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ABSTRACT 

Let G be a graph on n vertices. Its Laplacian matrix is the n-by-n matrix 
L(G) = D(G) - A(G), where A(G) is the familiar (0, 1) adjacency matrix, and D(G) 
is the diagonal matrix of vertex degrees. This is primarily an expository article 
surveying some of the many results known for Laplacian matrices. Its six sections are: 
Introduction, The Spectrum, The Algebraic Connectivity, Congruence and Equiva- 
lence, Chemical Applications, and Immanants. 

1. INTRODUCTION 

Let G = (V, E) be a graph with vertex set V = V(G) = {u,, 02,. . . , wn} 
and edge set E = E(G) = {el, e2,. . . , e,). For each edge ej = {vi, ok), 
choose one of ui, vk to be the positive “end’ of ej and the other to be the 
negative “end.” Thus G is given an orientation [ll]. The vertex-edge inci- 

dence matrix (or “cross-linking matrix” [33]) afforded by an orientation of G 
is the n-by-m matrix Q = Q(G) = (qi .I, where qij = + 1 if q is the positive 
end of ej, - 1 if it is the negative en d , and 0 otherwise. 
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It turns out that the Laplacian matrix, L(G) = QQt, is independent of 
the orientation. In fact, L(G) = D(G) - A(G), where D(G) is the diagonal 
matrix of vertex degrees and A(G) is the (0,l) adjacency matrix. One may 
also describe L(G) by means of its quadratic form 

xL(G)xt = C(ri -xj)z> 

where x = (x,, x2,..., x,,), and the sum is over the pairs i < j for which 
(4,~~) E E. So L(G) is a symmetric, positive semidefinite, singular M-matrix. 

We are primarily interested in nondirected graphs without loops or 
multiple edges. However, many of the results we discuss have extensions to 
edge weighted graphs. A C-edge-weighted graph, Cc, is a pair consisting of a 
graph G and a positive real-valued function C of its edges. The function C is 
most conveniently described as an n-by-n, symmetric, nonnegative matrix 
C = (cij) with the property that ci. > 0 if and only if (vi, uj} E E. With ri 
denoting the ith row sum of C, define L(G,) = diag(r,, r2,. . . , r,> - C. 
Another way to describe L(Gc) is by means of its quadratic form: 

xL(Gc)xt = ccij( xi - xj)‘, 

where, as before, the sum is over the pairs i < j for which {z)~, v~} E E. 
Forsman [47] and Gutman [66] have shown how the connection between 

L(G) and K(G) = Q’Q simultaneously explains the statistical and dynamic 
properties of flexible branched polymer molecules. Unlike its vertex counter- 
part, the entries of K(G) depend on the orientation. However, if G is 
bipartite, an orientation can always be chosen so that K(G) = ZZ, + A(G*), 
where G* is the line graph of G. (It follows that the minimum eigenvalue of 
A(G*) is at least -2. This observation, first made by Alan Hoffman, leads to 
a connection with root systems [29, 1451.) 

One may view K(G) as an edge version of the Laplacian. For graphs 
without isolated vertices, there are other versions, e.g., the doubly stochastic 
matrix I, - d,lL(G>, where d, is the maximum vertex degree, and the 
correlation matrix M(G) = D(G)-1’2L(G>D(G)-1’2. (A symmetric positive 
semidefinite matrix is a correlation matrix if each of its diagonal entries is 1.) 

Note that M(G) is similar to D(G)-‘L(G) = I, - R(G), where R(G) is the 
random-walk matrix. The first recognizable appearance of L(G) occurs in 
what has come to be known as Kirchhof’s matrix tree theorem [77]: 

THEOREM 1.1. Denote by L(ilj) the (n - I)-by-(n - 1) submatrix of 
L(G) obtained by deleting its ith row and jth column. Then 
(- lji+j det L(ilj> is the number of spanning trees in G. 



LAPLACIAN MATRICES OF GRAPHS 145 

(Variations, extensions and generalizations of Theorem 1.1 appear, e.g., in 
[B, 16, 17, 25, 26, 51, 78, 94, 97, 127, 132, 149, 1501.) 

In view of this result, it is not surprising to find L(G) referred to as a 
Kirchhof matrix or matrix of admittance (admittance = conductivity, the 
reciprocal of impedance). Reflecting its independent discovery in other 
contexts, L(G) has also been called an information matrix [25], a Zimm 

matrix [47], a Rouse-Zimm matrix [130], a connectivity matrix [35], and a 
vertex-vertex incidence matrix [I53]. Perhaps the best place to begin is with a 
justification of the name “Laplacian matrix.” 

In a seminal article, Mark Kac posed the question whether one could 
“hear the shape of a drum” [74, 1151. C onsider an elastic plane membrane 
whose boundary is fixed. If small vibrations are induced in the membrane, it 
is not unreasonable to expect a point (x, y, z> on its surface to move only 
vertically. Thus, we assume z = .z(x, y, t). If the effects of damping are 
ignored, the motion of the point is given (at least approximately) by the wave 
equation 

v22 = z,,/c”, 

where V2z = z,, + zYy is the Laplacian of .z. Since we are assuming the 
membrane is elastic and the vibrations are small, the restoring force is linear 
(Hooke’s law), i.e., z,, = - kz, where k > 0 encompasses mass and “spring 
constant.” Combining these equations, we obtain 

z xx + zyy = -kz/c2. (1) 

The classical solution to this “Dirichlet problem” involves a countable se- 
quence of eigenvalues that manifest themselves in audible tones. An alternate 
version of Kac’s question is this: can nonisometric drums afford the same 
eigenvalues? (The recently announced answer is yes [146, 1481.) 

To produce a finite analog, suppress the variable t and use differential 
approximation to obtain the estimates 

z( x - h, y) A z( x, y) - zx( x, y)h, 

z( x, y) G z( x + h, y) - z.J x + h, y)h. 

Subtracting the second of these equations from the first and rearranging 
terms, we find 

+,(x + h, y) - z,(x, y)] A z(x + h, y) + z(x - h, y) - 22(x, y). 

(2) 



146 RUSSELL MERRIS 

Another approximation by differentials leads to 

q( x + h, y) A q( x, y) + .q,( x, y)h. 

Putting this into (2) gives 

h2z,, A z(x + h, y) + z(x - h, y) - 2z(x, y). 

Similarly, 

h2zw A z( x, y + h) + z( X, y - h) - 22(x, y). 

Substituting these estimates into (11, we obtain 

~Z(X,Y) -dx+h,y) -+--h,y) --z(x,y+ h) -z(qy -h) 

A Az(x, y), (3) 

where A = kh2/c2. But (3) is the equation L(G)z = AZ, where G is the 
“grid graph” of F g i ure 1. So the eigenvalue problem for L(G) is, arguably at 
least, a finite analog of the continuous problem (1). (M. E. Fischer suggested 
that discrepancies between discrete models like (3) and continuous models 
like (1) may well reflect the “lumpy nature of physical matter” [46].) The first 
examples of nonisomorphic graphs G, and G, such that L(G,) and L(G,) 
have the same spectra were found in [31, 69, 1471. In fact, as we will see in 
Theorem 5.2, below, there is a plentiful supply of nonisomorphic, Laplacian 
cospectral graphs. 

