclude the possibility of existence of bound states
confined to the vertex. This is however the effect that actually does take
place (see further discussions in Section 3.2). The final conclusion of [162]
about validity of the boundary conditions (5) is incorrect, and the matter is
essentially still open.



2.2 Circuits of quantum wires

As it has been mentioned already, quantum wires (or quantum waveguides)
are quasi-one-dimensional semi-conductor or metallic objects whose other
two dimensions are reduced to a few nanometers. So one can envision a
graph I' with a ”fattened graph” domain €2; around I' of thickness d < 1
(see the figure below).

Figure 5: A ‘fattened’ graph.

Wave propagation in €2, is assumed to be governed by the Laplace op-
d

erator —Auy = — > % (or more general Schrédinger operators) with either
Dirichlet or Neumann ]conditions on 0 (i-e., either the function or its nor-
mal derivative vanishes at the boundary). Such models arise while studying
quantum and also electromagnetic and acoustic waveguides and thin super-
conducting structures (e.g., [6, 20, 30, 31, 44], [46]-[50], [67, 73, 131], [156]-
[161]).

So, now the problem is: How do the spectra of the Neumann —Ay and
Dirichlet —Ap Laplacians in ©; behave when d — 0 (i.e. in the thin domain
limit)? In particular, do they converge to the spectrum of a differential op-
erator on the graph? Some answers and open questions are given in Sections

3.1 and 3.2.
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2.3 Photonic crystals

Here the domain €2, of the previous section is assumed to be filled with an
optically dense dielectric, while the rest is filled with air. One is interested in
the behavior when d — 0 of the frequency spectra of electromagnetic waves
in such a medium, in particular whether this behavior is governed by an
operator on I'. It is rather clear that in general this is not the case, since the
waves do penetrate the air, but for some “dielectric” modes that stay mostly
inside the narrow dielectric tubes, a pseudodifferential operator on I' arises
(see details in Section 3.3 below and in [16], [80]-[85], [117, 120, 121]).

2.4 Other applications

Besides the already mentioned quantum wires, waveguide theory, supercon-
ductivity, and photonic crystal theory, there are quite a few other cases when
one wants to use a quantum graph model. We refer the reader again to
the already mentioned in the introduction studies of the adiabatic quantum
transport [13, 15], quantum chaos [17, 23, 112, 176], Anderson localization
[11], direct and inverse scattering problems [1, 5, 12, 54, 93, 94, 109, 110,
111, 114, 126, 130, 140, 145], averaging in dynamical systems [86, 87|, and a
large variety of other topics that also lead to differential operators on graphs
(e.g., [2, 12, 29], [32]-[36], [43], [45]-[79], [97, 127, 128, 135, 136, 137, 147,
148, 149, 166, 171, 175, 179, 180]).

3 Convergence results

We present here the results that guarantee convergence of the spectrum of a
problem in a thin domain to the spectrum of a problem on the graph. The
importance of such theorems lies not only in providing rigorous justification
for asymptotics, but also in finding the correct asymptotic models, since the
choice (or even existence) of such a model is sometimes far from obvious.

3.1 Neumann Laplacian

The case of the Neumann Laplacian is probably the simplest. We assume
that a finite graph I is C? embedded into R? (natural multidimensional gen-
eralizations also hold). The “fattened graph” domain €, consists of narrow
tubes along the edges joined by some neighborhoods of vertices. The tubes
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have width d x p(z), where p(z) > 0 is a C' function on the edge and z is
the arc length coordinate. Notice that the width function p is allowed to be
discontinuous at the vertices. Each vertex neighborhood is contained in a
ball of radius of order ~ d and starshaped with respect to a smaller ball of a
radius of the same order of smallness.

Figure 6: Local structure of €.
Consider the Schrodinger operator Hy in g4
1
Ha(A,q) = (5V = A(2))’ +q(@),

where the scalar electric ¢(z) and vector magnetic A (z) potentials are defined
in a fixed neighborhood of I', ¢ is of the Lipschitz class, and A belongs to
C*'. We impose Neumann conditions on 0€;.

We also consider the following operator H(A, ¢) on I' (we skip the exact
definition):

H(A _ L4 AT d AT
(A, q)f(z;) = _E(Ej — 14 (x))p(@j —iAj (z))f +qf,

where we use ¢(z) to denote the restriction of the potential ¢ to I' and A
is the tangential component of the field A to the edge e; of I'. In order to
complete the description of the operator we need to impose some boundary
conditions at vertices. These are:

1. f is continuous through each vertex.

