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Abstract

In the last decade important relations between Laplace eigenvalues and eigenvectors
of graphs and several other graph parameters were discovered. In these notes we present
some of these results and discuss their consequences. Attention is given to the partition
and the isoperimetric properties of graphs, the max-cut problem and its relation to
semidefinite programming, rapid mixing of Markov chains, and to extensions of the
results to infinite graphs.

1 Introduction

Applications of eigenvalue methods in combinatorics, graph theory and in combinatorial
optimization have already a long history. For example, eigenvalue bounds on the chromatic
number were formulated by Wilf [Wi] and Hoffman [Ho] already at the end of the sixties.
Historically, the next applications related to combinatorial optimization, due to Fiedler
[Fi1] and Donath and Hoffman [D-H] in 1973, concerned the area of graph partition. A
very important use of eigenvalues is the Lovász’ notion of the theta-function from 1979 [Lo].
Using it, he solved the long standing Shannon capacity problem for the 5-cycle. The theta-
function provides the only known way to compute the chromatic number of perfect graphs
in polynomial time.

The next important result was the use of eigenvalues in the construction of superconcen-
trators and expanders by Alon and Milman [A-M] in 1985. Their work motivated the study
of eigenvalues of random regular graphs. Eigenvalues of random 01-matrices were studied
already earlier by F. Juhász, who also analyzed the behavior of the theta-function on random
graphs, and introduced eigenvalues in clustering [Ju]. Isoperimetric properties of graphs and
their eigenvalues play a crucial role in the design of several randomized algorithms. These
applications are based on the so-called rapidly mixing Markov chains. The most important
discoveries in this area include random polynomial time algorithms for approximating the

∗This article appeared in “Graph Symmetry: Algebraic Methods and Applications,” Eds. G. Hahn and
G. Sabidussi, NATO ASI Ser. C 497, Kluwer, 1997, pp. 225–275.
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volume of a convex body (cf., e.g., [D-F-K, L-S1, L-S2]), polynomial time algorithms for
approximate counting (e.g., approximating the permanent or counting the number of perfect
matchings, see [Sin] for additional information), etc. Isoperimetric properties and related
expansion properties of graphs are the basis for various other applications, ranging from
the fast convergence of Markov chains, efficient approximation algorithms, randomized or
derandomized algorithms, complexity lower bounds, and building efficient communication
networks and networks for parallel computation.

There is an increasing interest in the application of eigenvalues in combinatorial opti-
mization problems. To mention only some of them, Burkard, Finke, Rendl, and Wolkow-
icz [F-B-R, R-W] used the eigenvalue approach in the study of the quadratic assignment
problem and general graph partition problems, Delorme and Poljak [D-P1, D-P2] in the
max-cut problem, and Juvan and Mohar [J-M1, J-M2] in the labeling problems. Spectral
partitioning which is based on eigenvectors of Laplace eigenvalues of graphs has proved to
be one of the most successful heuristic approaches in the design of partition algorithms
[B-S, H-L, H-M-P-R], in parallel computation [S-T, Sim, Wil], in solving sparse linear sys-
tems [P-S-W], clustering [H-K, C-S-Z] and in ranking [J-M2, H-M-P-R]. Similar kind of
applications is based on the properties of the Perron-Frobenius eigenvector of a nonnega-
tive matrix. This technique is suitable for the ranking problems. We refer to [M-P2] for
additional applications.

There are several ways of using eigenvalues in the combinatorial optimization. The
first possibility consists in formulating concrete bounds which involve eigenvalues of some
related matrices. Examples of such bounds are given by the bounds on the separation
properties in Section 3. Another way is to use the eigenvalues as a tool of transformation
of combinatorial optimization problems to continuous optimization problems. Examples of
this kind are provided by the bisection problem, max-cut problem, generalized partition
problem, and the theta-function. The common point of these applications is the possibility
of the change to a “continuous optimization”, in particular to semidefinite programming.
For example, in some cases there is a possibility of introducing a parameter u ∈ Rn and
optimizing when u is restricted to be an element of a convex set K ⊆ Rn. This way we
get improved bounds or methods for the problems in question. A classical example is the
Lovász’ theta-function [Lo, G-L-S, Kn]. Its use gives rise to polynomial time algorithms
for determining the stability number, or the chromatic number of perfect graphs. Similar
approach appears in relation to the following problems: bipartition width, graph partition,
and the max-cut problem (cf. Section 3), the bandwidth [J-M1, J-M2, H-M-P-R], etc. The
max-cut problem and its relation to semidefinite programming is discussed in more details
in Section 4.

In these notes we first discuss some results on Laplace matrices and Laplace eigenvalues of
weighted graphs in the general framework. After introducing the Laplace matrix of a graph
and presenting its basic properties in Section 2, relations between Laplace eigenvalues and
separation properties of graphs are considered in Section 3. Section 4 discusses semidefinite
programming and its relations to graph partitions. Random walks and associated matrices
are treated in Section 5. The paper concludes by a brief introduction to Laplacians of infinite
graphs in Section 6.

There are several existing books and survey papers concerning graph eigenvalues, e.g.,
[Bi, C-D-S, C-D-G-T, Fi3, Go, Mo3, M-P2, M-W]. We do not intend to overlap our presen-
tation with their contents except partially with [M-P2]. Therefore we restrict ourselves to
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some problems which can be classified as applications of eigenvalue methods in the design
of algorithms and in combinatorial optimization. In particular, we do not include discussion
on expander graphs (whose constructions are accessible only via eigenvalue methods) and
their applications, although they are quite important tool in the design of algorithms and
are extensively used in several other areas of theoretical computer science. Instead, we refer
to the book [Lu1] by Lubotzky and to the notes of Lubotzky in this collection [Lu2].

2 The Laplacian of a graph

2.1 Basic notation

Let G be an undirected finite graph. By V = V (G) and E = E(G) we denote its vertex
and edge set, respectively. Throughout these notes, the number of vertices and the number
of edges of G are denoted by n and m, respectively. We also consider weighted graphs, i.e.,
graphs together with a weight function

w : V (G) × V (G) → R+

which assigns a nonnegative real weight w(u, v) to each pair u, v of vertices. It is required
that w satisfies the following properties:

(i) w(u, v) > 0 if uv ∈ E(G), and w(u, v) = 0 if uv /∈ E(G).

(ii) w(u, v) = w(v, u).

If e = uv is an edge of G, property (ii) allows us to write w(e) instead of w(u, v). The weight
w(u, v) will also be denoted by auv (or avu). Unweighted graphs can be viewed as weighted
graphs where w(u, v) is equal to the number of edges between u and v.

In the unweighted case the degree du of the vertex u ∈ V (G) is defined as the number
of edges of G incident to u. In the weighted case we set

du =
∑

v∈V

w(u, v) =
∑

v∈V

auv .

The maximum and the minimum vertex degree in G are denoted by ∆(G) and δ(G), respec-
tively.

We will assume that the reader is familiar with basic notions of graph theory as found,
e.g., in [B-M].

2.2 The Laplacian

Given a graph G, its (weighted) adjacency matrix A(G) = [auv] is an n × n matrix with
rows and columns indexed by V (G) whose entries auv (u, v ∈ V (G)) are defined as above.
Let D(G) = diag(du;u ∈ V (G)) be the diagonal matrix indexed by V (G) and with vertex
degrees on the diagonal. The difference

L(G) = D(G) −A(G) (1)

is called the Laplace matrix of G (or the (difference) Laplacian of G). Historically, one of
the first applications of Laplace matrices of graphs is in the proof of the well-known Matrix-
Tree Theorem of Kirchhoff [Ki] (see also [Bi, Chapter 6]) which states that the number of
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spanning trees in a graph G is equal to the cofactor of any element of the matrix L(G). In
particular, this gives a simple algebraic proof of Cayley formula [Ca] that there are nn−2

distinct labeled trees on n vertices.
Denote by Q an oriented incidence matrix of G which is defined as follows. Orient

arbitrarily each edge of G. The matrix Q is an n×m matrix with rows and columns indexed
by V (G) and E(G), respectively, and entries (Q)ve equal to −

√

w(e) if v is the initial vertex
of e,

√

w(e) if v is the terminal vertex of e, and 0 otherwise. The last possibility also includes
loops, irrespective of their weights.

Proposition 2.1 Let Q be an oriented incidence matrix with respect to some orientation
of the edges of the graph G. Then

L(G) = QQT . (2)

Proof. Given u, v ∈ V (G) and e ∈ E(G), it is easy to check that

(Q)ue(Q
T )ev =











−auv, u 6= v and u, v are the endvertices of e
auw, u = v and e = uw, where w 6= u

0, otherwise.
(3)

By summing up (3) over all edges of G, the proposition follows. 2
Note that Proposition 2.1 also shows that the product QQT is independent of the chosen
orientation of the edges of G.