2. THE SPECTRUM 

Strictly speaking L(G) d p d e en s not only G but on some (arbitrary) 
ordering of its vertices. However, Laplacian matrices afforded by different 
vertex orderings of the same graph are permutation-similar. Indeed, graphs 
G, and G, are isomorphic if and only if there exists a permutation matrix P 
such that 

L(G,) = PtL(G1)P. (4) 

Thus, one is not so much interested in L(G) as in permutation-similarity 
invariants of L(G). Of course, two matrices cannot be permutation-similar if 
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FIG. 1. Grid graph. 

they are not similar, and two real symmetric matrices are similar if and only if 
they have the same eigenvalues. Denote the spectrum of L(G) by 

S(G) = (A,, A,,..., A,), 

where we assume the eigenvalues to be arranged in nonincreasing order: 
A, > A, > *** > A,, = 0. When more than one graph is under discussion, we 
may write hi(G) instead of Ai. It follows, e.g. from the matrix-tree theorem, 
that the rank of L(G) is n - w(G), where w(G) is the number of connected 

components of G. In particular, A,_ i f 0 if and only if G is connected. 
(Already, we see graph structure reflected in the spectrum.) This observation 
led M. Fiedler [37, 40-431 to define the algebraic connectivity of G by 
a(G) = A,, _ i(G), viewing it as a quantitative measure of connectivity. In the 
next section we will discuss the algebraic connectivity and some of its many 
applications. 
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Denote the complement of G (in K,) by G”, and let J,, be the n-by-n 
matrix each of whose entries is 1. Then, as observed in [5], L(G) + L(G”) = 

L( K,) = nZ,, - 1,. It follows that 

S(G”) = (n - h,_,(G), n - h,-,(G) ,..., n - A,(G),O). (5) 

Letting m,(h) denote the multiplicity of A as an eigenvalue of L(G), one 
may deduce from (5) that h,(G) < n and m,(n) = w(G’) - 1. (See [65] for 
another interpretation.) 

In Section 1, we defined D(G) to be the diagonal matrix of vertex 
degrees. We now abuse the language by also using D(G) to denote the 
nonincreasing degree sequence 

D(G) = (dl,dz,...,d,), 

d, z d, a .a. a d,. (We do not necessarily assume that di = d(vi), the 
degree of vertex i.) It follows from the GerEgorin circle theorem [applied to 
K(G)] that A, Q m&d(u) + d(v)], where the maximum is taken over all 
{u, v] E E. (Also see [5].) In particular, 

d, + d, > A,. (6) 

[Note that (6) . p im roves the bound 2d, > A, obtained by applying Gerzgorin’s 
theorem directly to L(G).] 

If (a) = (a,, ua,. . . ) a,> and (b) = (b,, b,, . . . , b,) are nonincreasing se- 
quences of real numbers, then (a) majorizes (b) if 

k = I,2 ,..., min{r,s}, 

and 

kui= ib,. 
i=l i=l 

THEOREM 2.1. For any graph G, S(G) mujorizes D(G). 

Proof. It was proved in [125] ( see, e.g., [84, p. 2181) that the spectrum of 
a positive semidefinite Hermitian matrix majorizes its main diagonal (when 
both are rearranged in nonincreasing order). n 
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Majorization techniques have been widely used in graph-theoretic investi- 
gations ranging from degree sequences to the chemical “Balaban index.” 
(See, e.g., [121, 1221.) I n 1 s ‘t intersection with algebraic graph theory, this 
work has often been impeded by a stubborn reliance on the adjacency matrix. 
(See, e.g., [loo].) In fact, it is the Laplacian matrix that affords a natural 
vehicle for majorization. 

The first inequality arising from Theorem 2.1 is A, > d,. It is not 
surprising that a result holding for all positive semidefinite Hermitian matri- 
ces should be subject to some improvement upon restriction to the class of 
Laplacian matrices. Indeed [62], if G has at least one edge, then 

A, > d, + 1. (7) 

For G a connected graph on n > 1 vertices, equality holds in (7) if and only 
if d, = n - 1. In fact, (7) is the beginning of a chain of inequalities that 
include A, + A, > d, + d, + 1 and hi + A, + A, > d, + d, + d, + 1. 
These suggest the following: 

CONJECTURE 2.2 1621. Let G be a connected graph on n 2 2 vertices. 
Then the sequence (d, + 1, d,, d,, . . . , d,_,, d, - 1) is majorized by S(G). 

Nonincreasing integer sequences are frequently pictured by means of 
so-called Ferrers-Sylvester (or Young) diagrams. For example, the diagram 
for (a) = (5,5,5,4,4,4,3) is pictured on the left in Figure 2. Its transpose is 
the diagram on the right corresponding to the conjugate sequence (a>* = 

FIG. 2. Ferrer+Sylvester diagrams. 
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(7,7,7,6,3X In general, the conjugate of a nonincreasing integer sequence 
(a> = (a,, us,. . . , a,> is (a)* = (a:, a;, . . . , a:), where UT is the cardinality 
of the set {j : uj > i}. 

THEOREM 2.3 [62]. 
D(G)* mujorizes D(G). 

Let D(G) be the degree sequence of u graph. Then 

Theorems 2.1 and 2.3 raise the natural question whether S(G) and 
D(G)* are majorization-comparable. 

CONJECTURE 2.4 [62]. Let G be a connected graph. Then D(G)* 
majorizes S(G). 

One consequence of Conjecture 2.4 would be 

i.e., the number of vertices of G of degree n - 1 is no larger than the 
algebraic connectivity, u(G). Since u(K,) = n, (8) is true for G = K,. 
Otherwise, if G has exactly k vertices of degree n - 1, then G” has at least 
k + 1 components, the largest of which has at most n - k vertices, so 
h,(G”) Q n - k and u(G) = n - h,(G”) > k = d,*_,. 

There is, of course, an enormous literature on the adjacency spectra of 
graphs, and much of it concerns regular graphs. (See, e.g., [28-301.) If G is 
r-regular, L(G) + A(G) = rZ,, so A is an eigenvalue of L(G) if and only if 
r - A is an eigenvalue of A(G). Similarly, since L(G) and its edge counter- 
part, K(G), share the same nonzero eigenvalues, any results about the 
adjacency spectra of line graphs of bipartite graphs can be carried over to the 
Laplacian by means of the equation K(G) = 21, + A(G*). These connec- 
tions with the adjacency literature lead easily to many results for the 
Laplacian that we won’t even try to describe here. There are some other 
results about A(G) whose Laplacian counterparts do not follow for the 
reasons just given, but whose proofs consist of relatively straightforward 
modifications of adjacency arguments. Three results of this type are pre- 
sented in Theorems 2.5-2.7. 

THEOREM 2.5. Let G be a connected graph with diameter d. Suppose 
L(G) has exactly k distinct eigenvulues. Then d + 1 < k. 

Let I(G) denote the automorphism group of G, regarded as a group of 
permutations on V = {vi, vs, . . . , vJ. 
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THEOREM 2.6. Let G be a connected graph. lf some permutation in 
I’(G) has s odd cycles and t even cycles, then L(G) has at most s + 2t simple 
eigenvalues. 

