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Abstract. It is well-known that the second smallest eigenvalue 22 of the difference Laplacian matrix 
of a graph G is related to the expansion properties of G. A more detailed analysis of this relation 
is given. Upper and lower bounds on the diameter and the mean distance in G in terms of 22 are 
derived. 

1. Introduction 

This paper is a part of a larger project where the influence of the Laplacian 
eigenvalues of a graph on the structure of the graph is studied. At the beginning of 
this project we shall explore the second smallest eigenvalue 22 of the difference 
Laplacian matrix of a graph. (Notice that the smallest eigenvalue 21 is always equal 
to 0.) The first attempt in this direction was made by Fiedler I5] who defines the 
value of 22 as the algebraic connectivity of the graph. Besides this, 22 was related to 
the expanding properties of the graph [1, 2, 12] and to the isoperimetric numbers 
[10]. There are some other recent papers which study this quantity I6, 7, 9]; of. also 
14, §9.3] for few older references. More details can be found in a survey paper [11]. 

In the present paper we give upper and lower bounds on the diameter and the 
mean distance of a graph in terms of its second smallest eigenvalue 22. In each of 
the bounds, the dependence on 22 is reciprocial. Cf. theorems 2.3, 2.6, 3.4, 3.5, 4.2, 
and 4.3 for details. 

We assume the knowledge of the standard terminology of graph theory. Graphs 
are finite, undirected, loops and multiple edges are allowed. Each loop counts one 
to the degree of the corresponding vertex. 

The difference Laplacian matrix of a graph G of order n is an n x n matrix 
Q = [q,v] which is indexed by vertices of G. Its diagonal entry q,v (v ~ V(G)) is equal 
to the degree of the vertex v of G minus the number of loops at this vertex, and for 
u ~ v, quv is the negative value of the number of edges between vertices u and v in 
G. Thus Q = diao(deo(v)) - A where A is the usual adjacency matrix of G. Notice 
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that loops have no influence on the Laplacian matrix. It should be noted that the 
matrix Q(G) has its rows and columns indexed by V(G) and that no ordering on 
V(G) is assumed. Also, Q(G) acts on the vector space 12(V(G)) ~ R", n = [V(G)I, 
which consists of all complex vectors (xv)o ~ v~o) with entries indexed by V(G). For 
our purpose only real vectors will be needed, and it will always be assumed that the 
entries xv are real. 

The Laplacian Q is a positive semidefinite matrix with the smallest eigenvalue 
21 = 0 (a corresponding eigenvector has all coordinates equal to 1). The second 
eigenvalue 22 = 22(G), which is of our main interest, is non-negative and 22 = 0 if 
and only if G is disconnected (see, e.g., 1,5] for more details). 

2. Growth and the Diameter vs. the Second Smallest Eigenvalue - Upper Bounds 

From now on we shall fix and use the following notation. G is a given graph of order 
n, 22 = 22(G) its second smallest Laplacian eigenvalue, 2oo = 2oo(G) its largest Lapla- 
cian eigenvalue, and ,4 = A(G) its maximal vertex degree. Moreover, an arbitrary 
vertex w ~ V(G) is chosen, and for k = 0, 1, 2, . . .  let Bk = Bk(w) be the set of vertices 
of G which are at distance at most k from w. Denote by bk = IBk}, and let ek be the 
number of edges with one end in Bk and the other end in Bk+lkBk. 

First we will derive results relating 22 with the growth of G. By the growth we 
mean the increase of numbers bk when k increases. Our first result shows that the 
graph G has exponential growth, i.e., bk > ~k, where o~ is a constant bounded below 
as a function of 22. 

222 bk) q- bk_ 1 (n bk_ 1)]. 2.1. Lemma. bk -- bk-1 > n(A + 22)1,bk(n -- 

Proof. Fiedler 1,13] derived a useful expression for 22: 

2,, £ 2 
2 2 = r a i n  .v~E 

E ~ (X~ -- Xv) 2 
u ~ V  v ~ V  

(2.1) 

where nk = bk - b k -  1 • Since ek-1 + e~ < Ank, a routine calculation shows that 

where the minimum is taken over all non-constant vectors x = (xv)v~v ~/2(V). If 
we choose x as 

1, veBk-1  

Xv = O, V e Bk\l~,-1 

--1, v e B k  

then (2.1) implies 

n(ek-1 + e~) > 221"bk-lnk + (n -- bk)nk + 4bk-l(n -- bk)] 
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n a 4~2 y(O = (2.2) 
1 +(n-- 1)e -a''  V - A  +22 

of the boundary problem 

y '  = ~ y ( n  -- y), y(0) = 1 (2.3) 

which reduces to 

may be dominated, in the integer points k > 1, by the numbers bk. This is settled by 
our next lemma. 