Let RV be the set of functions from V to R,

RV = {f : V → R}.

If f ∈ RV and u ∈ V , we shall use the notation fu instead of the more customary f(u) to
denote the value of f at the vertex u. With the usual operations of the sum ((f + g)u =
fu + gu) and the multiplication by real numbers ((λf)u = λfu), RV becomes a real vector
space of dimension n endowed with the inner product

〈f, g〉 =
∑

v∈V

fvgv.

The corresponding norm in RV is

‖f‖ = 〈f, f〉1/2 =
(

∑

v∈V

f2
v

)1/2
.

The matrix L = L(G) (and other matrices indexed by the vertices of G) acts on RV as a
linear operator. Its action is determined by the rule of matrix-vector multiplication, i.e.,
g = Lf is the function defined by the formula

gu = (Lf)u =
∑

v∈V

(L)uvfv , u ∈ V.

There is a natural quadratic form associated with L = L(G):
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Proposition 2.2
〈f, Lf〉 =

∑

uv∈E

auv(fu − fv)
2 . (4)

Proof. Since L = QQT , the definition of Q implies

〈f, Lf〉 = 〈f,QQT f〉 = 〈QT f,QTf〉 =
∑

e∈E

(QT f)2e =
∑

uv∈E

auv(fu − fv)
2 . 2

Let us remark that in the case of an unweighted graph G, expression (4) reduces to

〈f, Lf〉 =
∑

uv∈E

(fu − fv)
2 . (5)

2.3 Laplacians of graphs and Laplace operators on manifolds

Let M be a (compact) Riemannian manifold. The Laplacian ∆ on M is the second order
differential operator acting on C∞(M),

∆(ϕ) = −div(grad(ϕ)).

Let G be the graph of the triangulation of M . When looking for solutions of the Laplace
equation

∆(ϕ) = λϕ (ϕ ∈ C∞(M))

we may try to discretize the problem by looking on the restriction f ∈ RV of ϕ to the
vertex set V of G. For uv ∈ E(G), define its weight as auv = 1/(ρ(u, v))2 where ρ(u, v) is
the length of the edge uv in M . Let Q be the corresponding oriented incidence matrix of
G. Then

(QT f)uv =
fu − fv

ρ(u, v)

is an approximation for the gradient of ϕ at the edge uv. Similarly, the corresponding
Laplace matrix of G captures the properties of the Laplacian ∆ on M : If the triangulation
is “sufficiently fine”, then the restriction of ∆ϕ to V and L(G)f are close to each other.

There is another relationship between graphs and Riemannian manifolds that carries
over to their Laplacians. We will briefly describe this relationship only in case of dimension
2 although it has obvious analogues for higher dimensions, too.

Let S be a surface of constant curvature −1 with three congruent boundary components
such that S is homeomorphic to the “pair of pants” surface (the disk with two holes). If G
is an arbitrary cubic graph, then we define a Riemannian surface S(G) by taking a copy Sv

of S for each vertex of G, and identifying the boundary circles of Sv in pairs with boundary
circles in copies Su of adjacent vertices u. This construction gives a surface of constant
curvature −1 whose genus is equal to the cyclomatic number g = |E(G)|− |V (G)|+1 of the
graph G.

There is a close relationship between the Laplacian on S(G) and the properties of the
Laplace matrix of G. Moreover, some geometric properties of S(G) are closely related
to combinatorial properties of the graph. This relation gives an important bilateral link
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between spectral geometry of Riemannian manifolds and graph theory. It makes possible
to use results about graphs in the study of Laplacians on manifolds and, conversely, gives
a possibility of transfering results about Laplacians on manifolds to graphs. Each of these
directions has proved to be useful in research. We refer to the book by Buser [Bu] and to
the paper [Br] for more details.

2.4 Laplace eigenvalues

By definition, L(G) is a real symmetric matrix, and (4) (together with the nonnegativity of
the edge-weights) implies that it is positive semidefinite. Therefore it has n nonnegative real
eigenvalues 0 ≤ λ1 = λ1(G) ≤ λ2 = λ2(G) ≤ · · · ≤ λn = λn(G) (repeated according to their
multiplicities). These eigenvalues are called Laplace eigenvalues of the graph G. It is easy
to see that 0 is always an eigenvalue of L(G) and that 1 = (1, 1, . . . , 1)T is the corresponding
eigenvector. More precisely, we have the following description of the multiplicity of 0 as an
eigenvalue of L(G).

Proposition 2.3 The multiplicity of the value 0 as an eigenvalue of L(G) is equal to the
number of connected components of G.

Proof. Let H be a connected component of G. Denote by fH ∈ RV the characteristic
function of V (H), i.e., the 0-1 function whose value fH

v is equal to 1 if and only if v ∈
V (H). Obviously, L(G)fH = 0. Since the characteristic functions of different connected
components are linearly independent, the multiplicity of the eigenvalue 0 is at least the
number of connected components of G.

Conversely, let f ∈ RV be a function from the kernel of L(G). Then 〈f, Lf〉 = 0, and
(4) implies that f is constant on each connected component of G. Therefore f is a linear
combination of the characteristic functions of connected components of G. 2

In particular, Proposition 2.3 implies that λ1(G) = 0 is a simple eigenvalue of L(G) if
and only if the graph G is connected.

If M is a matrix with real eigenvalues, we use the notation λi(M) to denote the i-th
smallest eigenvalue of M (respecting the multiplicities). To denote the maximal eigenvalue
of M we will occasionally use the symbol λmax(M). Consistently with this notation we may
also write λmin(M) instead of λ1(M).

Let G be a k-regular (weighted) graph, i.e., dv = k for each v ∈ V (G). Then (1) implies
that λ is an eigenvalue of L(G) if and only if k−λ is an eigenvalue of the weighted adjacency
matrix A(G). More precisely,

λi(L(G)) = k − λn+1−i(A(G)), i = 1, . . . , n. (6)

This result enables us to use known results about the eigenvalues of the adjacency matrix
of a regular graph in the study of its Laplace eigenvalues. We refer to [C-D-S] and to
[Go] for numerous results on the adjacency matrix eigenvalues of graphs. For example, the
eigenvalues of the adjacency matrix of the complete graph Kn are n− 1 and −1 (the latter
with multiplicity n− 1). Therefore

λ1(Kn) = 0, and λk(Kn) = n for 2 ≤ k ≤ n.
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Similarly, the Laplace eigenvalues of the n-cycle Cn are precisely the numbers

νk = 2 − 2 cos
(2kπ

n

)

, k = 1, . . . , n.

If G is a simple and unweighted graph and G is its complement, then

L(G) + L(G) = nI − J (7)

where J is the matrix with all entries equal to 1. Let f1, f2, . . . , fn be an orthogonal system
of eigenvectors of L(G) such that f1 = 1 and L(G)f i = λif

i for i = 1, . . . , n. By (7) we get
L(G)f1 = 0 and for 2 ≤ i ≤ n,

L(G)f i = (n− λi)f
i.

This shows that λ1(G) = 0 and that for 2 ≤ i ≤ n we have

λi(G) = n− λn−i+2(G).

In particular, if G = Kn,m, then G = Km ∪Kn. So, G has eigenvalues 0(2),m(m−1), n(n−1)

(with the numbers in the superscripts indicating multiplicities). Hence the Laplace eigen-
values of Kn,m are 0(1), n(m−1),m(n−1), and n+m.

Let us recall that the Cartesian product G2H of graphs G and H has vertex set
V (G2H) = V (G) × V (H) where (u1, u2) is adjacent to (v1, v2) if and only if u1 = v1
and u2v2 ∈ E(H) or u2 = v2 and u1v1 ∈ E(G). There is a simple description of Laplace
eigenvalues of G2H in terms of Laplace eigenvalues of G and H.

Proposition 2.4 The Laplace eigenvalues of the Cartesian product G2H are precisely the
numbers

λi(G) + λj(H) (1 ≤ i ≤ |V (G)|, 1 ≤ j ≤ |V (H)|)
where each number is obtained as many times as is its multiplicity as an eigenvalue of
L(G2H).

The proof of Proposition 2.4 relies on the fact that the Laplace matrix of G2H is equal
to L(G2H) = L(G) ⊗ IV (H) + IV (G) ⊗ L(H), where ⊗ denotes the Kronecker product of
matrices. The details are left to the reader.

Proposition 2.4 holds also for weighted graphs G and H if the weights of edges in G2H
are determined by

w((u1, u2), (v1, v2)) =











w(u1, v1), if u2 = v2
w(u2, v2), if u1 = v1

0, otherwise.