If some permutation in T(G) has a cycle of length 3 or more, we see 
immediately from Theorem 2.6 that the eigenvalues of L(G) are not distinct; 
if the eigenvalues of L(G) are all distinct, then I’(G) must be Abelian (as 
each of its elements has order 2). 

Denote by V,,V,,..., V, the orbits of T(G) in V, and let ni = o(V,) be 
the cardinality of Vi, 1 < i < t. Assume V ordered so that 

v, = {Ol>V2 >...> v,,], 

v, = {v,i+l,v,,+Z,...~vn,+~*}l 

etc. Partitioning L(G) in the same way, we obtain a t-by-t block matrix ( Li .), 
where Ljj is the n,-by-nj submatrix of L(G) whose rows correspond to t h e 
vertices in V, and whose columns are indexed by the vertices in Vj. 

THEOREM 2.7 [58]. Let L(G) = ( Ljj) be the block matrix partitioned by 
T(G) as described above. Let A = (aij) be the t-by-t matrix defined by 
a.. = (n.n .)-l/’ times the sum of the entries in Lii. Then the characteristic 
pzlynomiai of A is a factor of the characteristic polynomial of L(G). 

The eigenvalues of the matrix A in Theorem 2.7, multiplicities included, 
constitute the symmetric part of the spectrum of L(G). The remaining 
eigenvalues of L(G), multiplicities included, constitute the alternating part. 
If T(G) = {e}, then the aiternating part of the spectrum is empty. On the 
other hand, it may happen that some multiple eigenvalue of L(G) belongs to 
both parts. 

We now discuss some results directly relating S(G) to various structural 
properties of G. 

THEOREM 2.8 [62]. Let u be a cut vertex-of the connected graph G. Zf 
the largest component of G-u contains k vertices, then k + 1 2 h,(G). 

A pendant vertex of G is a vertex of degree 1. A pendant neighbor is a 
vertex adjacent to a pendant vertex. We suppose G has p(G) pendant 
vertices and q(G) pendant neighbors. 

THEOREM 2.9 [36]. Let G be a graph. Then p(G) - q(G) < me(l). 

See Theorem 6.1 (below) for the permanental analog of this result. 
Extensions of Theorem 2.9 can be found in [59]. The correlation between 
m,(l) and the viscosity of polydimethylsiloxane is discussed in [llO]. If Z is 
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an interval of the real line, denote by m,(Z) the number of eigenvalues of 
L(G), multiplicities included, that belong to 1. Then m,(Z) is a natural 
extension of m,(A). 

THEOREM 2.10 [63]. Let G be a graph. Then q(G) < m,[O, 1). 

It is immediate from Theorems 2.9 and 2.10 that p(G) < m,[O, 11. (The 
relevance of m,(O, 1) to long relaxation times in elastic networks is discussed 
in [llO, p. 885; 130, p. 51841. Also see [35, Section J].) 

THEOREM 2.11 [96]. Let G be a connected graph satisfying 2q(G) < n. 

Then 9(G) < m,(2, n]. 

A subset S of V(G) is said to be stable or independent if no two vertices 
of S are adjacent. The maximum size of an independent set is called the 
interior stability number or the point independence number and is denoted 

by a(G). 

THEOREM 2.12. Let G be a graph. Then m,[d,, nl z a(G) and 

mJ0, d,l 2 a(G). 

Proof. We require the following well-known fact from matrix theory: 
Suppose that Z3 is a principal submatrix of the symmetric matrix A. Then the 
number of nonnegative (respectively, nonpositive) eigenvalues of B is a lower 
bound for the number of nonnegative (respectively, nonpositive) eigenvalues 
of A. Suppose S = {vr,va,. . . , vJ is an independent set of vertices. Let B 
be the leading k-by-k principal submatrix of L(G) - d,Z,. Then B is a 
diagonal matrix, each of whose eigenvalues is nonnegative. Therefore, k is a 
lower bound for the number of nonnegative eigenvalues of L(G) - d, I,. 
The argument for m,[O, d,] is similar. n 

If G is r-regular, then Theorem 2.12 becomes 

m,[r, n] 2 a(G) G mc[O, r], 

from which one may recover the regular case of an analogous result for the 
adjacency matrix [30, Theorem 3.141. 

THEOREM 2.13 [63]. Zf T is a tree with diameter d, then m,(O,2> > 
[d/2], the greatest integer in d/2, and m,(2, n] > [d/2]. 

It follows, of course, that m,$2) = 1 if and only if n is even. In fact [63, 
Theorem 2.51, m,(2) = 1 for any tree T with a perfect matching. 

THEOREM 2.14 [62]. Let G be a graph. Zfm,(2) > 0, then d(u) + d(v) 
< n for some pair of nonadjacent vertices u and v. 
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THEOREM 2.15. Let G be a connected graph. Zf t is the length of a 
longest path in G, then m,(2, n] > [t/2]. 

Proof. If G is a tree, then t is the diameter and we use Theorem 2.13. 
Otherwise, the longest path in G is part of a spanning tree T. Since G may 
be obtained from T by adding edges, the result follows from Theorem 2.16. 

n 

The next result is part of the “Laplacian folklore” [63, 1041. 

THEOREM 2.16. Zf u and w are nonadjacent vertices of G, let Gi be the 
graph obtained from G by adding a new edge e = {u, w}, Then the n - 1 

largest eigenvalues of L(G) interlace the eigenvalues of L(G+). 

If u E V, denote by N(u) its set of neighbors, i.e., 

N(u) = {v E v:{u,v} E E). 

[If X c V, then N(X) is the union over u E X of N(U).] 
Wasin So [131] found a nice addition to Theorem 2.16: If N(u) = N(w), 

then the spectrum of L(G+) overlaps the spectrum of L(G) in n - 1 places. 
That is, in passing from L(G) to L(G+), one of the eigenvalues goes up by 2 
and the rest are unchanged. 

THEOREM 2.17 [63]. Zf T is a tree and h is any eigenvalue of L(T), then 

m,(h) < p(T) - 1. 

Recall that p(T) - 1 is also an upper bound for the nullity of A(T) [30, 
p. 2581. If G IS connected and bipartite, then L(G) = D(G) - A(G) is 
unitarily similar to the irreducible nonnegative matrix D(G) + A(G), and 
A,(G) is a simple eigenvalue. 

THEOREM 2.18 [63, Theorem 2.11. Suppose T is tree. Zf A > 1 is an 
integer eigenvalue of L(T) with corresponding eigenvector u, then h I n, 
m,(h) = 1, and no coordinate of u is 0. 

This may be a good time to recall a striking result of Fiedler [38]: Suppose 
A = 2 is an eigenvalue of L(T) for some tree T = (V, E). Let z = 

(z,, a 2,“‘, zn) be an eigenvector of L(T) corresponding to A = 2. Then the 
number of eigenvalues of L(T) greater than 2 is equal to the number of 
edges {vi, vj} E E such that zi zj > 0. 

Let G, = (Vi, E,) and G, = (V,, E,) be graphs on disjoint sets of 
vertices. Their union is G, + G, = (Vi U V,, E, U E,). A coalescence of 
G, and G, is any graph on o(V,) + o(V,> - 1 vertices obtained from 
G, + G, by identifying (i.e., “coalescing” into a single vertex) a vertex of G, 
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with a vertex of G,. Denote by G, * G, any of the o(V,)o(V,> coalescences 
of G, and G,. 