2.2. Lemma. Let G be a connected graph and let y(t)  be the solution (2.2) of (2.3). 

If k > 1 and bk < 2 then bk > y(k). 

Proof .  Since bo = y(0), it follows from Lemma 2.1 that it is sufficient to prove that 

y(k) - y (k  - 1) < ~ [ y ( k ) ( n  - y(k))  + y (k  - 1 ) ( n -  y (k  - I))] (2.4) 

Let p be as in (2.2), c := e -a, and x := (n - 1)e -a(k-l~. It is straight from (2.2) that 
(2.4) is equivalent to 

2 ( 1 - c )  c ( l + x )  l + c x  
[~ l + c x  l + x  

which can be put, by a routine calculation, in the equivalent form: 

- 1 ) F _ ~  ~ l < 2 f l - 2 ( 1 - x  (2.5) /~(c 1_ + c) 

Notice that (1 + cx) -1 < ½ and x(1 + x) -1 < (1 + c) -1 where we have used the fact 
n 

that y(k)  < ~.  We will mention at the end of the proof how to justify this inequality. 

It follows now that to prove (2.5), it suffices to show that 

p ( 1 -  c) [~  + ~---+ c ]  < 2 , 8 -  2(1 - c ) 

4 ( c  2 + 2 # c  - 1) + # (1  - c) 2 > 0. 

A --22 nnk _> 2bk(n -- bk) + 2bk- i (n  -- bk-1) -- nk(n -- nk) > 

> 21-bk(n -- bk) + bk- l (n  -- bk-1)] -- nnk 

which was to be shown. []  

By replacing, in Lemma 2.1, the values bk with a function y(k), k ~ R +, and bk-1 
with y(k  - dk) we get a differential inequality fory. This suggests that the solution 
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A numerical calculation shows that this is true for all f le  (0, 2]. Since 22 < A for all 
graphs except the complete graphs [113] (for which the whole theorem is trivial), 
fl < 2, and we are done. 

n 
It remains to show that y ( k ) <  ~. In order to do this, we first show that 

y(k  - 1 + t) < bk for all t ~ (0, 1). The proof goes as above, using y(k  - 1 + t) instead 
ofy(k) in (2.4). Along these lines, c is replaced by e -#i, and the condition y(k  - 1 + t) 

n 
<2n is recovered by searching for the smallest t where y(k  - 1 + t) = ~ _> bk. [] 

2.~. Theorem. The eigenvalue 2 2 imposes an upper bound on the diameter o f  G: 

diam(G)< 2[~In(n-I)I. (2.6) 

n 
Proof. The theorem is immediate if we show that l~ = bk(W) > ~ (w is arbitrary) for 

1 n 
k >_ ~ In(n - I). If bk < ~ then by Lemma 2.2 

b k > y ( k ) > y  l n ( n - 1 )  = ~ ,  

a contradiction. [] 

Notice that in (2.6) the natural logarithms are used. 

2.4. Lemma. Let r > 1 be an integer and let B, C c V be subsets of vertices of G 
which are at distance at least r + 1. Then 

2~ (n - I n l -  ICI)(IBI + ICI) (2.7) 
(r - 1) 2 < 42----2 - Inl ICI 

Proof. We give the proof for the case B = Bk, C = V~Bk+r since we will take the 
advantage of the previously introduced notation. The general proof is the same. 