As a consequence of Proposition 2.4 we obtain

λ2(G2H) = min{λ2(G), λ2(H)}, (8)

and
λmax(G2H) = λmax(G) + λmax(H) . (9)

Proposition 2.4 can be used to determine the Laplace spectrum of several well-known
families of graphs.
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Example 2.5 The d-dimensional hypercube Qd is the graph isomorphic to the Cartesian
product of d copies of K2. Since the Laplace eigenvalues of K2 are 0 and 2, Proposition 2.4
asserts that the Laplace spectrum of Qd consists of the numbers 2k, k = 0, 1, . . . , d. The
multiplicity of 2k in the spectrum of Qd is equal to

(d
k

)

.

2.5 Bounding the Laplace eigenvalues

There are various useful min-max formulae for the expression of eigenvalues of a symmetric
matrix. If M is a real symmetric matrix indexed by V , then

λ1(M) = min
{〈Mf, f〉

〈f, f〉 | 0 6= f ∈ RV
}

(10)

= min {〈Mf, f〉 | f ∈ RV , ‖f‖ = 1}

and similarly
λmax(M) = max {〈Mf, f〉 | f ∈ RV , ‖f‖ = 1} . (11)

The Rayleigh’s characterization (10) has a generalization, the min-max characterization of
the kth smallest eigenvalue λk(M), known also as the Courant-Fisher’s formula:

λk(M) = min
U

max
f

{〈Mf, f〉 | ‖f‖ = 1, f ∈ U} (12)

where the minimum is taken over all k-dimensional subspaces U of RV . Another way of
expressing (12) is

λk(M) = min {〈Mf, f〉 | ‖f‖ = 1, f ⊥ fi, 1 ≤ i < k} (13)

where f1, . . . , fk−1 are pairwise orthogonal eigenvectors of λ1, . . . , λk−1, respectively.
Among the Laplace eigenvalues of G, the most important are the extreme nontrivial

eigenvalues: the second smallest eigenvalue λ2(G) and the largest eigenvalue λmax(G). (Let
us observe that the relation (7) shows that λ2(G) = n − λmax(G). So, it is not surprising
at all that the importance of one of these eigenvalues implies the importance of the other.)
For a (weighted) graph G with Laplace matrix L = L(G), (13) reads

λ2(G) = min {〈Lf, f〉 | ‖f‖ = 1, f ⊥ 1} (14)

since 1 is an eigenvector corresponding to λ1(G). Let us observe that f is orthogonal to 1

if and only if the sum of the values of f is 0,
∑

v∈V fv = 0. Expression (14) can be used to
get combinatorial upper bounds on λ2(G). For example:

Lemma 2.6 Let s, t ∈ V (G) be nonadjacent vertices of a graph G. Then

λ2(G) ≤ 1

2
(ds + dt).

Proof. Let f ∈ RV be defined by

fv =











1, v = s
−1, v = t

0, otherwise.
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Since f ⊥ 1, (14) yields

λ2(G) ≤ 〈L(G)f, f〉
〈f, f〉 =

∑

uv∈E auv(fu − fv)
2

∑

v∈V f
2
v

=
ds + dt

2
. 2

The proof of Lemma 2.6 presents a basic technique to exploit expressions like (14). By
inserting an appropriate function in the expression, the right-hand side gets a meaning-
ful combinatorial interpretation, and this enables us to relate combinatorial properties in
question with the Laplace eigenvalues. To overcome the orthogonality restriction on f ,
Fiedler [Fi2] transformed (14) to a more suitable expression which does not require f to be
orthogonal to 1 in order to be applied.

Proposition 2.7

λ2(G) = 2n · min











∑

uv∈E
auv(fu − fv)

2

∑

u∈V

∑

v∈V
(fu − fv)2

∣

∣

∣

∣

∣

f 6= c1 for c ∈ R











. (15)

Proof. Observe first that both the numerator and the denominator of the fraction in the
minimum are invariant for the addition of a constant function. This observation together
with (4) and (14) implies that it suffices to show that 2n〈f, f〉 =

∑

u∈V

∑

v∈V (fu − fv)
2

whenever f is orthogonal to 1. So, assume that f ⊥ 1. Then

∑

u∈V

∑

v∈V

(fu − fv)
2 =

∑

u∈V

∑

v∈V

f2
u − 2

∑

u∈V

∑

v∈V

fufv +
∑

u∈V

∑

v∈V

f2
v

= 2n〈f, f〉 − 2〈f,1〉2 = 2n〈f, f〉 . 2
An almost identical proof yields a similar expression for λmax(G):

λmax(G) = 2n · max











∑

uv∈E
auv(fu − fv)

2

∑

u∈V

∑

v∈V
(fu − fv)2

∣

∣

∣

∣

∣

f 6= c1 for c ∈ R











. (16)

Let us conclude this section by presenting bounds on λ2(G) and λmax(G) in terms of
maximum and minimum degrees of G.

Proposition 2.8

λ2(G) ≤ n

n− 1
δ(G) ≤ n

n− 1
∆(G) ≤ λmax(G) ≤ 2∆(G). (17)

Proof. Choose a vertex v ∈ V (G) and let e(v) ∈ RV be the function of the standard base

corresponding to v, i.e., e
(v)
v = 1 and e

(v)
u = 0 for each u 6= v. By putting e(v) in (15), we get

λ2(G) ≤ 2n
dv

2(n − 1)
=

n

n− 1
dv .
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Since v was chosen arbitrarily, the first inequality follows. The lower bound on λmax(G) is
proved analogously using (16).

It remains to show that λmax(G) ≤ 2∆(G). Since the matrix ∆(G)IV (G) − L(G) is
(elementwise) nonnegative, Perron-Frobenius theorem implies that its largest eigenvalue
∆(G) is greater than or equal to the absolute value of its smallest eigenvalue, i.e., ∆(G) ≥
|∆(G) − λmax(G)|. In particular, ∆(G) ≥ λmax(G) − ∆(G) as claimed. 2

An alternative proof of the first part of Proposition 2.8 can be obtained by showing
that the matrices L(G) − λ2(G)(I − 1

n1 1T ) and λmax(G)(I − 1
n11T ) − L(G) are positive

semidefinite and by considering their diagonal entries.
The application of the Perron-Frobenius theorem in the proof of the last inequality in

Proposition 2.8 can be strengthened to show that for a connected graphG, λmax(G) = 2∆(G)
if and only if G is a bipartite ∆(G)-regular graph. See, for example, [Go].

3 Partitions of graphs

3.1 Edge cuts and eigenvalues

For a subset S ⊆ V (G), let S̄ = V (G)\S denote the complement of S in V (G). Given sets
of vertices A,B ⊆ V (G), let E(A,B) be the set of those edges of G that have one endvertex
in A and the other in B. We also set

e(A,B) =
∑

u∈A

∑

v∈B

w(u, v) =
∑

e∈E(A,B)

w(e)

to be the sum of the weights of the edges in E(A,B). Note that for an unweighted graph
G, e(S, S̄) counts the number of edges in the cut E(S, S̄).

The partition problems discussed in this section are mainly concerned with finding an
appropriate subset S ⊆ V (G) such that the edge cut E(S, S̄) satisfies some specific extremal
property. In particular, we focus our attention to the following quantities: the weight of
a maximum cut, the bipartition width, and the isoperimetric number. The computational
complexity of these problems is such that there is no hope of finding an optimal solution
to a moderately sized problem in a reasonable amount of time. (More precisely, they are
NP-hard.) Therefore any nontrivial bounds are desirable and potentially very important.

Let us start by a lemma that relates the weight of an edge cut E(S, S̄) to the eigenvalues
λ2(G) and λmax(G) of the Laplacian of the underlying graph. Although simple to prove,
the lemma is a fundamental tool for obtaining bounds on various graph properties related
to partitions.

Lemma 3.1 Let G be a (weighted) graph of order n and S ⊆ V (G). Then

λ2(G)
|S|(n − |S|)

n
≤ e(S, S̄) ≤ λmax(G)

|S|(n − |S|)
n

.

Proof. Let f ∈ RV be the characteristic function of S, i.e., fv = 1 if v ∈ S and fv = 0
otherwise. Then

∑

u∈V

∑

v∈V

(fu − fv)
2 = 2|S|(n − |S|)
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and
∑

uv∈E

auv(fu − fv)
2 = e(S, S̄) .

If S 6= ∅ and S 6= V (G), (15) implies

λ2(G) ≤ 2n · e(S, S̄)

2|S|(n − |S|) .

After rearranging, this gives the lower bound. Obviously, the lower bound also holds for
S = ∅ and S = V (G). The upper bound is proved analogously using (16). 2

It is an immediate, and also an important consequence of Lemma 3.1 that in a graph
with all non-trivial Laplace eigenvalues being close together, i.e., when λmax − λ2 is small,
the weights of all edge cuts E(S, S̄) corresponding to vertex sets S of the same cardinality
are approximately the same. In particular, this property holds for the cardinalities of edge
cuts in random graphs. Therefore it is not surprising that many algorithms dealing with
edge cuts perform very well on randomly chosen graphs.