THEOREM 2.19 [61]. Let G, and G, be graphs. Then S(G, . G,) ma- 
jor&s S(G, + G,). 

The join, G, V G,, of G, and G, is the graph obtained from G, + G, 
by adding new edges from each vertex of G, to every vertex of G,. Thus, for 
example, Ki V Ki = K,,,, the complete bipartite graph. Because G, V G, 
= (GE + Gg)‘, the next result is an immediate consequence of (5): 

THEOREM 2.20. Let G, and G, be graphs on n, and n2 vertices, 
respectively. Then the eigenvalues of L(G, V G,) are 0; n1 + n2; n2 + 
Ai( 1 < i < n,; and nl + A,(G,), 1 < i < n2. 

The product of G, and G, is the graph G, X G, whose vertex set is the 
Cartesian product V(G,) X V(G,). Suppose v1,v2 E V(G,) and u1,u2 E 
V(G,). Then (vi, ui) and (v,, u2) are adjacent in G, X G, if and only if one 
of the following conditions is satisfied: (i) vi = v2 and (ur, uZ} E E(G,), or 
(ii) {vi, vZ] E E(G,) and u1 = u2. For example, the line graph of K,,, is 
K, X K,, and the “grid graph” is a product of paths. 

THEOREM 2.21 [37, 1041. Let G, and G, be graphs on n1 and n2 
vertices, respectively. Then the eigenvalues of L(G, X G,) are all possible 
sums Ai + h,(G,), 1 < i < n, and 1 <j < n2. 

Majorization results involving products can be found in [24]. 
The study of graphs whose adjacency spectra consist entirely of integers 

was begun in [68]. Cvetkovic [27] p roved that the set of connected, r-regular 
adjacency integral graphs is finite. When r = 2 there are three such graphs, 
C,, C,, and C,; when r = 3 there are I3 [I5, 1291. Of course, the theory of 
Laplacian integral graphs coincides with its adjacency counterpart for regular 
graphs. Elsewhere, there can be remarkable differences. Of the 112 con- 
nected graphs on n = 6 vertices, six are adjacency integral while 37 are 
Laplacian integral. 

It is clear from (5) that the spectrum of L(G) consists entirely of integers 
if and only if the spectrum of L(G”) is integral. From Theorems 2.20 and 
2.21, we see that joins and products of Laplacian integral graphs are Lapla- 
cian integral. If T is a tree, then a(T) < 1 unless T = K,, n _ 1 [37, 931. Since 

s(K,, _i) = (n, 1, 1, . . . , 1, O), the star is the only Laplacian integral tree on 
n vertices. Additional results on Laplacian integral graphs can be found in 
[62]. We conclude this section with a pair of results that guarantee the 
existence of certain particular integers in S(G). 

A cluster of G is an independent set of two or more vertices of G, each 
of which has the same set of neighbors. The degree of a cluster is the 
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cardinality of its shared set of neighbors, i.e., the common degree of each 
vertex in the cluster. An s-cluster is a cluster of degree s. The number of 
vertices in a cluster is its or&r. A collection of two or more clusters is 
independent if the clusters are pairwise disjoint. (The neighbor sets of 
independent clusters need not be disjoint.> The next result is an extension of 

1361. 

THEOREM 2.22 [154]. Let G be a graph with k independent s-clusters of 
orders rl, r2, . . . , rk. Then m,(s) 2 r, + r2 + ... +rk - k. 

COROLLARY 2.23 [62]. Let G be a graph with an r-clique, r > 2. 
Suppose every vertex of the clique has the same set of neighbors outside the 
clique. Let the degree of each vertex of the clique be s, so s - r + 1 is the 
number of vertices not belonging to the clique but adjacent to every member 
of the clique. Then m,(s + 1) > r - 1. 

Proof. The clique corresponds to an (n - s - l&cluster of G” of order 
r. n 

3. THE ALGEBRAIC CONNECTIVITY 

Recall that the algebraic connectivity is a(G) = A,_ i(G). We begin this 
section with an early result of Fiedler. 

THEOREM 3.1 [37]. Let G be a graph (on n vertices) with vertex 
connectivity v(G) and edge connectivity e(G). Then 2e(G>[l - cos(z-/n)l < 
a(G). Zf G # K,, then a(G) < v(G). 

If G # K,, one deduces that 

a(G) < d,, (9) 

the minimum vertex degree. An improvement on (9) can be found in [ill]. It 

seems that a(G) is related to the half-life of a certain “flowing process” in 
graphs [82]; its relevance to the theory of elasticity is discussed in [13O]. The 
asymptotic behavior of a(G) f or random graphs is described, e.g., in [73, 87, 
111, 1301. An inequality for the continuous analog of a(G) in compact 
Riemannian manifolds was obtained by J. Cheeger [18]. 

Suppose X is a subset of V(G) f o cardinality o(X). Define the cobound- 
ay, E,, to be the edge cut consisting of those edges exactly one of whose 
vertices belong to X: 

E,=({u,v} ~E(G):uEXandveX}. 
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The isoperimetric number of G is i(G) = min[o(Ex)/o(X)], where the 
minimum is over all X c X(G) satisfying 1 Q o(X) 6 n/2. 

THEOREM 3.2 [102, 1031. Zf G is a graph on n > 3 vertices, then 

F Q i(G) Q (a(G)[2d, - a(G)]}1’2. 

Related isoperimetric inequalities were established in [5O, 1511, and a 
continuous analog appeared in [57]. Graphs with large a(G) are related to 
so-called expanders [2]. (See 13, 4, 10, 19, 20, 50, 104, 1081.) 

We now state, in terms of Laplacians, a result of M. Doob [30, p. 1871. 

THEOREM 3.3. Let T be a tree on n vertices with diameter d. Then 
a(T) < 2{1 - cos[?r/(d + 111). 

The next result, attributed to B. McKay [108], was proved in [105]. 

THEOREM 3.4. Let G be a connected graph with diameter d. Then 
a(G) > 4/dn. 

Another bound involving a(G) and the diameter of G was obtained by 
Alon and Milman: 

THEOREM 3.5 [4]. Let G be a connected graph with maximum vertex 
degree d,. Then [2d,/a(G)]1/2 log,(n’) is an upper bound for the diameter 
ofG. 

Improvements on this result have been obtained by Mohar [105] and 
Chung, Faber, and Manteuffel [ZO]. (See [lOS].) 

An upper bound for the diameter in terms of the number of l’s in the 
Smith normal form of L(G) is given in Theorem 4.5 below. 

We now consider eigenvectors corresponding to a(G). (These eigenvec- 
tors play an interesting role in the study of random elastic networks 1331 and 
in the solution of large, sparse, positive definite systems on parallel computers 
[II4].) Denote by Val(G) the set of eigenvectors of L(G) afforded by a(G). 
Then Val(G) lacks only the zero vector to be a vector space. For our present 
purposes, it is useful to think of the elements of Val(G) as real-valued 
functions of V = V(G). If, for example, z = (zi, z2,. . . , z,,) is an eigenvec- 
tor of L(G) afforded by a(G), we write f E Val(G) for the function defined 
by f(vi) = zi, 1 < i < n. Fiedler has called the elements of Val(G) charac- 
teristic valuations of G. 
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THEOREM 3.6 [39]. Let T = (V, E) be a tree. Supposef E Val CT). Then 

two cases can occur. 