Let us define x e/2(V) as 

I 
t, i f v e B  

x v =  t + r - 1 ,  i f v ~ C  

t + i - -1 ,  if v ~ Bk+i\Bk+ H ,  1 < i < r 

where the constant t is chosen in such a way that 

E xv = O. (2.8) 
v e V  

Since r > 1, x # 0. Let b := IBI, c := ICI. Then Ilxll 2 = (x,x) > bt 2 + c(t + r - 1) 2 
=:f(t). The function f ( t )  has its minimum at t = - c ( r  - 1)/(b + c), hence 

b ( c ( r -  I)'~ 2 f c ( r -  1) )2 bc (2.9) Ilxl12> ~,~} +c~.~_c + r - - 1  =(r-1)2b+ c. 
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An eigenvector of the smallest eigenvalue 21 = 0 is 1 = (1, 1 . . . . .  1)'. Therefore 
by the well-known Courant-Fischer principle and (2.8) 

22 = rain (Qz, z) < (Qx, x_) (2.10) 
,,,o ( z , z ) -  (x,x)" 
~:.1.1 

Since (Qx, x)  = ~., (x ,  - x~) 2 = e~+ 1 + ""  + ek+,-1, the obtained inequalities (2.10) 
u v e E  

and (2.9) will imply (2.7) if we show that 

ek+l + " "  + ek+,-1 < ~ ( n  - b - c). (2.11) 

Let H be the induced subgraph of G with vertex set Bk+,\B ~. By the Cauchy 
Interlacing Inequalities it follows that 

,Z~o (H) _< ,~(G). (2.12) 

Next, define a vector z ~ I~(V(H)) by setting 

1, i f  v E Bi+I \B  i for some even i 
z~ = -- 1, otherwise 

Now, by (2.12) 

(Q(H)z , z )  1 ~ (z,, z~) 2 4 ,-1 
2oo(G) > 2oo(H) > --.~ _ _~ ek+ i 

(z ,z)  n - b - c , , , ,~(m n - b - c i=~ 

which implies (2.11) and ends the proof. []  

A simple corollary to Lemma 2.4 is a result which establishes the exponential 
growth of the bails Bk. 

2.5. Lemma. Let r > 1 be an integar, ~ > 1 a real number, and let B, C be subsets 
n 

of V(G), which are at distance at least r + 1. I fn  - ICI < ~lnl < ~then 

r < q - ~ 2 q ~  + 1. (2.13) 

n 
Proof .  Let b = IBI, c = [CI. It is clear that b + c _> n - ~b + b _> ~ and hence 

(n - (b + c) ) (b  + c) < (n - o~b + b)(o~b - b). (2.14) 

By (2.7), (2.14) and the assumptions of the Lemma we have: 

4 2 2 ( r _ 1 )  2 < ( n - ( b + c ) ) ( b + c )  ( n - ~ b + b ) ( ~ - l )  

z ~ bc < c < 

<(o~ 1) n - ' v b + b  (~ 1 ) ( 1 + 1  0~__~bb ) 
n -0~b  ~n  

which settles the inequality (2.13). 

~ 2  1 

[]  
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Thekey  corollary to (2.13) is that ifr  > / 22.~/ 4 ~ + ltheneitherlBk+,l  > ~ ,  

or In~+,l > ~lnkl. I t  means that the graph expands pretty fast. More precisely, in 

I r. Io0~ ~ steps we reach more than half of its vertices. The main result of this 

section follows: 

2.6. Theorem. For any ~ > 1 

diam(G) <_ 2 . / ~ / - ~ 2 X / ~  + 1 l o g ~  . (2.15) 

Now, the question is which • to take in (2.15) to get the best possible upper  
bound. For  each particular choice of values of n, 22, and 2o0 one can find by 
numerical methods good approximations to the optimal value of g. 

For  several values of the quotient -~a good estimates for the best possible e 

were found by help of  a computer. The results are assembled in Table 1. The values 
in the first column present q = 2oo/22, next to it the best e is given, and finally 
r = 1 + [x/~x/(c~ 2 -- 1)/(4e)]. As an upper bound one may take any row in which 
q > 2~/22. For  example, if )~o/22 = 36.3 then we see from the row of q = 45 that  
r = 10, ~ = 7.336, and hence 

log(hi2) 7 
diam(G) < 20- llog(7.336)/" 

For  large values of  20o/22 a very good approximat ion to the opt imum is the 

~ - 1  
value of ~ which minimizes f(cO = ~ / - - - ~ / l n  ~. The solution is approximately 

equal to u = 6.7869766. 