3.2 The bipartition width

Let G be a graph of order n. The bipartition width bw(G) of the graph G is defined as

bw(G) = min {e(S, S̄) | S ⊆ V (G), |S| = ⌊n/2⌋} .

In the unweighted case, the bipartition width of the graph G is equal to the minimum
number of edges whose deletion disconnects G into two parts of the same size (up to a
vertex). It is known that even for unweighted simple graphs the problem of determining
bw(G) is NP-hard (see, e.g., [G-J, p. 210]).

Let us remark that the “reversed” problem of determining

bw(G) = max {e(S, S̄) | S ⊆ V (G), |S| = ⌊n/2⌋}

is closely related to the original one. Namely, given a weighted graph G with weight function
w, let W = max{auv | u, v ∈ V (G)}. Define the “weighted complement” of G as the
weighted graph Ḡ with V (Ḡ) = V (G) and the weight function w̄(u, v) = W −w(u, v). Then

bw(G) + bw(Ḡ) = W ·
⌊n

2

⌋⌈n

2

⌉

which implies that the problems of determining bw and bw are actually equivalent.
Since all the sets, over which the minimum in the definition of bw(G) is taken, have size

⌊n/2⌋, Lemma 3.1 gives the following lower bound on bw(G).

Corollary 3.2 Let G be a weighted graph of order n. If n is even, then

bw(G) ≥ n

4
· λ2(G) . (18)

If n is odd, then

bw(G) ≥ n2 − 1

4n
· λ2(G) . (19)
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The bounds of Corollary 3.2 can be further improved by introducing a correction func-
tion. A function c ∈ RV is called a correction function if c ⊥ 1. The following bound was
proved by Boppana [Bo].

Proposition 3.3 Let G be a weighted graph of even order n. Then

bw(G) ≥ n

4
· max

c
min

f

〈(L(G) + diag(c))f, f〉
〈f, f〉 (20)

where the maximum is taken over all correction functions c ∈ RV and the minimum is taken
over all nonzero functions f ∈ RV with f ⊥ 1.

Proof. Let S ⊆ V (G) be a set of cardinality n
2 with e(S, S̄) = bw(G) and let g ∈ RV be

its signed characteristic function, i.e., the function defined by gv = 1 if v ∈ S and gv = −1
if v ∈ S̄. Since |S| = |S̄|, g ⊥ 1. Take an arbitrary correction function c ∈ RV . Since c ⊥ 1,
we have

〈diag(c)g, g〉 =
∑

v∈V

cvg
2
v =

∑

v∈V

cv = 0 . (21)

Using (21) and applying (4) we get

〈(L(G) + diag(c))g, g〉
〈g, g〉 =

〈L(G)g, g〉
〈g, g〉 =

∑

uv∈E auv(gu − gv)
2

∑

v∈V g
2
v

=
4e(S, S̄)

n
=

4

n
· bw(G).

Since c was arbitrary, the bound follows. 2
For computational purposes, it is convenient to express the bound of Proposition 3.3 as

a maximization of the smallest eigenvalue of an appropriate symmetric matrix. This can be
done as follows. Let Q = (q1, . . . , qn−1) be an n × (n − 1) matrix such that the columns qi
are pairwise orthogonal unit vectors with the property that qi ⊥ 1 (1 ≤ i < n). It is easy to
see that for every x ∈ Rn−1 we have 〈Qx,Qx〉 = 〈x, x〉 and Qx ⊥ 1. This implies:

Corollary 3.4 We have

bw(G) ≥ n

4
· max

c
λmin(Q

T (L(G) + diag(c))Q)

where the maximum is taken over all correction functions c ∈ RV .

We shall see in Section 4 that the bound of Corollary 3.4 can be formulated as a semidef-
inite program, and can therefore be computed to an arbitrary precision in polynomial time
using known polynomial time methods for solving such programs.
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3.3 The max-cut problem

The maximum cut (or max-cut) problem is similar to the “reversed” bipartition width prob-
lem except that the restrictions on the sizes of the subsets over which the maximum is taken
are omitted. More precisely, let mc(G) denote the maximum weight of an edge cut in G,

mc(G) = max {e(S, S̄) | ∅ 6= S ⊂ V (G)} .
As far as the computational complexity is concerned, the problem of determining mc(G)

is NP-hard [Karp] (see also [G-J, p. 210]). Even more, it is known that there exists a
constant ε > 0 such that there is no polynomial time (1 − ε)-approximation algorithm for
the max-cut problem unless P = NP [P-Y, A-L-M-S-S]. On the other hand, we will see
in Section 4 that it is possible to find a 0.878-approximation to mc(G) in polynomial time.
Unlike the bipartition width problem, the “reversed” problem of max-cut, the minimum cut
problem, which requires to determine

min {e(S, S̄) | ∅ 6= S ⊂ V (G)} ,
is easy to solve in polynomial time using standard flow techniques.

Lemma 3.1 implies the following upper bound on mc(G) which was first observed by
Mohar and Poljak [M-P1].

Corollary 3.5 Let G be a weighted graph of order n. Then

mc(G) ≤ n

4
· λmax(G) . (22)

Similarly to the bipartition width problem, the bound (22) can be further improved
using correction functions. The following eigenvalue bound was introduced by Delorme and
Poljak [D-P1].

Proposition 3.6 Let G be a weighted graph of order n. Then

mc(G) ≤ n

4
· min

c
λmax(L(G) + diag(c)) (23)

where the minimum is taken over all correction functions c ∈ RV .

Proof. The proof consists of similar steps as the proof of Proposition 3.3. Choose
S ⊂ V (G) such that e(S, S̄) = mc(G) and let g ∈ RV be the signed characteristic function
of S, i.e., gv = 1 if v ∈ S and gv = −1 if v ∈ S̄. Take an arbitrary correction function
c ∈ RV . As in the proof of Proposition 3.3, we have

〈diag(c)g, g〉 = 0

and
〈(L(G) + diag(c))g, g〉

〈g, g〉 =
4e(S, S̄)

n
=

4

n
· mc(G) .

Since
〈(L(G) + diag(c))g, g〉

〈g, g〉 ≤ λmax(L(G) + diag(c))

and c was chosen arbitrarily, the bound follows. 2
The performance of (23) was investigated in [D-P2]. It will be further discussed in

Section 4 where it will be formulated as a semidefinite program.
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3.4 Edge-forwarding index

An important notion used in the theory of communication networks is the forwarding index
of a graph. A relation between the forwarding index and the Laplace eigenvalues was
observed by Solé [So].

Let G be a connected graph and suppose that for each (ordered) pair u, v of distinct
vertices of G we have a path Ru,v from u to v. The collection of paths

R = {Ru,v | u, v ∈ V (G), u 6= v}

is called a routing in G. For each e ∈ E(G), denote by ξ(G,R, e) the number of paths Ru,v

which contain the edge e. Let

ξ(G,R) = max{ξ(G,R, e) | e ∈ E(G)}.

The minimum
ξ(G) = min ξ(G,R)

taken over all routings R of G is called the edge-forwarding index of G. The edge-forwarding
index is an important parameter in the study of communication networks (see, e.g., [C-C-R-S,
H-M-S] or the notes of Heydemann [He] in this collection).

Proposition 3.7 Let G be unweighted connected graph of order n with the edge-forwarding
index ξ(G), and let S ⊆ V (G). Then

ξ(G) ≥ 2|S|(n − |S|)
e(S, S̄)

≥ 2n

λmax(G)
.

Proof. Let R be a routing. Each path in R joining a vertex of S with a vertex in S̄
contains at least one edge in E(S, S̄). Since there are 2|S|(n − |S|) such paths, this proves
the first inequality. The second inequality follows by Lemma 3.1. 2
3.5 Isoperimetric inequalities

Isoperimetric problems are related to questions in which one considers the ratio between
the surface area and the volume of d-dimensional bodies or more general (Riemannian)
manifolds. In graph theory, natural analogue to the volume is the number of vertices or the
sum of vertex degrees in a subset S of vertices of the graph, while the counterpart for the
measure of the surface area is the number e(S, S̄) of the edges with one end in S and the other
end outside the set S. Problems in which one considers ratios of the form e(S, S̄)/|S| are
therefore called isoperimetric problems for graphs. In other words, isoperimetric properties
concern the sizes of the neighborhood of a set of vertices. The related term “expansion”
usually means that the sizes of the neighborhood can be bounded from below by some
function of the size of the subset. Such isoperimetric properties provide the foundation for
many recent developments in applications of graph theory in theoretical computer science
which are mentioned in the introduction.