Case (i). Zff(u) f 0 f or all v E V, then T contains exactly one edge 

(u, w) such thatf(u) > 0 and f(w) < 0. Moreover, the values off along any 

path starting at u and not containing w increase, while the values off along 

any path starting at w and not containing u decrease. 
Case (ii). Zf V, = {u E V : f(u) = 0} is not empty, then the graph 

T, = (V,, E,) induced by T on V, is connected and there is exactly one vertex 

u E V, which is adjacent (in T) to a vertex not belonging to V,. Moreover, 

the values off along any path in T starting at u are increasing, decreasing, or 

identically zero. 

Suppose f E Val(T). A vertex v E V is a characteristic vertex of T 

defined by f if v E {u, w} in case (i), or if v = u in case (ii), whichever 
applies to f. It turns out that characteristic vertices are independent of the 
characteristic valuation used to define them: If f, g E Val(T), then v E V is 
a characteristic vertex of T defined by g if and only if it is a characteristic 
vertex of T defined by f [93]. Th us, every tree has a unique characteristic 

center consisting of either one or two characteristic vertices, and in the case 
of two, they are adjacent. (In spite of these similarities, the characteristic 
center of a tree need coincide with neither the center nor the centroid.) We 
say T is of type Z if it has a single characteristic vertex [which must be a fKed 
point of I’(T)]. Otherwise it is of type ZZ. (The algebraic connectivity of a 
type-I tree is a unit in the ring of algebraic integers [58]. The algebraic 
connectivity of a type-II tree is a simple eigenvalue of L(T) [38].) 

Let T be a type-1 tree with characteristic vertex ur. A branch at ur is a 
connected component of T - I+. If B is a branch at ur, denote by r(B) the 
vertex of B adjacent (in T) to ur. If f E Val(T), then (Theorem 3.6) f is 
uniformly positive, uniformly negative, or identically zero on the vertices of 
B. We call B a passive branch if f(r(B)) = 0 for every f E Val(T). 
Otherwise, B is active. In either case, denote by L+(B) the matrix obtained 
from L(B) by adding 1 to its main-diagonal entry in the row corresponding 
to r(B). Then the (n - I)-by-( n - 1) principal submatrix of L(T) obtained 
by deleting the row and column corresponding to ur is the direct sum of the 
L+(B) as B ranges over the branches of T at ur. This leads to the following: 

THEOREM 3.7 [58]. Let T be a type-l tree with characteristic vertex uT 
and algebraic connectivity a(T). Then, for every branch B of T at I+, 

a(T) < the least eigenvalue of L+( B), with equality if and only if B is active, 

in which case a(T) is a simple eigenvalue of L+( B). 

It is a consequence of Theorem 3.7 that exactly m,(a(T)) + 1 of the 
branches at ur are active. If a(T) is a simple eigenvalue of L(T), then ur 
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and the passive branches “separate” the two active branches in the following 
sense: A subset C c V(G) is said to separate vertex sets X and Y if(i) X, Y, 
and C partition V(G), and (“> u no vertex of X is adjacent to a vertex of Y. It 
is of some interest to find separators with o(C) small and o(X) about equal 
to o(Y). 

THEOREM 3.8 [4, Lemma 2.11. Suppose C separates X and Y in the 

connected graph G. Let x = o(X), y = o(Y ), z be the number of edges 
having at least one “end” in C, and d be the minimum distance between a 
vertex in X and a vertex in Y. Then (x-’ + ~-~).z/d’ > a(G). 

See [I141 for improvements on this result. 

COROLLARY 3.9. Let T be a type-l tree with characteristic vertex uT and 
simple algebraic connectivity a(T). Zf x and y are the numbers of vertices in 
the two active branches of T at uT, then a(T) < (x + y)/(2 ry). 

Proof. Let T’ be the subtree induced by T on ur and the two active 
branches. It is proved in [93] that a(T’) = a(T). The result is an immediate 
consequence of Theorem 3.8. n 

It is known [58] that a(T) is in the alternating part of the spectrum if and 
only if at least two of the active branches at ur are isomorphic. If T has just 
two isomorphic branches at ur, then a(T) Q 2/( n - 1) (x = y in Corollary 
3.9). 

The algebraic connectivity for trees on n vertices ranges from a(P,> = 

2[1 - cos(r/n)] to a( K,, n_1) = 1. Clearly, then, all trees are not equally 
connected. Some results explaining the partial ordering imposed on trees by 
a(T) were obtained in [60]. (Also see [113].) Other approaches appear in 
Theorems 3.10 and 3.13. The first of these shows that graphs with large a(G) 

do not contain small separators. 

THEOREM 3.10 [108]. Supp ose C separates X and Y in the connected 

graph G. Let x = o(X), y = o(Y), and c = o(C). Then c > 4xya(G)/[nd, 

- a(G)(x + ~11. 

In [IO4], Mohar investigated a bandwidth-type problem. For each edge 
e = (vi,vj), he defined jump(e) = Ii -j], and suggested that ordering the 
vertices, vi, v2, . . . , v,, by the values of a characteristic valuation comes close 
to minimizing 

Jump(G) = @=sGj [PmpW12. 
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THEOREM 3.11 [104]. Jump(G) > a(G)n(n’ - D/12. 

If T, is a C-edge weighted tree (see Section l), denote by a(Z’c) the 
second smallest eigenvalue of L(T,). Th e absolute algebraic connectivity of 
the (unweighted) tree T is G(T) = max a(Tc), where the maximum is over all 
positive real-valued functions C of E(T) that satisfy Ci < .cij = n - 1. 

Associated with T is a metric space T, obtained by 1 entifying each edge d 
of T with the unit interval [O, 11. The points of T, are the vertices of T 
together with all points of the (unit interval) edges. The graph-theoretic 
distance between vertices in T extends naturally to a metric d(x, y) between 
points x and y in T,,,. The variance of T is 

THEOREM 3.12 1431. Let T be a tree. Then i?(T) = l/v&!‘). 

Let G, be a C-edge-weighted graph. For X C V(G), let E, be its 
coboundary. Define the max cut of G, by 

MC(G) = xcmvai”c, C cij. 

(o,,o,)~Ex 

THEOREM 3.13 [107]. Let h,(G,) be the maximum eigenvalue of the 

C-edge weighted Laplacian L(G,). Then 

n4(% > 
MC(G,) < 4 . 

The C-edge-weighted Laplacian is distantly related to the positive 
semidefinite symmetric matrices B = (bi.) satisfying Cb,, = 1 and bij = 0 
for {vi, vj} E E(G) that are used in [Slj to study the Shannon capacity. 
Results involving chromatic numbers and multiplicities of eigenvalues of 
other matrices distantly related to C-edge-weighted Laplacians can be found 
in [136, 1371. 