2. at each vertex v

d i
S 5 (di— }fj) (v) =0,
{jlvee;}

Here p; denotes the function that provides the width of the tube along e;
(see the description of the domain above). So, the values p; (v) at the same
vertex can be different for different edges e; adjacent to v.
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The next theorem summarizes some of the results of [123, 124], [156]-[159],
167]:

Theorem 1 For anyn=1,2,...

lim X, (Ha(A, 9)) = M(H (A, q)),

where A, is the n-th eigenvalue counted in increasing order (taking into ac-
count multiplicities).

This result shows that the asymptotic behavior of the spectrum of Hy(A, q)
when d — 0 is dictated by the spectrum of the graph operator H(A,q).
A certain kind of resolvent convergence in the case of trees was shown in
[163, 164]. Convergence of solutions of the corresponding heat equations in
absence of potentials was shown in [86, 87].

3.1.1 Large protrusions at the vertices

We address here the case when the vertex neighborhoods are of radii decaying
slower than the width d of the tubes. One can expect that for sufficiently
large protrusions at vertices the coupling of different edges might decay and
an additional “life at vertices” can arise. The result (and the proof provided
in [123]) of Theorem 1 still holds while the exterior and interior sizes of the
vertex neighborhoods decay as d®, where « € (0.5, 1]. The situation changes
however, when o < 0.5. One can understand the threshold value o = 0.5 as
follows: when o € (0.5,1] the area of the tube around an edge behaves as
d and hence dominates the area of the vertex neighborhood, which decays
as d**. For a = 0.5 the two areas have the same order, and when o < 0.5
the vertex neighborhood area dominates. In the case when o < 0.5 the limit
operator does not act in the space Ly(I") anymore, but rather in some finite-
dimensional extension of this space that corresponds to vertex states. Let
us formulate the corresponding results of [124, 185]. We assume 2 that the
potentials are equal to zero, the edges are straight, the tubes have thickness
2d, and the vertex neighborhoods are balls of radii d .

We denote by m the number of vertices and by H,; the negative Neumann
Laplacian —Ap 4 in ©,4. Consider the space H = Ly(I')®C™ and the operator

2There is little doubt that the results hold in the more general situations considered
before in Section 3.1.
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Figure 7: A large protrusion at a vertex.

H on this space that can be described as follows: it acts on Ly(T") @ {0} as
the negative second derivative along each edge with zero Dirichlet conditions
at each vertex, and the whole space {0} @ C™ is in the kernel of H.

Theorem 2 ([124, 185]) Let 0 < o < 0.5, then when d — 0, the spectrum
of the operator Hy converges to the spectrum of H.

This theorem shows in particular that in the limit the edges completely
decouple, while some additional vertex states arise. This is not that surpris-
ing, since in the situation when the protrusions are much larger than the
tubes, a particle entering a protrusion from a tube has almost no chance to
get back, which in the limit enforces Dirichlet conditions. Besides, states
arise that are localized at protrusions, among which only the ground states
survive in the limit.

In order to tackle the borderline case o = 0.5 one needs to introduce
a slightly different operator in the same extended space H = Lo(I') & C™.
We will avoid giving the precise description of the operator, since the cor-
responding spectral problem can be rewritten onto I' itself, which results in
a problem that involves the spectral parameter in the boundary conditions
(see the theorem below).
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Theorem 3 ([124, 185]) Let a = 0.5, then when d — 0 the spectrum of the
operator Hy converges to the spectrum of the following problem on the graph:

—% =\f on each edge €;
J
f 1s continuous through each vertez v,
i, v) =2 f(y, at each verter v
dx 2
{jlmee;}

3.2 Dirichlet Laplacian

The more difficult problem of convergence of spectra of Dirichlet Laplacians
arises in mesoscopic physics (see surveys in [47, 67]). Consider the domain
g which is the parallel strip of width d along a smooth curve ' (see the
picture below).

Figure 8: A strip of width d.