The isoperimetric number i(G) of a graph G of order n ≥ 2 is defined as

i(G) = min

{

e(S, S̄)

|S|
∣

∣

∣ S ⊂ V (G), 0 < |S| ≤ n

2

}

.
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Computationally the problem of determining i(G) is NP-hard [Mo2]. Let us remark that a
seemingly related quantity

max

{

e(S, S̄)

|S|
∣

∣

∣ S ⊂ V (G), 0 < |S| ≤ n

2

}

is not very interesting since it is always equal to ∆(G).
A straightforward application of Lemma 3.1 yields the following eigenvalue lower bound

on i(G).

Corollary 3.8 Let G be a weighted graph of order n. Then

i(G) ≥ λ2(G)

2
.

Proof. Let S 6= ∅ be a set of vertices. By Lemma 3.1, we have

e(S, S̄)

|S| ≥ λ2(G)
n − |S|
n

.

If |S| ≤ n
2 , then (n− |S|)/n ≥ 1/2. This implies the bound on i(G). 2

It is difficult to obtain useful lower bounds on i(G) by combinatorial means. On the
other hand, Corollary 3.8, although easy to prove, gives a nontrivial lower bound on i(G).
Let us present an example where the bound of Corollary 3.8 is, in fact, tight.

Example 3.9 Take the d-dimensional cube Qd = K22Qd−1 and let S = {0}×Qd−1. Since
|S| = e(S, S̄) = 2d−1, i(Qd) ≤ 1. On the other hand, we know from Example 2.5 that
λ2(Qd) = 2. Using Corollary 3.8 we conclude that i(Qd) = 1.

The following quantity is sometimes easier to deal with than i(G):

i∗(G) = min
{e(S, S̄)

|S| |S̄| · |V |
2

∣

∣

∣ ∅ 6= S ⊂ V
}

.

Clearly, i(G)/2 ≤ i∗(G) ≤ i(G). It turns out that i∗(G) satisfies a relation similar to (8):

i∗(G2H) = min{i∗(G), i∗(H)}.

A proof of this can be found in [H-T]; see also [C-T].
The above inequality implies

1

2
min{i(G), i(H)} ≤ i(G2H) ≤ min{i(G), i(H)}.

While the inequality on the right can be strict (see [Mo2]), it is not known whether the
factor 1

2 on the left is the best possible constant.
Corollary 3.8 may be used to get bounds on i(G) since λ2 is usually easier to compute

(or to estimate) than i(G). Sometimes, however, one can estimate i(G), while a bound on
λ2 is desired. (Such examples appear, for instance, in the study of the rate of convergence
of Markov chains; cf. Section 5.) In such a case, one would like to use converse inequality,
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obtaining an upper bound on i(G) in terms of λ2(G). Such inequalities are known as Cheeger
inequalities since they are discrete analogues of their continuous counterpart [Che] (see also
[Br, Bu, Cha]) arising in the study of Laplace operators on Riemannian manifolds.

The classical form of Cheeger’s bound adapted to graphs reads as

i(G) ≤
√

2∆(G)λ2(G) . (24)

In the sequel we shall present an improved eigenvalue upper bound of Cheeger’s type from
[Mo2].

Theorem 3.10 Let G be a weighted graph of order n, G 6= Kn, and let ∆ = ∆(G) and
λ2 = λ2(G). Then

i(G) ≤
√

(2∆ − λ2)λ2 .

Proof. Since for a disconnected graph G we have λ2 = i(G) = 0, we may assume that G
is connected. Let f be an eigenfunction of L(G) corresponding to λ2. Set W = {v ∈ V (G) |
fv > 0}. After possible replacement of f by −f we may assume that |W | ≤ n

2 . Let g ∈ RV

be defined by gv = fv if v ∈W and gv = 0 otherwise. Then

λ2

∑

u∈W

f2
u =

∑

u∈W

(Lf)ufu =
∑

u∈W

(

dufu −
∑

v∈V

auvfv

)

fu

=
∑

u∈W

∑

v∈V

auv(fu − fv)fu

=
∑

u∈W

∑

v∈W

auv(fu − fv)fu +
∑

u∈W

∑

v/∈W

auv(fu − fv)fu

≥
∑

u∈W

∑

v∈W

auv(fu − fv)fu +
∑

u∈W

∑

v/∈W

auvf
2
u

=
∑

uv∈E(W,W )

auv(gu − gv)
2 +

∑

uv∈E(W,W̄ )

auv(gu − gv)
2

=
∑

uv∈E

auv(gu − gv)
2 = 〈Lg, g〉 .

Since
∑

v∈W f2
v =

∑

v∈V g
2
v = 〈g, g〉, we have

λ2 ≥ 〈Lg, g〉
〈g, g〉 =: K .

Then

∑

uv∈E

auv(gu + gv)
2 = 2

∑

uv∈E

auv(g
2
u + g2

v) −
∑

uv∈E

auv(gu − gv)
2

= 2
∑

v∈V

dvg
2
v − 〈Lg, g〉 ≤ 2∆

∑

v∈V

g2
v − 〈Lg, g〉

= (2∆ −K)〈g, g〉.
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This inequality together with the Cauchy-Schwartz inequality implies

K =

∑

uv∈E
auv(gu − gv)

2 ∑

uv∈E
auv(gu + gv)

2

〈g, g〉 ∑

uv∈E
auv(gu + gv)2

≥

(

∑

uv∈E
auv|g2

u − g2
v |

)2

(2∆ −K)〈g, g〉2 . (25)

The quantity
M :=

∑

uv∈E

auv|g2
u − g2

v |

can be interpreted as a measure of optimality of the partitions of V determined by λ2 and
f . A lower bound on M in terms of the isoperimetric number can be obtained in a similar
manner as in the setting of Riemannian manifolds. The following calculation is a discrete
analogue of the integration per partes. Let 0 = t0 < t1 < · · · < tm be all distinct values of
gv (v ∈ V ). For k = 0, 1, . . . ,m, let Vk := {v ∈ V | gv ≥ tk}. Note that |Vk| ≤ |W | ≤ n

2 if
k > 0. Then

M =
∑

uv∈E

auv|g2
u − g2

v | =
m

∑

k=1

∑

uv∈E

gv<gu=tk

auv(g
2
u − g2

v)

=
m

∑

k=1

∑

gu=tk
gv=tl,l<k

auv(t
2
k − t2k−1 + t2k−1 − · · · − t2l+1 + t2l+1 − t2l )

=
m

∑

k=1

∑

u∈Vk

∑

v/∈Vk

auv(t
2
k − t2k−1)

=
m

∑

k=1

e(Vk, V̄k) · (t2k − t2k−1)

≥ i(G)
m

∑

k=1

|Vk|(t2k − t2k−1) = i(G)
m

∑

k=1

t2k(|Vk| − |Vk+1|)

= i(G)
∑

v∈W

g2
v . (26)

In the last line we used the fact that |Vm+1| = 0.
Combining (25) and (26), we get

K ≥ i(G)2

2∆ −K
. (27)

Since λ2 ≥ K, (27) implies

λ2 ≥ ∆ −
√

∆2 − i(G)2 . (28)

Since G 6= Kn, Lemma 2.6 shows that λ2 ≤ ∆. Rearranging (28), this inequality finally
yields i2(G) ≤ (2∆ − λ2)λ2. 2
Let us note that the bound of Theorem 3.10 also holds for G = Kn if n ≥ 3.
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Other forms of discrete Cheeger’s inequalities have been proved by Alon [Alo], Mohar
[Mo1], Sinclair and Jerrum [S-J], Diaconis and Stroock [D-St], Chung [Chu], and others.
See also Section 6.

By using (14), inequality (24) can be expressed as follows:

i2(G)

2∆(G)
≤ min

{

∑

uv∈E auv(fu − fv)
2

∑

v∈V f
2
v

∣

∣

∣ f ∈ RV , f ⊥ 1
}

.

Recent results of [H-T] provide a generalization of the above inequality by replacing the
right hand side by the pth powers of ℓp-norms (and more generally to Orlicz norms), and
replacing the constant 2 on the left by a constant cp which depends only on the norm. The
main tool in this approach is the notion of a discrete gradient.

Although difficult to prove, Cheeger’s bound seems to be less important than the bound
of Corollary 3.8. However, the combination of both bounds shows that for every sequence of
graphs of bounded degree, their isoperimetric numbers tend to 0 if and only if their second
smallest Laplace eigenvalues tend to 0. This observation has an important meaning for
the design of “expanding graphs” since it shows that families of “expanders” correspond to
families of graphs whose second Laplace eigenvalue is uniformly bounded away from 0. Cf.
the notes by Lubotzky [Lu2] in this collection.