4. CONGRUENCE AND EQUIVALENCE 

As we have seen [Equation (411, G, and G, are isomorphic if and only if 
there is a permutation matrix P such that PtL(G1)P = L(G,). Thus, one 
necessary condition for two graphs to be isomorphic is that they have similar 
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Laplacian matrices, partially explaining all the interest in the Laplacian 
spectrum. But there are other ways to view (4). Recall that an n-by-n integer 
matrix U is unimodulur if det U = + 1. So the unimodular matrices are 
precisely those integer matrices with integer inverses. Two integer matrices 
A and B are said to be congruent if there is a unimodular matrix U such that 
UtAU = B. Because permutation matrices are unimodular, another interpre- 
tation of (4) is that two graphs are isomorphic only if they have unimodularly 
congruent Laplacian matrices. Henceforth, we will say G, and G, are 
congruent if there is a unimodular matrix U such that UtL(G1)U = L(G,). 
The first significant work on congruent graphs was done by William Watkins. 

THEOREM 4.1 [140]. Suppose G, and G, are graphs on n vertices. If the 

blocks of G, are isomorphic to the blocks of G,, then G, and G, are 
congruent. 

Watkins showed that the converse of Theorem 4.1 fails by exhibiting a 
pair of congruent, nonisomorphic Z-connected graphs. Two graphs, G, and 
G,, are cycle-isomorphic (or Sisomorphic [144]) if there is a bijection 

f : E(G,) -+ E(G,) with the property that Y is the set of edges constituting a 
cycle in G, if and only if f(Y) is the set of edges constituting a cycle in G,. 

THEOREM 4.2 [141]. Let G, and G, be graphs with n vertices. Then G, 
and G, are congruent if and only if they are cycle-isomorphic. 

Denote the chromatic polynomial of G by 

n-l 

p6(x) = c ( -l)‘ct(G)?. 
t=o 

(10) 

Then PC(k) is the number of ways to color the vertices of G, using k colors, 
in which adjacent vertices are colored differently. Using either matroid theory 
or Whitney’s theorem [143], one may easily deduce the following from 
Theorem 4.2: 

COROLLARY 4.3 [97]. C on g ruent graphs aford the same chromatic poly- 

nomial. 

The converse of Corollary 4.3 is false. R. C. Reed [116] produced the pair 
of “chromatically equivalent” graphs illustrated in Figure 3. Since they have 
128 and 120 spanning trees, respectively, they are not even equivalent (see 
below), much less congruent. 

Using another result of Whitney [144], one may draw a potentially more 
important conclusion from Theorem 4.2: 

COROLLARY 4.4 [141]. Zf G, is a S-connected graph, then G, and G, are 
isomorphic if and only if they are congruent. 
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FIG. 3. Read’s chromatically equivalent graphs. 

The fact that there is no canonical form for congruence [49] places some 
practical limitations on the usefulness of Corollary 4.4. On the other hand, 
integer matrices cannot be congruent if they are not equivalent, and the 
question of unimodular equivalence is easily settled by means of the Smith 
normal form. 

Recall that integer matrices A and B are equivalent if there exist 
unimodular matrices Vi and Us such that Vi AU, = B. So a third interpreta- 
tion of (4) is that G, and G, are isomorphic only if their Laplacian matrices 
are equivalent. For the purpose of this article, we will say two graphs are 
equivalent if their Laplacian matrices are equivalent. 

Denote by d,(G) (not to be confused with vertex degrees) the kth 
determinantal divisor of L(G), i.e., the greatest common divisor of all the 
k-by-k determinantal minors of L(G). [It follows from the matrix-tree theo- 
rem that d,_,(G) is the number of spanning trees in G; and d,(G) = 0, 
because L(G) is singular.] Of course, d,(G) I d,+,(G), 0 < k < n. The 
invariantfactors of G are defined by sk+ i(G) = d,,,(G)/d,(G), 0 Q k < n, 

where d,(G) = 1. The Smith normalform of L(G) is 

F(G) = diag(sI(G),s2(G),...,s,(G)). 

So G, and G, are equivalent if and only if F(G,) = F(G,). In particular, if 
G, and G, are isomorphic, then FCC,) = F(G,). Now, if this observation 
had a partial converse, e.g., for 3-connected graphs, it would have great 
computational significance because F(G) can be obtained from L(G) by a 
sequence of elementary row and column operations. However, the graphs in 
Figure 4 share the Smith normal form diag(1, 1, 1,5,15, O), and the graph on 
the left (Pz X C,) is 3-connected. 

In spite of this discouraging example, F(G) yields several bona fide 
graph-theoretic invariants and spawns a variety of applications: The cycle 
space, C, (not to be confused with G,), of the oriented graph G is the 
column null space of the vertex-edge incidence matrix Q(G) [and hence the 
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FIG. 4. Graphs with the same Smith normal form. 

null space of the “edge version” K(G)]; the cocycle space or bond space, R,, 
is the row space of Q(G). A s a subspace of real (or complex) m-space, the 
“bicycle” space, B, = Cc n R,, is trivially equal to (0). When the coeffi- 
cients come from Abelian groups, however, one obtains an analogous bicycle 
group which may be more interesting. K. A. Berman ([9], but see [85] and/or 
[97] for a clarifying discussion) used the invariant factors of L(G) to com- 
pletely characterize bicycle groups. Meanwhile, from another perspective, D. 
J. Lorenzini [79] investigated a similar application of F(G) to the components 
of the N&on model of the Jacobian associated with a generic curve in 
algebraic geometry. 

Denote by b(G) the multiplicity of 1 in F(G). Of course, b(G) > n - 2, 
for any graph G with a square-free number of spanning trees. Lorenzini [80] 
discusses a bound for b(G) in terms of the number of independent cycles 
of G. 

THEOREM 4.5 [64]. Let G be a connected graph of diameter d. Then 
b(G) 2 d. 

At the present time, a clear understanding of the relation of the invariant 
factors, si(G), 1 < i < n - 1, to graph structure seems rather distant. In 
rather stark contrast, however, the Smith normal form of K(G) has been 
described completely. 

THEOREM 4.6 [97]. Let G be a connected graph with n vertices and 
m > 0 edges. Then the Smith normalform of K(G) is I,_, i(n) -i- Om_n+l, 
where the identity (direct) summand is absent when m = 1, and the zero 
summand is missing when m = n - 1. 

Theorem 4.6 has applications to certain “flows” in directed graphs. Of 
these, the “O-flows,” or “A-flows,” have been counted by D. Welsh using the 
chromatic polynomial of the cocycle matroid 11421. 



LAPLACIiiN MATRICES OF GRAPHS 163 

The elementary divisors of L(G) are the prime power factors of its 
invariant factors. Denote by cl(G) the multiset of these elementary divisors. 

THEOREM 4.7 [97, 1401. Let G, . G, be any coalescence of G, and G,. 

Then el(G, - G,) = el(G, + G,) = el(G,) U el(G,). 

5. CHEMICAL APPLICATIONS 

Modern organic chemists have synthesized and/or isolated several million 
different molecules [118]. Perhaps even more remarkable has been their 
ability to predict certain properties of chemical substances even before they 
have been synthesized. Among the tools used in such predictions are numer- 
ous “topological indices” (a term coined by Haruo Hosoya in 1971 [120]>. A 
typical t p 1 gi 1 d o o o ca in ex is a number arising from the underlying graph of a 
chemical compound. (See, e.g., [6, 94, 101, 108, 109, 117-1211.) 