Table 1. 

q ~ r q ~ r 

1.0 16.062 3 16.0 9.109 7 
1.1 14.613 3 22.0 9.019 8 
1.2 13.407 3 30.0 8.648 9 
1.4 11.515 3 45.0 7.336 10 
1.6 22.544 4 80.0 7.336 13 
1.8 20.049 4 100.0 9.109 16 
2.0 18.055 4 200.0 8.123 21 
2.4 15.066 4 400.0 6.904 27 
3.0 12.082 4 700.0 7.538 37 
3.4 10.681 4 1000.0 7.528 44 
4.0 16.062 5 2000.0  7.102 60 
5.0 12.877 5 4000.0  6.710 82 
7.0 9.250 5 8000.0  6.987 118 

10.0 10.099 6 10,000.0 6.803 130 
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2.7. Corollary. For  any graph G 

diam(G)< 2Ii .28837452 + 11 g6.7869766 1 . 

2.8. Remarks. The bounds (2.6) and (2.15) are incomparable in general. However, 
in most cases (2.15) is much stronger than the bound of Theorem 2.3. Theorem 2.6 
also improves an eigenvalue bound on the diameter obtained by Alon and Milman 
[2]: 

diam(G) <_ 2F 2f2---~-~'Jlog2nl. 
/~/22 / 

One should note that 200 < 2A (of. [5]). Another eigenvalue bound was found by 
Chung [3]. Her  result applies for k-regular graphs only and uses "the second largest 
eigenvalue by absolute value" of the adjacency matrix of a graph. More precisely, 
if 2(G) = min{22, 2k -- 20o}, then: 

V log(n- l )  "~. 
diam(G)<_llog(_~SSk_2~)i) [ (2.16, 

Notice that 2(G) = 0 for bipartite graphs, so (2.16) is trivial. But in cases when 
22 > 2k - 2~o, (2.16) compares favorably with our bounds. 

3. The Mean Distance 

The results of Section 2 give rise to an upper bound on the mean distance of a graph. 
We will be using the notation of the previous section. A vertex w ~ V(G) is fixed, 
and let n~ := bk -- bk-1 (k > 0) and 

S(w) := ~ kn k. 
k 

The mean distance ~(G) of G is equal to the average of all distances between distinct 
vertices of G. In other words 

1 

:= n(n -1------3 

3.1. Lemma. S(w) = ~ (n - b~). 
k _>_0 

Proof. ~ (n - bk) = ~ ~ n, = n~ + 2n2 + 3n3 +"" = S(w). [] 
k k i>lc 

For t a positive number, define a sequence fl~.r (i = 0, 1,2 . . . .  ) by flo,~ := t and 

) 222 fl~-l,, , i > 0 

n(Lf - 22) 
where co = . The following properties of this sequence are easy to verify: 

422 
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3.2. Lemma. As far as each of the values flj, t below is between 0 and n we have: 
(a) /~,t is increasing as a function of i. More precisely, 

222 
/k, - / ~ - ~ , ,  - n(3 + , h ) [ & , ( n  - &,)  + /~H, , (n  - /~_~, , )3 .  

(b) fit+l,, = ~,#,.: 
(c) ~,~ is continuous and increasing as a function of t. 
(d) There is a unique t > 0 and unique integer L such that 

n 
~o., < 1' fix,, > 1, EL., = ~- 

To see the motivation for introducing the numbers fii,, compare Lemma 3.2(a) 
with Lemma 2.1. Note  that bk > ~k, 1. Let t and L be as in Lemma 3.2(d). For  k = 0, 
1 . . . .  , L, let sk := flL-k,t. 

n 
3.3. l.emma. Let K be the largest integer: for which b~ < ~. Then for each k >__ 0, 

n - b~+k+l -< sk. 

Proof. By induction. For k = 0 this is trivial by definitions of fiL,r and K. For k > 0, 
the assumption s k < n -  bK+k+l implies by Lemma 3.2(a) and Lemma 2.1 that 
Sk-1 < n - -  b l c + k .  This leads to a contradiction. []  

n A + 2  2 + 3"4" The°rem'p(G) <- ~_ l ([~ln(n-1) ] ~)" 

Proof. Let L and K be as above. By definition of L and Lemma 2.2, L _< 
"---i 

] ~ l n ( n - 1 ) ]  and L _> ~ + 1. Then by Lemmas 3.1, 3.2, and 3.3, 

K 

S(w)=  ~ (n - bk) = (K + l)n - ~, b, + ~, (n -- bk) <_ 
k >0  k=O k > K  

K L - I  

_ < ( K +  1 ) n -  Z ilk, l +  Z s , <  
• k ~ = O  i = 0  

<_ Ln - ~. flk,~ + ~ ~ , t  <_ L +  n <_ n. I n ( n - l )  + . 
k=O k=l  

Now the inequality we are trying to prove becomes obvious since w was an arbitrary 
vertex of G. []  