Another important observation following from the proof of Theorem 3.10 is that the
partition based on the eigenfunction f of λ2 is not too far from the optimal one since in
the proof of the lower bound on M , only the sets Vk (1 ≤ k ≤ m) have been considered.
Constructing partitions based on the eigenfunctions of λ2 has proved to be one of the
most successful heuristics in parallel computation and for divide-and-conquer approach of
processor distribution. Several references with evidence about this approach are given in
the introduction.

4 Semidefinite programming

4.1 Introduction

At the end of the seventies Khachiyan [Kh] showed how to use the ellipsoid method to
derive a polynomial time algorithm for solving linear programs (see also [G-L-S]). After the
Karmarkar’s algorithm [Karm] appeared in 1984, the field of mathematical programming
faced a rapid development. Many new algorithms were introduced and several of them were
applied to a more general classes of problems.

Semidefinite programs constitute such a class of problems. A semidefinite program is
the problem of minimizing a linear function of a variable x = (x1, . . . , xn)T ∈ Rn subject to
positive semidefiniteness of a certain matrix F (x). The problem input consists of c ∈ Rn

and n+ 1 symmetric matrices F0, . . . , Fn ∈ Rm×m and asks to

minimize 〈c, x〉
subject to F (x) � 0

(SP)

where

F (x) = F0 +
n
∑

i=1
xiFi .
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The inequality sign in F (x) � 0 means that F (x) is a positive semidefinite matrix, i.e.,
〈F (x)z, z〉 ≥ 0 for all z ∈ Rm. Let us remark at this point that we will use the fact that
for every positive semidefinite matrix F there exists a unique positive semidefinite matrix
S such that F = S2. For the obvious reason, the matrix S is denoted by the symbol F 1/2.

A semidefinite program is a convex optimization problem since its objective function
x 7→ 〈c, x〉 is a convex function, and the set of feasible solutions is a convex set. This is
shown by the next claim.

Claim 4.1 The feasible region

F = {x ∈ Rn | F (x) � 0}

of the problem (SP) is a convex set.

Proof. Suppose that x, y ∈ F and take λ ∈ [0, 1]. Then for every z ∈ Rm, we have

〈(λF (x) + (1 − λ)F (y))z, z〉 = λ〈F (x)z, z〉 + (1 − λ)〈F (y)z, z〉 ≥ 0 .

Therefore λF (x) + (1 − λ)F (y) = F (λx+ (1 − λ)y) � 0, and hence λx+ (1 − λ)y ∈ F . 2
Let us now show that semidefinite programming is indeed a generalization of linear

programming.

Example 4.2 Consider a linear program

minimize 〈c, x〉
subject to Ax+ b ≥ 0

(LP)

where c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. Since Ax+ b ∈ Rm, the inequality in (LP) denotes
componentwise inequality. To formulate (LP) as a semidefinite program, observe first that a
vector x ≥ 0 (componentwise) if and only if diag(x) � 0 (i.e., the diagonal matrix containing
components of x on the diagonal is positive semidefinite). Denote by a1, . . . , an the columns
of A. Since

diag(Ax+ b) =
n

∑

i=1

xi diag(ai) + diag(b) ,

the problem (LP) is equivalent to the semidefinite program with F (x) = F0 +
∑n

i=1 xiFi,
where F0 = diag(b) and Fi = diag(ai), i = 1, . . . , n.

Another important class of semidefinite programs are (convex) quadratically constrained
quadratic programs.

Example 4.3 Every convex quadratic function f : Rn → R can be expressed as f(x) =
〈Ax, x〉 − 〈b, x〉 − c, where A ∈ Rn×n is a positive semidefinite matrix, b ∈ Rn, and c ∈ R.
The eigenvalues of the matrix

M =

[

I A1/2x

(A1/2x)T 〈b, x〉 + c

]
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are det(M) = −f(x) with multiplicity 1, and 1 with multiplicity n. Therefore the constraint
f(x) ≤ 0 is equivalent to M � 0. Observe also that M depends affinely on the vector x and
can therefore be expressed as

M = F0 + x1 F1 + · · · + xn Fn

with

F0 =

[

I 0
0 c

]

and Fi =

[

0 ai

aT
i bi

]

, i = 1, . . . , n ,

where a1, . . . , an are the columns of A1/2.
A general (convex) quadratically constrained quadratic program (QP) is the following

problem:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,
(QP)

where each fi : Rn → R (0 ≤ i ≤ m) is a convex quadratic function given by fi(x) =
〈Aix, x〉 − 〈bi, x〉 − ci, Ai � 0, bi ∈ Rn, ci ∈ R. By the above, the problem (QP) can be
restated as a semidefinite program

minimize t

subject to

[

I A
1/2
0 x

(A
1/2
0 x)T 〈b0, x〉 + c0 + t

]

� 0

[

I A
1/2
i x

(A
1/2
i x)T 〈bi, x〉 + ci

]

� 0, i = 1, . . . ,m .

Since a block-diagonal matrix is positive semidefinite if and only if each of its blocks is
positive semidefinite, the above m+ 1 constraints can also be viewed as a single constraint
on a large block-diagonal matrix.

Let us remark that it is a standard procedure to introduce an additional variable, in
our case t, when transforming a problem into a semidefinite form in order to linearize the
objective function and to move its nonlinearity into constraints.

For our applications, the most important semidefinite programs are those for minimizing
the largest eigenvalue of an affine combination of symmetric matrices.

Example 4.4 Let A0, . . . , An ∈ Rm×m be symmetric matrices, and for x ∈ Rn, set

A(x) = A0 +
n

∑

i=1

xiAi .

We would like to

minimize λmax(A(x))

subject to x ∈ U

where U is a (linear) subspace of Rn. Similarly as in the previous example, the above
problem can be translated into a semidefinite program by introducing an auxiliary variable
t ∈ R :
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minimize t

subject to tI −A(x) � 0,
x ∈ U .

The first constraint is equivalent to t ≥ λmax(A(x)). We leave it to the reader to see how
both conditions can be combined into a single condition on the positive semidefiniteness of
a matrix as required in the standard form of semidefinite programs.

In particular, the bound on the max-cut of a graph stated in Proposition 3.6 is an instance
of the problem from Example 4.4, where we take U to be the orthogonal complement of the
vector 1. Also, the bound on the bipartition width from Corollary 3.4 can be viewed as a
semidefinite program of the same form since

max
x∈U

λmin(A(x)) = max
x∈U

{−λmax(−A(x))} = −min
x∈U

λmax(−A(x)) .

There exist efficient and practically useful algorithms for solving semidefinite programs.
Given any ε > 0, the given semidefinite program can be solved within an additive error of
ε in polynomial time (where ε is part of the input, its size being proportional to log(1/ε)).
For this purpose one can use the ellipsoid algorithm (cf. [G-L-S]), other polynomial time
algorithms for convex programming [Vai], or the interior-point methods [Ali, N-N1, N-N2].
Since the work of Nesterov and Nemirovskii [N-N1], and Alizadeh [Ali] there has been
much development in the design and analysis of interior-point methods for semidefinite
programming, yielding practically useful algorithms whose performance is comparable, and
even superior, to the performance of the simplex method.

4.2 Max-cut and semidefinite programming

Given a (weighted) graph G, the max-cut problem for G can be formulated as a quadratic
integer program with variables yv, v ∈ V (G):

maximize 1
2

∑

uv∈E(G)
auv(1 − yuyv)

subject to yv ∈ {−1, 1} for every v ∈ V (G).
(MCqi)

If y is a feasible solution, then 1−yvyu is equal to either 0 or 2. Given a solution y of (MCqi),
the set S with the property mc(G) = e(S, S̄) is determined by S = {v ∈ V (G) | yv = 1}.

Goemans and Williamson [G-W] considered the following relaxation of (MCqi):

maximize 1
2

∑

uv∈E(G)
auv(1 − 〈zv , zu〉)

subject to zv ∈ Sn−1 for every v ∈ V (G).
(MCqr)

Here, Sn−1 denotes the (n− 1)-dimensional sphere in Rn,

Sn−1 = {x ∈ Rn | ‖x‖ = 1} .

It is important to observe that the problem (MCqr) can be reformulated as a semidefinite
program:
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maximize 1
2

∑

uv∈E(G)
auv(1 − yuv)

subject to yvv = 1 for every v ∈ V (G) and
(MCsp)

Y = [yuv]u,v∈V (G) � 0.

Claim 4.5 Problems (MCqr) and (MCsp) are equivalent.