The Wiener index, introduced by Harry Wiener of Brooklyn College in 
1947, has been used in a variety of ways from predicting antibacterial activity 
in drugs to correlating thermodynamic parameters in physical chemistry and 
modeling various solid-state phenomena [67]. It can be obtained by summing 
the entries in the upper triangular part of the “distance matrix” [I33, p. 451. 

The distance, d(u, v), between vertices u and o in a connected graph G 
is the number of edges in a shortest path from u to v. The distance matrix 
A(G) = (d(vj, vj)> is the n-by-n matrix whose (i, j> entry is the distance from 
vi to vj. So A(G) is a symmetric matrix with zeros along the main diagonal. 
Hosoya [70, 711 was among the first to study the distance matrix from a 
chemical perspective. It has since become a standard tool used in a variety of 
applications from investigating evolutionary distances in DNA sequences to 
predicting carcinogenicity in arene systems [llQ]. In the mathematical litera- 
ture, distance matrices seem first to have appeared in [56], where the 
following remarkable result was proved: 

THEOREM 5.1. Let T be a tree on n vertices. Then det A(T) = 
(- l)“- r(n - 1) 2”-‘. 

One surprising thing about Theorem 5.1 is that det A(T) depends only on 
n and not at all on the structure of T. In any event, it follows that A(T) is an 
invertible matrix with exactly one positive eigenvalue. In spite of this elegant 
beginning, results about the distance matrix have not come easily. (See [2I, 
22, 32, 54, 55, 1231.) 
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If there were a “Holy Grail” in graph theory, it would be a practical test 
for graph isomorphism. In the early days, it was incautiously conjectured that 
two graphs are isomorphic if and only if they have similar adjacency matrices, 
i.e., that two adjacency matrices could not be similar without being permuta- 
tion-similar. The disproof of this conjecture began the study of adjacency 
cospectral graphs: G, and G, are adjacency cospectral if A(G,) and A(G,) 
have the same characteristic polynomial. One of the most dramatic results in 
algebraic graph theory is Allen Schwenk’s “almost all trees are cospectral” 
theorem [128]: Let t, be the number of nonisomorphic trees on n vertices. 
Let r,, be the number of such trees T for which there exists a nonisomorphic 
tree T’ such that T and T’ are adjacency cospectral. Then lim. ~30 r,,/t, = 1. 

Perhaps A(G) is just the wrong matrix. Maybe it is too sparse. What 
about the distance matrix, whose only zeros occur on the main diagonal? Not 
surprisingly, it was conjectured that two trees could not be distance-cospectral 
without being isomorphic [32, 711. Th’ IS conjecture eventually led to the 
following worthy successor of Schwenk’s theorem. 

THEOREM 5.2 [86]. Let t, be the number of nonisomorphic trees on n 
vertices. Let r,, be the number of such trees T for which there exists a 
nonisomorphic tree T’ such that, simultaneously, 

(i) T and T’ are adjacency-cospectral, 
(ii) T and T’ are distance-cospectral, and 
(iii) T and T’ are Laplacian-cospectral. 

Then lim n+m t-,/t, = I. 

Additional simultaneous conditions will be added in Theorem 6.6. The 
next result [95] (also see [55]) furth er strengthens the spectral relationship 
between L(T) and A(T). 

THEOREM 5.3. Let T be a tree. Then the eigenvalues of -2 K(T)-’ 
interlace the eigenvalues of A(T). That is, let 8, > 0 > 6, > a** > 8, be the 
eigenvalues of A(T), and suppose h, > A, > *a* z h,_ 1 are the nonzero 
eigenvalues of L(T). Then 

Theorem 5.3 makes it possible to transcribe some Laplacian spectral 
results for distance matrices. Suppose, for example, T is a tree with diameter 
d. Then 8td,21 > - 1. If T has p pendant vertices and q pendant neighbors, 
then 6, > - 1 (p rovided n > 2q), S,_,+, < -2, $, > -2, and a,_,,, < 
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-2. If 6 is an eigenvalue of A(T) f o multiplicity k, then k Q p; among the 
eigenvalues of A(T), S = -2 occurs with multiplicity at least p - q - 1. 

(Karen Collins has improved this to p - q [23].) 
In a remarkable tour de force, M. Fiedler 1441 placed Theorem 5.3 in a 

geometrical setting. One may view L(G) as a Gram matrix based on n 

vectors, yl, y2,. . . , yn in (n - D-dimensional real Euclidean space E, _ i. 
Let S be the unit sphere centered at the origin in E,_ 1. Let Pi be the 
hyperplane tangent to S at its intersection with the ray generated by yi. Let 
Hi be the half space, determined by P,, that contains the origin. Then the 
intersection of the Hi produces a simplex. Let A,, A,, . . . , A, be the 
vertices of this simplex. Define eij to be the square of the Euclidean distance 
(in E,_ 1> between Ai and Aj. The matrix E(G) = (eij) is called the 
(Cayley-)Menger matrix of the simplex [152]. 

THEOREM 5.4 [44, 1501. Zf T is a tree, then E(T) = A(T), i.e., the 

distance matrix of a tree is the Merger matrix of the simplex arising from its 

Laplacian matrix. 

Returning to the Wiener index, 

W(G) = Cd(oi,vj), 
i<j 

we have the following result [88, 94, 95, 101, 1051: 

THEOREM 5.5. Let T be a tree with Laplacian eigenvalues h, >, A, > 

... 2 A,_, > 0 = A,. Then W(T) is given by 

(11) 

For a general graph, the Wiener index is not a function of its Laplacian 
spectrum [94]. This suggests that one might define W,(G) = W(G) and 
W,(G) by (11). Then W,(G) = W,(G) if G is a tree, but the two indices may 
differ otherwise. Indeed, since the dominant contribution to W,(G) is 
n/h,_l, it may even be of interest to study W,(G) = n/a(G). Other 
possibilities are suggested in [loll. (Some ideas for computing W(G) are 
contained in [106].) 

The expression (11) has turned up in some other contexts. It is, for 
example, n2 times the mean squared radius of gyration of a polymer molecule 
[33-35, 1101. If S(n, m) denotes the set of all graphs on n vertices having at 
most m edges, then minimizing (11) over S(n, m) corresponds to the 
A-optimality criterion in statistical design [25, p. 1561. 
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6. IMMANANTS 

Let A = (a,> be an n-by-n matrix. Then 

Per A = c ii at,(,), 
pss, t=1 

(12) 

where S, is the symmetric permutation group. Permanents of adjacency 
matrices have received some attention, especially by chemists who use them 
to count “Kekule structures” in chemical graphs [30, 1241. (August Kekule 
von Stradonitz first proposed the hexagonal configuration for the benzene 
molecule [l, 1331. Arising from the alternating single and double bonding 
between carbon atoms in C,H,, a Kekule structure corresponds to a perfect 
matching in the underlying carbon skeleton. The “Char postulate” [I341 
asserts that a benzenoid system with no Kekule structure should be an 
unstable biradical. At the same time, aromatic compounds-characterized by 
benzene-like ring structures-“survive intact over geologic time and even 
persist in the harsh environment of nebulae” [l].) 