Another bound on if(G) parallels the diameter bound of Theorem 2.6~ 

3.5. Theorem. For any ~ > 1 

n 
~'(G) < 

n - - 1  
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Proof. The idea is similar to the proof  of Theorem 3.4. First, let ~k be lower bounds 
for bk. According to Lemma 2.5 we choose flk = ~0 ~-~, if ir < k < (i + 1)r, where 

r = 1 + \ / - - ~ , [ S - ~ l  and 1 < ~o < ~ is chosen in such a way that ~o~ ~'-1 = 

for some integer L. Clearly 

Floo(n/2)l 
L = l  loo  |"  

n n 
Take K such that b x < ~ and bK+l > ~. Note that rL > K + 1. Next verify that 

n - bK+k+l --< eft, L-k-I- The consequence of the above stated inequalities is that: 

r L - 1  

S(w) = 2 (n -- bk) <_ 2 (n -- fik) + ~ (n -- bk) 
k > 0  k=O k > K + I  

r L - 1  r L - 1  eL-1  

<_ 2 + 2 = rLn + - 1) 
k=O i = 0  k=O 

= r L n + ( a - 1 ) r - ~ , ~ o O t ' < r L n + r 2 = r ' n  + .  

This proves the theorem since w is an arbitrary vertex. [ ]  

In Theorem 3.5 we have the freedom to choose such an e which minimizes the 

upper bound. As for the Corollary 2.7 a good value for ~, when ~ and n are both 

large, is e = 6.7869766. Cf. Section 2. 

4. Lower Bounds 

In this section we will prove that 22 provides also lower bounds on the diameter 
and the mean distance of a graph. We start with a lemma: 

4.1. Lemma. For  each pair u, v of distinct vertices of G choose a shortest path P,v 
7l 2 

from u to v. Then any edge e e E(G) belongs to at most ~- of the paths P'uv. 

Proof. Let e e E(G). Define a graph ~ as follows. It has vertex set V(G), and vertices 
n 2 

u and v are adjacent in F~ iff e lies on Puv. We have to show that IE(F,)I < ~ .  

First we observe that Fe has no triangles. Assume that there is a triangle uvw in 
F~. Orient the paths P,v, P,w, P~w from u to v, u to w, and from v to w, respectively. 
If x and y are the endpoints of e, two of these paths use e in the same direction, 
say from x to y. We may assume w.l.o.g, that these two paths are P,w and P~ .  
This implies that dist(u, y) > dist(u, x) and dist(v, y) > dist(v, x). But then dist(u, v) 
<_ dist(u, x) + dist(v, x) < dist(u, x) + dist(y, v) and similarly dist(u, v) < dist(u, y) + 
dist(v, x) which shows that a shortest path from u to v cannot use the edge e = xy. 
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n 2 

That a graph F of order n with no triangle has at most ~- edges can be shown 

by induction on n. For n = 0 and n = 1 this is dear. If n > 2, take any two adjacent 
vertices, say v, u. Then degr(v)+ degr(u)<_ n since v and u have no common 
neighbors. By induction hypothesis 

( n -- 2) 2 n 2 
IE(F)I = I E ( r -  u -- v)t + deg(v) + deg(u) - 1 < - - - 4 - -  + n - 1 = -~. [] 

The lower bound (4.1) on the diameter of G in the following theorem is due to 
Brendan MeKay I8]. 