One is interested in the behavior of the spectrum of the (negative) Dirich-
let Laplacian —Ap 4 in Q4 when d — 0. It is easy to see (for instance, on
the example of a linear strip) that due to the transversal modes, the spec-
trum of —Ap 4 blows up (i.e., its bottom goes to infinity) when d — 0. It
is natural hence to shift the spectrum down by the first transversal eigen-
value \; = (%)2. Changing the coordinates appropriately in order to flatten
the strip, one can derive then the following result, which we state in a very
general way (the reader should see precise formulation and a survey in [47]):

Theorem 4 [47] The spectrum of —Ap 4 — A converges to the spectrum of
the operator

@ ()’
@ a ®)

where x is the arc length coordinate on I' and y(x) is the curvature of T.
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This result is one of the reasons for studying Schrodinger operators with
potentials involving curvature (e.g., [63]). It, however, does not translate
to the case of a graph I' easily. Indeed, let us assume for simplicity that
the edges are straight. Then one expects to obtain the second arc length
derivative along the edges. The question remains whether one can impose
some boundary conditions at vertices such that the spectrum of the resulting
operator on I' provides the asymptotics of the (appropriately shifted) spec-
trum of the Dirichlet Laplacian in a thin neighborhood. As the reader might
remember, we have quoted chemistry studies [162] where it was suggested
that the right boundary conditions are (5). This conclusion, however, does
not seem correct. The first indication that one can expect trouble comes
from (6). Indeed, trying to force a smooth curve I' to turn sharply in order
to approximate an angle formed by two rays, one observes that the square
of curvature term would lead to the “square of the §-function” at the corner.
Here is another argument: the results of [10, 72, 169] show that if " is an
angle with straight sides, then the Dirichlet Laplacian has a bound ground
state, whose energy and simultaneously its distance from the rest of the spec-
trum grow to infinity when d tends to zero. This immediately shows that no
choice of boundary conditions at vertices can ever make convergence results
analogous to Theorems 1 or 4 possible. A close look at heuristic arguments
of [162] shows that they implicitly assumed the absence of states confined to
vertices, which is exactly what does occur. One can imagine, however, that
the limit operator could live on an extension of the space Ly(I") rather than
on I itself, the additional components being responsible for the vertex states.
In this case, though, the convergence must probably have different meaning
for different components of the extension. This program has not yet been
implemented.

Besides imposing Dirichlet conditions on the boundary of a narrow strip,
one can think of other ways of confining motion to a curve (a graph) I'. One
can add to the governing Hamiltonian a potential ¢V (x) that grows with the
distance from the curve and study the large coupling constant limit ¢ — oo.
Alternatively, one can consider the large coupling constant limit with a deep
potential well potential —cdr(x), where dr is the delta function supported on
['. In the case of a smooth curve (or even a higher dimensional manifold) I'
this was done respectively in [90] and [64, 65, 78, 79]. The graph case (i.e.,
in presence of vertices) has not been explored.
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3.3 Photonic crystals

We will survey here some results of the theory of photonic crystals that are
of the nature addressed in this survey. A photonic crystal, first suggested
in [107, 183] (see also [106, 117, 146, 165] for surveys of this topic), is a
periodic dielectric medium, whose properties with regard to light resemble
properties of semi-conductors with respect to electron propagation. The
governing equation is the Maxwell system in a periodic medium, which serves
here as an analog of the Schrodinger operator with periodic potential in the
solid state theory. One of the issues of particular interest is the structure
of the spectrum of the stationary Maxwell operator in a periodic medium,
in particular existence of spectral gaps (which means existence of frequency
regions in which electromagnetic waves are not allowed to propagate in the
medium). We will concentrate here on the case of 2D photonic crystals, i.e.
the ones that are periodic with respect to two variables and homogeneous
with respect to the third one. The figure below shows an example of the
cross-section of such a medium. Here the dark areas are assumed to be filled
with an optically dense dielectric, while the rest is filled with the air (or
another dielectric of low optical density).

Figure 9: The crossection of a 2D photonic crystal.

The dielectric constant is assumed to be e(z) = gy > 1 in the dark
domains of thickness d and € = 1 (air) in the white ones. The material is as-
sumed to have no magnetic properties, so the magnetic permeability p equals
1. We will be interested in this paper in the thin high contrast structures,
i.e., those where d is small and ¢ is large. Neither of these two conditions
can be easily satisfied in practice with existing optical materials (although
the situation might change, for instance in presence of metallic components).
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However, acoustic analogs of photonic crystals, which enjoy many similar
properties, allow for very high contrast materials. Besides, it has been dis-
covered that in some instances the thin high contrast approximation gives
interesting hints to the properties of more realistic media [16, 120, 121].