The serious study of per L(G) seems to have begun with the conjecture 
[98] that per L(G) 2 2(n - 11, for all connected graphs on n vertices. This 
conjecture was established by R. Brualdi and J. L. Goldwasser [14] in the 
course of their study of the Luplacian ratio, per L(G)/ndj. (Also see [7, 13, 
52, 90, 138, 1391. It was suggested in [112] that minper A = per L(K,), 
where the minimum is over the set of all singular correlation matrices.) 

Now, per L(G) is just the constant coefficient in the Laplacian permunen- 

tal polynomial 

fc(x) = per[xZ -L(G)] = 2 (-l)tat(G)x”-t. 
t=o 

Since the permanent is invariant under permutation similarities, the coeffi- 
cients and roots of f,(x) are graph-theoretic invariants. The following result 
is the permanental analog of Theorem 2.9. 

THEOREM 6.1 [36]. The multiplicity of 1 as a root of the permanent& 

polynomialf,(x) is at least p(G) - q(G). 

There are, of course, a number of obstacles to be overcome in the study 
of f,(x), not the least of which is the notorious computational intractability 
of the permanent function. (Only in some special cases, e.g. for trees, has this 
challenge been overcome [13, 831.) A no th er obstacle concerns the roots of 
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f,(x). For one thing, there is nothing resembling eigenvectors associated with 
them. For another, they need not all be real. [If, for example, A is an n-by-n 
correlation matrix, then the roots of pel(xZ - A) are all real if and only if 
A = I,.] Say that a graph is permanently real if all roots of f,(x) are real. 
Then there is not a single permanently real graph among the 112 connected 
graphs on 6 vertices. But if G = K,, IL_, , then (Theorem 6.1) (X - l)“-’ is a 
factor of f,(x). The other factor is x2 - nx + 2(n - 1). Thus, Ki,.-, is 
permanently real for all n > 7. 

Denote the characteristic polynomial of L(G) by 

n-l 

det[xZ - L(G)] = c ( -l)tb,(G)x”-t. 
t=a 

(14) 

Graph-theoretic interpretations of the coefficients b,(G) were given in [30, 
75, 761. (See [45] for the edge-weighted version.) 

THEOREM 6.2. Zf G is a graph on n vertices, then 

b,(G) = CW% 

where the sum is over all (n - t)-edged spanning forests F of G, and P(F) is 

the product of the numbers of vertices in each of the t components of F. 

As in (lo), denote the chromatic polynomial of G by 

n-1 

p&x) = c (-l)“~~(G)x”? 
t=o 

THEOREM 6.3. Let G be a connected graph on n vertices. Then a,,(G) = 

b,(G) = c,(G) = 1, a,(G) = b,(G) = 2c,(G) = 2m, and 

a,(G) a b,(G) 2 (t + l)ct(G>, l<t<n. (15) 

In (151, the left-hand inequality is immediate from Schur’s theorem [126]. 
In the right-hand inequality [93], equality holds for t = n - 1 if and only if G 
is a tree; if n 2 4, then equality holds for t = n - 2 if and only if it holds for 
all t if and only if G = Ki,._i. 

Now, determinants and permanents are but two examples of matrix 
functions that have come to be known as immanants. If x is an irreducible 
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(characteristic 0) character of S,, the corresponding immanant, d,, is 
defined by 

(16) 

for any n-by-n matrix A = (u,~>. If x = E, the signurn character, then 
d, = det. If x = 1, then d, = per. 

There is a natural one-to-one correspondence between the irreducible 
characters x of S, and the (nonincreasing, integer) partitions of n. (Thus, 
Ferrers-Sylvester diagrams, such as those in Figure 2, play a prominent role 
in the character theory of S,.) Those characters x, corresponding to parti- 
tions of the form (r, l”- ‘1, short for 

n = r + 1 + *-- +1, 

are called single-hook characters. For example, xi = E and x, = 1. [In 
general, x,(e) = C(n - 1, r - l), the binomial coefficient (n - I)-choose- 
(r - 11.1 We will denote by d, the immanant corresponding to x,, so 
d, = det, and d, = per. [The context should permit the reader to distinguish 
between the immanant d,(L(G)), the determinantal divisor d,(G), and the 
vertex degree d,.] It turns out that these single-hook immanants can be used 
to count h(G), the number of Hamiltonian circuits in G [91]. (Also, see [53].) 

THEOREM 6.4. Let G be a connected graph on n > 3 vertices. Then the 
number of Hamiltonian circuits in G is 

h(G) = ; $ (-l)rdr(L(G)). 
r-2 

If A is an n-by-n positive semidefinite Hermitian matrix, then (n - 
l)‘per A > d, _ 1( A) [99]. 0 nce again, it would seem surprising if a general 
result like this could not be improved when restricted to a much smaller class 
of matrices. 

CONJECTURE 6.5. If T is a tree on n vertices, then (n - 2)per L(T) 2 

d,_ ,(L(T)). 

There is a natural affinity between immanants and Laplacians. Recall that 
L(G) is a Gram matrix based, e.g., on the row vectors Qi, Qz, . . . , Q,,, of 
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Q(G). It turns out that d,(L(G)) is n!/x(e) times the length of the 
“decomposable symmetrized tensor” Qi * Qs * **. * Qm. [If G is connected, 
then d,(L(G)) > 0 for all x # E.] 

Let M, = (U: d,(U-‘AU) = d,(A) for all A}. If x = E, then Mx is the 
full linear group. Otherwise, it is the monomial group consisting of all 
nonzero scalar multiples of permutation matrices [48]. Thus, each of the 
immanantuZ polynomials d,( XI - L(G)), as x ranges over the characters of 
S, (irreducible or not), is a graph-theoretic invariant. 

At present, only a little is known about general immanantal roots. While 
they need not all be real, those that are lie in the interval [0, h,(G)] [89]. After 
determinant and permanent, the most widely studied immanantal polynomial 
is d,(xZ - L(G)). It is known that the &roots lie in the Gerigorin circles 
[72]. The coefficient of x: in the &polynomial is related to moment sums in 
graphs, leading to an extension of the notion of centroid point [92]. 

It turns out that immanantal polynomials, even when they are all taken 
together, are not much better than the characteristic polynomial when it 
comes to distinguishing nonisomorphic graphs. J. Turner [135] found a pair of 
nonisomorphic trees T and T’ on 12 vertices such that d,( xZ - A(T)) = 
d,(xZ - ACT’)) for all 77 irreducible characters x of S,,. Such examples also 
exist for the Laplacian. Indeed, as we now see, they are typical (in the sense 
of Schwenk and McKay). 

THEOREM 6.6 [12]. Let t, be the number of nonisomorphic trees on n 
vertices. Let r,, be the number of such trees T for which there is a 
nonisomorphic tree T’ such that, simultaneously, for every character x of 
S,, both 

(iv) dx( xl - A(T)) = dx( rZ - A(T ‘)) and 
(v) d&Z - L(T)) = d,(xz - L(T’)). 

Then lim n+cc r,/t, = I. 

We have used (iv) and (v) in the statement of Theorem 6.6 because it may 
be viewed as a continuation of Theorem 5.2. 
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