4.2. Theorem. For a graph G of order n, its second Laplacian eigenvalue 2 2 imposes 
upper bounds on the diameter and the mean distance of G, 

4 
diam(G) >_ n2----~ (4.1) 

and 
2 n - 2  

(n -- 1)p(G) > ~22 + ~ (4.2) 

Proof. For each pair u, v e V choose a shortest path P,,~ from u to v. Let x ~/2(V) 
be an eigenvector for ~2. It can be shown easily that 

2n E ( x . - x ~ )  2 = 2 2 - E  E ( x . - x ~ )  2 (4.3) 
u v c E  u ~ V  v c V  

just by using the facts that ~ x~ = 0 (orthogonality to the eigenvector of 21) and 
v ~ V  

that ~ (x. - xv) z = 22 ~ X 2. Each term o n  the right hand side of (4.3) can be 
u v c E  v c V  

estimated: 

( x .  - xo)  2 -= [(Xu - xv , )  + (xv, - x~ 2) + " "  + (xv~_, - xo ) ]  2 _ k y .  ~2(e)  (4.4) 
e ¢ £ ( P . v )  

where P.~ = uvlv2.. .vt-lv (so k = dist(u,v)) and 62(e)= (x a - x b )  2, e = ab. Let 
X.~: E(G) ~ {0, 1} be the characteristic function of P.~, i.e. 

1, fie e P.~ 
Z. , (e)= 0, otherwise. 

Now by (4.4) 

Z ~ i x . - - x~ ) :<  Z Z dist(u,v) Z 62(e)z.~(e) 
v c V  u c V  v ~ V  u c V  e ~ E  

= ~ ~2(e) Y Y~ d~st(u,v)x.vie). (4.5) 
e c E  v ~ V  u c V  

To show (4.1),we use in (4.5) the fact that dist(u, v) <_ diam(G) and Lemma 4.1 
which says that 
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n 2 n 2 

E E Zuv(e)<2 . . . .  
v~v u~v - 4 2 

If we combine the obtained result with (4.3) we get 

n 2 
2n ,wrE (x, -- xv) 5 = 2n ~zE 6z(e) < 22 .diam(G).-f  ~ 65(e) 

which forces (4.1) to be true. 
To prove (4.2), however, we continue (4.5) as follows 

Y', ~ dist(u,v)z~v(e)<_ ~ E dis t (u ,v)-  ~ E ( 1 -  Z,~(e)) 
v ~ V  u ~ V  v ~ V  u ~ V  v c V  u~V\{v}  

< n(n - 1)if(G) - 2 + 2-~- = n(n - l)ff(G) 
n(n - 2) 

2 
(4.6) 

From (4.3), (4.5), and (4.6) we conclude: 

2n 2  5(e) _< 25" : ( e ) .  n(n - 1)g(G) - gn(n - 2) 
e~:~ e~£ 

which is equivalent to (4.2). []  

The bounds of Theorem 4.2 can make much sense only in the ease when 22 is 
small. We expect that they can be improved to give non-trivial bounds also in cases 
when 25 is large. However, the following examples show that (4.1) is, in a sense, best 
possible. 

Let Pk,~ be the tree of diameter t + 2 which is obtained from the path Pt+l by 
joining to each of its two end vertices, k new vertices. One can show that 

4 12k2t + 8kt 2 + t a 
n22(Pk,-------- ~ > y(k, t) := 3(2k + t + 1) 5 

where n = 2k + t + 1 is the number of vertices of Pka. Since 

lira ~,(k,t) = t, 
k / t - ~  

the graphs Pka satisfy, for any e > 0, 

4 
diam(Pk, 0 > ~ > diam(Pk, 0 - 2 - e 

k 
as soon as - is large enough. 

t 
At the end we present a result which is also due to McKay  [8]. 

4.3. Theorem, Let T be a tree of order n and 22 ,  23 . . . . .  2 n the non-zero eioenvalues 
of  its difference Laplacian matrix. Then 

" 1 
(n - 1)if(T) = 2 i=~ ~'. (4.7) 
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Proof. Let Q be the Laplacian matrix of G, and 

[~(X) ~-. X n + Cn_l Xn-1  -{- "'" "~- C2 X2 + ClX 

its characteristic polynomial. Notice that 2 x = 0 is a zero of #(x). By the Vieta's 
formulas 

i=2 ~ = (4.8) 

and by the matrix-tree-theorem and its generalizations (see, e.g., [4, Theorem 1.4] 
4 

for details) n Icl I = 1 (=  the number of spanning trees of T) and 

Ic l= 
$,I6V 

s# t  

where x(H) denotes  the n u m b e r  of  spanning  trees of  H,  and  T,a is the (unicyclic) 
g raph  obta ined  f rom T by identifying vertices s and t. Clearly, x(T~.t) = dist(s ,  t), so 
[c2l = ½n(n - 1)~(T). By (4.8), the fo rmula  (4.7) is settled. [ ]  
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