Proof. Denote by Φ1 and Φ2 the objective functions of (MCqr) and (MCsp), respectively,
and let Φ∗

1 and Φ∗
2 be the corresponding optimum values. Suppose that z = {zv ∈ Sn−1 |

v ∈ V (G)} is an optimum solution to (MCqr). Form the matrix Y = [yuv]u,v∈V (G), where
yuv = 〈zu, zv〉. This matrix, known as the Gramm matrix of vectors zv (v ∈ V (G)), is
easily seen to be positive semidefinite. Clearly, yvv = 1 for each v ∈ V (G). Since also
Φ∗

1 = Φ1(z) = Φ2(Y ), we have Φ∗
1 ≤ Φ∗

2.
Conversely, suppose that Y is an optimum solution to (MCsp). Let z = {zv | v ∈ V (G)}

be the columns of Y 1/2. Since yvv = 1, we have 〈zv, zv〉 = 1. Therefore z is a feasible
solution to (MCqr). Clearly, Φ2(Y ) = Φ1(z), and hence Φ∗

2 ≤ Φ∗
1. 2

Poljak and Rendl [P-R] were the first to realize that the bound of the relaxation (MCsp)
is in fact equivalent to the eigenvalue upper bound of Proposition 3.6.

Proposition 4.6 Let G be a weighted graph of order n. Then the value of an optimum
solution to (MCsp) is equal to

n

4
· min

c
λmax(L(G) + diag(c))

where the minimum is taken over all vectors c ∈ RV with
∑

v∈V (G) cv = 0.

For a proof (which uses elegant duality theory of semidefinite programs) we refer to
[P-R].

Goemans and Williamson suggested the following randomized algorithm based on the
relaxation (MCsp) that finds an approximation to the max-cut of G (and also returns the
corresponding set S ⊂ V (G)):

Algorithm 4.7 (Randomized max-cut approximation algorithm)

Input: A weighted graph G of order n.
Output: A set S ⊆ V (G) and e(S, S̄).

1. Solve the program (MCsp), and let Y be the obtained solution.
2. Compute the Cholesky decomposition of Y = ZTZ,

and let zv, v ∈ V (G), be the columns of Z.
3. Choose a random vector c ∈ Sn−1 (according to the uniform distribution),

and set S := {v ∈ V (G) | 〈c, zv〉 ≥ 0}.
4. Compute e(S, S̄).
5. Return S and e(S, S̄).

The algorithm can be implemented to run in polynomial time in the size of the input.
(Recall that the size of the input depends on n and logw(E), where w(E) =

∑

e∈E(G) w(e).)
See [G-W] for more details. In the next section we will learn how one can upgrade Algorithm
4.7 to a deterministic 0.878-approximation algorithm for the max-cut problem.

22



4.3 Approximating the max-cut

For a weighted graph G with the weight function w, denote by w(E) the sum of the weights
w(e) over all edges e of G. Let us first compute the expected value of the weight e(S, S̄).

Claim 4.8 Let S be a randomly chosen subset of V (G) where each vertex v ∈ V (G) belongs
to S with probability 1

2 . Then

Exp[ e(S, S̄) ] =
1

2
w(E).

Proof. For each e ∈ E(G), there are exactly 2n−1 subsets S ⊆ V (G) such that e ∈ E(S, S̄).
Therefore

Exp[ e(S, S̄) ] =
∑

S⊆V (G)

1

2n
· e(S, S̄) =

1

2n

∑

S⊆V (G)

∑

e∈E(S,S̄)

w(e)

=
1

2n

∑

e∈E(G)

2n−1 · w(e) =
1

2
w(E) . 2

It is also easy to describe a deterministic procedure that finds a 1
2 -approximation to

mc(G), i.e., returns a subset S ⊂ V (G) such that e(S, S̄) ≥ 1
2mc(G).

Algorithm 4.9 (Deterministic 1
2-approximation algorithm for the max-cut)

Input: A weighted graph G.
Output: A set S ⊂ V (G) and e(S, S̄) such that e(S, S̄) ≥ 1

2mc(G).
1. Set S1 := ∅ and S2 := ∅.
2. Take v ∈ V (G)\(S1 ∪ S2) and compute e({v}, S1) and e({v}, S2).
3. If e({v}, S1) ≥ e({v}, S2), let S2 := S2 ∪ {v}.

Otherwise, let S1 := S1 ∪ {v}.
4. If S1 ∪ S2 6= V (G), goto Step 2.
5. Set S := S1 and compute e(S, S̄).
6. Return S and e(S, S̄).

Note that throughout the algorithm, we have

e(S1, S2) ≥
1

2

∑

u,v∈S1∪S2

w(uv) ,

which proves that at the end

e(S, S̄) ≥ 1

2
w(E) ≥ 1

2
mc(G)

holds. There exist examples where the value e(S, S̄) returned by Algorithm 4.9 is arbitrarily
close to 1

2mc(G).
It is much more difficult to find an α-approximation to mc(G) for a constant α > 1

2 in
polynomial time. Let us also recall that there exists a constant ε > 0 such that there is no
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polynomial time (1 − ε)-approximation algorithm for the max-cut problem unless P = NP
[P-Y, A-L-M-S-S].

Following [G-W], we will now show that Algorithm 4.7 can be used to find such a 0.878-
approximation in polynomial time.

Lemma 4.10 The expected weight of the cut E(S, S̄) produced by Algorithm 4.7 is equal to

Exp[ e(S, S̄) ] =
1

π

∑

uv∈E(G)

auv arccos〈zu, zv〉 ,

where zv, v ∈ V (G), is an optimum solution of (MCqr).

Proof. Observe first that

Pr[ u ∈ S, v 6∈ S ] = Pr[ 〈c, zu〉 ≥ 0, 〈c, zv〉 < 0 ] =
arccos〈zu, zv〉

2π
.

Therefore

Exp[ e(S, S̄) ] =
∑

uv∈E(G)

w(uv) Pr[uv ∈ E(S, S̄) ] = 2
∑

uv∈E(G)

w(uv) Pr[u ∈ S, v 6∈ S ]

= 2
∑

uv∈E(G)

w(uv)
arccos〈zu, zv〉

2π
=

1

π

∑

uv∈E(G)

w(uv) arccos〈zu, zv〉 . 2
It is an easy exercise in calculus to show that for x ∈ [0, 1], we have

1

π
arccos(x) ≥ β · 1

2
(1 − x) , (29)

where β = 0.87856. Therefore Lemma 4.10 implies:

Corollary 4.11 For a weighted graph G, let E(S, S̄) be the cut obtained by Algorithm 4.7.
Then

Exp[ e(S, S̄) ] ≥ β · mc(G) .

Proof. Lemma 4.10 and inequality (29) imply that

Exp[ e(S, S̄) ] =
1

π

∑

uv∈E(G)

w(uv) arccos〈zu, zv〉 ≥ β · 1

2

∑

uv∈E(G)

w(uv)(1 − 〈zu, zv〉) .

Since zv , v ∈ V (G), is an optimum solution to (MCqr), and since (MCqr) gives an upper
bound on mc(G), we finally get

Exp[ e(S, S̄) ] ≥ β · mc(G) . 2
It remains to describe how to convert the randomized Algorithm 4.7 into a determin-

istic one (without substantially increasing its time complexity and without worsening its
approximation performance).
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Following [G-W], the idea of derandomization is to maintain a set of unit vectors yv ∈ Sm,
v ∈ V (G), with the property

Exp[ e(S, S̄) ] ≥ β · mc(G) , (30)

where the partitioning is performed with respect to a random hyperplane in Rm+1, and to
gradually decrease the dimension m to 0 by transforming yv, v ∈ V (G), to a new set of unit
vectors y′v ∈ Sm−1, v ∈ V (G), still having the property (30) (with respect to the partition
determined by a random hyperplane in Rm). For m = 0, S0 = {−1, 1}, and there is only
one “random” hyperplane in R. Therefore the final vectors yv, v ∈ V (G), determine a set
S := {v ∈ V (G) | yv = 1} with the property e(S, S̄) ≥ β · mc(G).

Initially, yv := zv ∈ Sn−1, where zv, v ∈ V (G), is an optimum solution to (MCqr).
Let us now describe how to decrease the dimension m by 1. Suppose that we have vectors
yv ∈ Sm, v ∈ V (G), satisfying (30). Decompose Sm into a disjoint union

Sm =
⋃

θ∈(−π,π]

Sm
θ ,

where

Sm
θ = {x = (x1, . . . , xm+1)

T ∈ Sm | xm = s cos θ, xm+1 = s sin θ for some s ∈ R} .

Then there exists an angle θ such that choosing the normal c only from Sm
θ still gives (pos-

sibly even stronger) inequality (30). Moreover, such an angle θ can be efficiently computed.
For every v ∈ V (G), let tv and γv be the absolute value and the polar angle of the complex
number xm + i · xm+1, respectively. Define

y◦v = (yv,1, . . . , yv,m−1, tv cos(γv − θ))T ∈ Rm

and set

y′v =
y◦v
‖y◦v‖

∈ Sm−1 .

It remains to prove that the transition from yv to y′v does not violate (30). The key obser-
vation that guarantees this is the following:

Claim 4.12 Suppose that x = (x1, . . . , xm−1, s cos θ, s sin θ)T ∈ Sm
θ . Let x′ := (x1, . . . , xm−1,

s)T ∈ Sm−1. Then
〈x, yv〉 = 〈x′, y◦v〉 .