It is well known [104, 106] that in the 2D case there are two polarizations
of the electromagnetic waves: the one where the magnetic field is orthogonal
to the plane of periodicity (i.e., the plane of the picture above), and the
one where the electric field is directed this way. For monochromatic waves
of frequency w the Maxwell equation for these two polarizations boils down
correspondingly to the following spectral problems:

1
-V _VH=)H (7)
and
—AE = )\¢E, (8)

where A\ = (w/c)? and c is the speed of light.

High contrast and thin structure asymptotics d — 0, ¢od — oo were
considered in [16], [86]-[86], [117, 120, 121, 172] (the more realistic cases of
the finite limit of £od were treated in [86, 87, 120, 18]). It was discovered
that for the H-mode (7) the waves become increasingly “air waves,” i.e. tend
to concentrate overwhelmingly in the air, and correspondingly the spectrum
of (7) asymptotically concentrates in a small vicinity of the spectrum of the
Neumann Laplacian on one “air bubble,” thus opening large gaps in between.
However, the E-mode (8) leads to two distinct types of waves: air waves that
behave in a manner essentially similar to the one just described, and dielectric
waves that prefer to stay inside the narrow dielectric tubes (due to the total
internal reflection) and are evanescent in the air. The latter provide a much
more complicated spectrum with a very narrow bands separated by narrow
gaps of approximately the same size. One can suspect that the dielectric
waves could be governed by an operator living on the graph I' obtained when
the dielectric tubes shrink. This happens to be true.

Theorem 5 [86] After rescaling by multiplying the spectral parameter \ by
god (zooming in in order to make the small bands and gaps observable), the
spectrum of dielectric modes converges to the spectrum of the problem

—Au = \ru, 9)
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where O is the Dirac’s delta-function of the graph T' (i.e. < op, ¢ >= [ ¢pdz).
r

Although the problem (9) seems to involve the whole plane, its spectrum
in fact can be described as the spectrum of the Dirichlet-to-Neumann oper-
ator Ar on the graph I'. Let us remind the reader the construction of this
operator. Starting with a function ¢(z) on I' one uses it as the Dirichlet
boundary value to find a harmonic function v on each face of the planar
graph I' (see Fig. 10).

T +
>
] augo hu=0
{_
L L

Figure 10: Dirichlet — to — Neuman map.

When such a function u is found, it is automatically continuous through
I', while its normal derivatives do not have to be continuous. Now one takes
the jump across I' of the normal derivatives of u to get a function ¢ (z) on T'.
The “jump” here means the sum of outward normal derivatives of u from the
two faces adjacent to a given edge. Now the Dirichlet-to-Neumann operator
Ar is the operator transforming ¢ into :

Arg =1p. (10)

In the case when I' is smooth (i.e., when no vertices are present), Ar co-
incides up to a smoothing operator with 2,/—Ar (the full symbols of both
operators are the same), where —Ar is the Laplace-Beltrami operator on I'
(i.e., just the second arc length derivative). In particular, the spectra o(Ar)
and o(2v/—Ar) asymptotically coincide for high energies. This also holds
in higher dimensions [120]. In sufficiently smooth cases the spectra converge
very rapidly (see [120] for this and other related discussions). Since the spec-
trum of 24/—Ar can be immediately calculated, this gives a fast method of
approximating the spectrum of o(Ar) and hence the frequency spectrum of
the dielectric modes.
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The question arises: is there any analog of this approximation in the more
realistic case of presence of vertices, i.e. of a non-smooth graph I'? Anal-
ogously to the smooth case, can one think of Ar as a “pseudo-differential”
operator of first order on I' (whatever this could mean)? Rephrasing the
question, one can ask whether there exists a differential spectral problem A
of order 2m on the graph such that the 2mth power of Ar is in some sense
close to A, and hence o(Ar) &~ o( *§/A). There are not that many indica-
tions that this should be true, besides that it would be helpful to have such
a relation. This study was attempted in [121] with some heuristic analysis.
It was discovered that in the case of symmetric junctions at vertices one can
sometimes write some reasonable differential operators as candidates for A.
Although no theorem about comparison of spectra was proven, the numerical
experiments conducted showed strong agreement of spectra. Take for exam-
ple the case of symmetric triple junctions at the vertices (e.g., honeycomb
lattice). Then the analysis of [121] shows that the spectrum of the following
problem is a good candidate for the approximation to the spectrum of A:

20,
—‘2—%1 = \u on each edge e;
u 1s continuous at each vertex v (11)
> A(y) = —(2)cot Fu(v) at each vertex v
jeiw)

In the case of the honeycomb lattice, this problem can be solved explicitly
[121]. The numerics show amazing agreement between the spectra of the
two problems. This is especially interesting since the nature of the two
spectra can be significantly different: the spectrum of the problem (11) has a
pure point part of infinite multiplicity (see [120, 121] and Section 4.4), while
the spectrum of A was conjectured [117, 120], and then proven [22] to be
absolutely continuous.

Another observation of [121] was that in the case of a symmetric quadru-
ple junction at each vertex (square lattice) one needs to employ a fourth
order differential problem on the graph I', which is also responsible for some
observed differences between the spectral behavior of the square and honey-
comb Dirichlet-to-Neuman operators [120].

It is not clear at the moment how to make the analysis of [121] rigorous
and whether there exists any analog of it for asymmetric vertex junctions.
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4 Studies of graph models and some applica-
tions

Spectra of the graph models described above have been studied analytically
and numerically (see, for instance [12, 14, 16, 22], [32]-[35], [57]-[60], [62, 66,
69], [109]-[111], [120, 121, 125, 135, 166, 175]). These studies have been used
in several different ways in order to understand the properties of systems that
they approximate. For instance, in [43, 23| for some quantum graphs exact
trace formulas were obtained for energy density in terms of periodic classical
orbits, results of [112, 113] show that the spectral statistics on complete
graphs is well reproduced by random matrix theory, etc. Without trying to
survey these applications, we will just provide a few nuggets of such nature.

4.1 Curved wires can bind electrons

Looking at (6) one understands that if the quantum wire I' is essentially
flat except for a bend, the operator (6) is the one-dimensional Schrédinger
operator with a potential well —y2?/4. This means that one expects bound
states to arise. One can show (e.g., [67] and references therein) that a bound
state survives also for small non-zero values of the width d of the wire. In
fact, it has been shown that this is true for any width d [96]. In other words,
bent quantum wires can bind electrons. This conclusion has been verified
numerically and experimentally [30, 31]. Analogously, bent quantum walls
can create currents confined to their edges [67] (see the figure below).

Figure 11: Electring current along a bent quantum wall.
Analogous observation has been also made for acoustic waveguides [50].

This has lead to a whole “industry” of proving existence and studying
properties of bound states arising in domains of tubular type due to local
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bends, protrusions, changed boundary conditions, etc. ([7, 28, 30, 31, 47, 48,
49|, [54]-[56], [58, 61], [66]-[77], [96, 151]).

In the case of a periodic rather than singly bent curve one naturally
expects that the bound states, due to tunneling, will spread into spectral
bands, but for a sufficiently narrow tube one expects to preserve spectral
gaps. This program was implemented in [184] using a variational approach.

4.2 Photonic band gaps

The main property that would make a photonic crystal useful is existence
of a gap in the frequency spectrum of electromagnetic waves propagating
in it. That is why the scientists working with photonic crystals have been
involved from the start in the search for media with such gaps (e.g., [106,
107, 117, 146, 165, 183]). After some initial failures, firm experimental and
numerical evidence of the existence of photonic band gaps in several such
structures has been found (see the references above). Mathematically the
problem amounts to determining parameters of a periodic dielectric medium
such that the corresponding Maxwell operator has a spectral gap (e.g., [117]).
The first (and probably still the only) analytic proof of possibility of opening
spectral gaps in photonic crystalline materials was obtained in [82, 83| using
asymptotic analysis of the type described in Section 3.3 above. See also
[88, 101, 172] for similar considerations.

4.3 Opening spectral gaps by “decorating” the graph

Existence of spectral gaps is a favorite question in many areas, most promi-
nently in solid state physics and photonic crystal theory (e.g., [8, 106, 117,
165]). The most common situation when the gaps might arise is in a peri-
odic medium, since according to the Floquet theory (e.g., [116, 117, 150]) the
spectrum of an elliptic periodic operator has a natural band-gap structure.
There have been indications of a different mechanism that leads to spectral
gaps, namely, proliferation in the medium of small scatterers with an inter-
nal structure. This has been noticed for systems modeled in R* [143, 144] as
well as on graphs [14]. However, the simplest and clearest model was prob-
ably delivered in the recent paper [168]. It deals with a discrete problem,
i.e. graphs are considered as combinatorial objects, functions on graphs take
their values at vertices, and the operators of interest are discrete Laplacians
or some generalizations thereof. Let us have a graph I' (considered as a set of
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vertices) and a bounded (although the boundedness condition can be relaxed)
self-adjoint operator Hy in [?(T'), for instance the discrete Laplacian. Here
we denote by [?(T") the space of square summable functions at the vertices of
the graph. Consider an auxiliary finite graph ¥ with a distinguished vertex
v and a self-adjoint operator A in [?(X) (for instance a discrete Laplacian).
Let us now attach a copy of ¥ to each vertex of I' identifying this vertex with
the distinguished vertex v of 3. In other words, we “decorate” the graph I'
with copies of X - “flowers” grown out of each and every vertex of I'. In Fig.
12 below, the underlying graph I' is drawn in the plane and the vertically
attached pieces are copies of X.

Figure 12: Graph decoration.

The authors of [168] denote the extended graph by I' <1 3. It is clear that
P < X) =13T) ®I?(X) and that there is a natural embedding of I into
' <« ¥ and hence a natural orthogonal projection P from /2(I' < ) onto
I2(T"). One can now define the extended operator

H=PHP+I®A (12)

on I?(I' < X). For instance, in the case when both Hy and A are discrete
Laplace operators, so is also H. In order to obtain the best result of [168],
one also needs to assume that the delta-function at the distinguished vertex
v of ¥ is a cyclic vector for A. We will also denote by () the orthogonal
projection operator in [?(3) onto the subspace of functions vanishing at v.
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Theorem 6 The following relation between the spectra of the operators H
and Hy holds:

o(H) =y~ (o(Ho)),

where 7y is the rational function of the form
1

{\;} is the spectrum of the operator QAQ, and ¢ and w; are constants. In
particular, decoration creates gaps in the spectrum of operator H at locations
that depend on the decoration (X,v, A) only.

One can find precise details and extensions of this result in [168]. Here
is the main idea of the proof: Studying the spectral problem for H on the
decorated graph, one can first solve it on each of the copies of 3, provided
that A is not in the spectrum of the operator A with Dirichlet condition
at v (i.e., of the operator QAQ). * Doing so one replaces the roles of the
decoration by an energy-dependent “potential” at each vertex of I'. This
potential is a rational function of A with poles at o(QAQ), and hence close
to these poles it forces the operator to be invertible.

At the first glance the techniques of [168] do not apply to the case of
differential (rather than difference) operators on graphs considered in this
text, the reasons being for instance the lack of the tensor product structure,
absence of formulas like (12), unboundedness of the operators involved, etc.
It is possible, however, using an approach from [6] to show that an analog
of Theorem 6 still holds for the differential operators on graphs of the sort
considered in this survey [118].

It is interesting to mention that there has been at least one instance when
without analysis similar to the one done in [168] the effect of decoration
was effectively used in engineering, namely the ground plane for cellular
phone antennas developed in the UCLA photonic crystals group headed by
E. Yablonovitch [173]. Fig. 13 shows this ground plane, which is essentially
a metallic plate with little metallic “mushrooms” grown on it.

Its main feature is that at certain frequencies of electromagnetic waves
the plate turns into an insulator, i.e. a frequency gap arises. It seems that

30ne can notice that this procedure involves the “Dirichlet to Neumann” operator on
the decoration ¥ with the distinguished point considered to be the boundary.
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Figure 13: UCLA ground plane.

this effect is in direct relation with the decoration mechanism described in
this section.

4.4 Confinement of waves in purely periodic media

There is a general understanding that probably came first from solid state
physics (e.g., [8]) that one cannot confine a wave in a periodic medium, i.e.
that the corresponding periodic operators of mathematical physics have no
pure point spectrum. In physics terms this means absence of bound states.
To be precise, one is talking here about elliptic operators with periodic coef-
ficients, with one of the main examples being the Schrédinger operator with
a periodic potential —A 4V (z). Other periodic operators of interest include,
for instance, Maxwell operator or divergence-type second order operators (it
is known that bound states do occur for operators of higher orders [116]).
Starting with [177], the problem of absence of bound states in periodic media
has been attracting intense interest of researchers, with major advancements
occurring in the last several years (see for instance [21, 89, 117, 122] for
surveys, references, and recent advances).

One can also consider from this point of view differential and pseudo-
differential operators of the type discussed above on periodic graphs and ask
the same question: can a pure point spectrum (i.e., a bound state) arise? Let
us look first at second order differential problems on graphs with conditions
(4). It is easy to observe that there are resonant situations when one can have
compactly supported eigenfunctions that look like sinusoidal waves running
around a cycle in the graph [120] (see also [16, 117, 121]). This happens when
the lengths of edges in the cycle are commensurable. Surprisingly enough,
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this had been overlooked in some previous physics studies of such systems.
One should notice that this effect takes place essentially for any choice of
boundary conditions at the vertices. What about the Dirichlet-to-Neumann
operator (10) on a periodic graph that arises in the study of photonic crystals?
Because of non-locality of the operator, it seemed unlikely that such states
would exist. On the other hand, numerical analysis of certain geometries (for
instance, of the honeycomb structure) suggested that “bound states” confined
to cycles might exist [120]. Some analysis of this effect was done in [120] and it
was conjectured [117, 120] that these are not actual bound states, but strong
resonances, so that the spectrum of the Dirichlet-to-Neumann operator on a
periodic graph is in fact absolutely continuous. This conjecture was proven in
[22, 174]. We remind the reader that existence of bound states is crucial for
applications like enhancement of spontaneous emission and lasing and that
they are usually created by introducing impurities into an otherwise purely
periodic medium. One can think that the resonance (slowly leaking) states
mentioned above could be used for similar purposes. This is exactly what
was done in experimental studies for spontaneous emission enhancement [24]
and for lasing [103]. In both cases photonic crystals with no impurities were
used and the leaky modes were employed in the ways impurity states usually
are. It needs to be noted that this was done with no knowledge of the
mathematical analysis of the problem indicated in this section.

4.5 Opening spectral gaps for long waves

The general rule of thumb (which is also the basis of homogenization theory,
see [19]) is that long waves in a medium periodic with a small period “do not
notice” the periodic variations and essentially behave as in a “homogenized”
medium. In particular, no spectral gaps should open in the long wave (i.e.,
low frequency) region. Analysis done in [82, 83| of high contrast thin photonic
crystal structures shows that one can open spectral gaps for arbitrarily long
waves without increasing the characteristic sizes of the structure. In fact,
similar observation was used in creating the UCLA ground plane mentioned
above [173].

4.6 Scattering problems

Significant attention has been paid to direct and inverse scattering theory
on graphs [1, 5, 12, 54, 93, 94, 109, 110, 111, 126, 130, 140, 145] (see also
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[138]-[140] for scattering on combinatorial graphs). The reader can find
the up to date survey of the available results in [126]. The situation in
general terms looks as follows. Consider a Schrodinger operator on a finite
(i.e. with a finite number of edges) metric graph. Assume that m of the
graph’s edges are of infinite length (i.e., one deals with a compact graph
with a finite number of infinite leads attached). Then one can define in a
natural way the m x m scattering matrix S(k). When the graph is a simple
star structure of infinite edges attached at the vertex, then it has been shown
that natural inverse problems can be resolved: recovery of the potentials from
known scattering matrix and vertex conditions and recovery of the boundary
conditions from known scattering matrix and potentials [93, 94, 109, 110,
111]. In the general case one can also consider the problem of recovering the
topological and the metric structure of the graph. It was shown, however, in
[126] on examples of simplest topologically non-trivial graphs (a loop with
two leads attached) that in general none of the inverse problems listed above
has a unique solution. This means that either additional information for the
unique solvability of the inverse problem needs to be introduced, or the class
of graphs should be limited. For instance, it was conjectured in [126] that
if one requires that the graph has no automorphisms that keep the infinite
leads fixed, then the inverse scattering problem must have a unique solution
(here one should understand automorphisms in a metric rather than purely
combinatorial sense).

The inverse eigenvalue problem on compact graphs was considered in
(33, 34].
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