Proof. Standard properties of the cosinus give

〈x, yv〉 − 〈x′, y◦v〉 = s cos θ · tv cos γv + s sin θ · tv sin γv − s · tv cos(γv − θ)

= s · tv( cos θ cos γv + sin θ sin γv − cos(γv − θ)) = 0. 2
Consequently, the sign of 〈x, yv〉 is the same as the sign of 〈x′, y′v〉, and therefore the

expected value Exp[ e(S, S̄) ] of e(S, S̄) on Sm−1 with respect to y′v, v ∈ V (G), is the same
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as the expectation Exp[ e(S, S̄) ] of e(S, S̄) on Sm
θ with respect to yv, v ∈ V (G), which is in

turn at least β · mc(G). This proves that the derandomization works as claimed above.
After the announcement of the approximation algorithm of Goemans and Williamson,

semidefinite programming has been successfully applied in the design of a number of other
approximation algorithms, for example the max-k-cut (Frieze and Jerrum [F-J]), a 0.931-
approximation algorithm for MAX 2-SAT (Feige and Goemans [F-G]), a 0.859-approx-
imation algorithm for MAX DICUT [F-G], and approximate coloring (Karger, Motwani,
and Sudan [K-M-S]).

5 Random walks on graphs

Isoperimetric properties and eigenvalues treated in previous sections are closely related to
the convergence rates of Markov chains. Several important randomized algorithms discov-
ered in the last decade increased applicability of random walks and Markov chains in solving
previously untractable problems. In this section we briefly describe relations between simple
random walks in graphs and parameters similar to those treated in previous sections. At
the end we mention how these results are used in the design of efficient randomized approx-
imation algorithms. Additional reading on the results related to the presentation in this
section can be found, e.g., in [M-R, Kan, Ros, Sin].

5.1 Markov chains

A Markov chain consists of a measurable state space V, an initial probability distribution
(i.e., a probability measure) µ0 on V, and transition probabilities P (u, ·) which give, for each
state u ∈ V, a distribution P (u, ·) on V (which represents the probabilities of where the
Markov chain will go one step after being in the state u). It is assumed that u 7→ P (u,A)
is a measurable function on V for each fixed measurable subset A ⊆ V. If V is a discrete
space (in particular, finite), then the initial distribution µ0 can be specified by the function

x(0) : V → R+ such that
∑

u∈V x
(0)
u = 1. Similarly, the transition probabilities P (u, v) can

be described by the transition matrix P = (puv)u,v∈V indexed by V which has nonnegative
real entries puv = P (u, {v}) such that for each u ∈ V, we have

∑

v∈V puv = 1.
Given the initial distribution µ0 and transition probabilities P (u, ·), we can inductively

construct distributions µt on V, representing the probabilities of where the Markov chain
will be after t steps:

µt(A) =

∫

V
P (u,A)µt−1(du) , t = 1, 2, . . . . (31)

We will be interested only in Markov chains with discrete state space V, which we assume
in what follows. In such a case, (31) can be presented more directly as

x(t)
v =

∑

u∈V
puvx

(t−1)
u (32)

or in the matrix form:
x(t) = P Tx(t−1) = · · · = (P T )tx(0) (33)

where the action of the transpose matrix P T on the elements of RV is determined by the
rule of matrix-vector multiplication. The formula (33) is easy to explain informally. It states
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that to be in the state v after t steps, we must have been at some state u at step t− 1 (with

probability x
(t−1)
u ), and then jumped from u to v in the next step (with probability puv).

If the state space V contains a nonempty proper subset V ′ ⊂ V such that P (v,V ′) = 1
for all v ∈ V ′, then the Markov chain is said to be reducible. If there is no such subset V ′,
the Markov chain is irreducible. The Markov chain is periodic, if the state space V contains
disjoint nonempty subsets V0, . . . ,Vd−1 (d ≥ 2) such that P (u,Vi) = 1 for all u ∈ Vi−1

(where the indices are taken modulo d). If there is no such decomposition, the Markov
chain is aperiodic.

For states u, v ∈ V and t > 0, let r
(t)
uv denote the probability that the Markov chain with

the initial state u visits the state v for the first time in step t. The probability that the
Markov chain with the initial state u visits the state v after some number of steps is denoted

by r
(∞)
uv , i.e.,

r(∞)
uv =

∞
∑

t=1

r(t)uv .

A state v ∈ V is transient if r
(∞)
vv < 1; otherwise it is recurrent (or persistent).

The expected number of steps to reach the state v starting from the state u is denoted
by huv. Then

huv =
∞
∑

t=1

t r(t)uv .

A stationary distribution for the Markov chain with transition matrix P is a probability
distribution x such that x = P Tx.

The following theorem summarizes the basic properties of finite Markov chains (i.e.,
Markov chains whose state space V is finite).

Theorem 5.1 Any finite, irreducible, aperiodic Markov chain with the state space V has
the following properties:

(i) All states v ∈ V are aperiodic and recurrent and hvv <∞.

(ii) There is a unique stationary distribution x(∞), and x
(∞)
v > 0 for every v ∈ V.

(iii) For every v ∈ V, r
(∞)
vv = 1 and hvv = 1/x

(∞)
v .

(iv) Choose an initial distribution x(0), and let N(v, t) denote the expected number of times

the Markov chain visits state v in t steps, i.e., N(v, t) =
∑t

i=1 x
(i)
v . Then

lim
t→∞

N(v, t)

t
= x(∞)

v .

The proof of Theorem 5.1 is elementary and can be found in most textbooks treating Markov
chains. We refer, for example, to [Fe]. The reader can also consult a similar proof of Theorem
5.7.

27



5.2 Random walks on graphs

Given a (finite) weighted graph G (possibly containing loops), a random walk on G is a
Markov chain with state space V = V (G) and with transition probabilities puv such that
puv > 0 if and only if uv ∈ E(G). The most common rule to assign values to the transition
probabilities puv to step from u to v, which we assume in what follows, is to take

puv =
auv

du
.

This random walk is called the simple random walk on G. For the simple random walk on
G, the transition matrix P (G) is equal to

P (G) = D−1A(G) ,

where D = diag(dv; v ∈ V (G)) is the diagonal matrix with vertex degrees on the diagonal.
Although P is not necessarily symmetric, it has only real eigenvalues. This can be seen as
follows. Let L′(G) be the transition Laplacian matrix of G defined by

L′(G) = D−1/2L(G)D−1/2 .

In particular, we have

(L′(G))uv =















1 − auu

du
, u = v

− auv√
dudv

, uv ∈ E(G)

0 , otherwise.

(34)

Observe that L′(G) is a symmetric matrix and that for a d-regular graph G, we have

L(G) = d · L′(G) .

Notice also that the difference Laplacian matrix L(G) of G does not change if we add
loops to G, while the transition Laplacian matrix L′(G) is changed under addition of loops.
We will see that this property can be used to construct graphs with simple random walks
that converge rapidly to the stationary distribution.

The transition matrix P (G) of the simple random walk on G can be expressed as follows:

Claim 5.2 P (G) = I −D−1/2L′(G)D1/2.

Proof. Since I −D−1/2L′(G)D1/2 = I −D−1L(G), the diagonal elements of the matrix
are 1− d−1

u (L(G))uu = 1− (du − auu)/du = auu/du (u ∈ V (G)), and the off-diagonal entries
are equal to −d−1

u (L(G))uv = auv/du = puv (u, v ∈ V (G), u 6= v). 2
In particular, I − P (G) and L′(G) have the same eigenvalues. Moreover, Claim 5.2

implies that P (G) (and also P (G)T ) can be diagonalized, i.e., it has n pairwise orthogonal
eigenvectors.

A proof similar to the proof of Proposition 2.8 gives the following result.
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Claim 5.3 Let G be a weighted graph with at least two vertices. Then

−1 ≤ λmin(P (G)) < λmax(P (G)) = 1 .

If G is connected, then λmax(P (G)) = 1 is a simple eigenvalue, and we have λmin(P (G)) =
−1 if and only if G is bipartite.

It is easy to determine, just by looking at the structure of the graph G, whether a random
walk on G is aperiodic or irreducible.

Claim 5.4 Let G be a weighted graph. Then:

(i) The simple (and hence every) random walk on G is periodic if and only if G is bipartite.

(ii) The simple (and hence every) random walk on G is irreducible if and only if G is
connected.

The easy proof of Claim 5.4 is left to the reader.
Theorem 5.1 states that for every finite, irreducible, aperiodic Markov chain, there ex-

ists unique stationary distribution x(∞). In case of simple random walks on connected
nonbipartite weighted graphs, the distribution x(∞) can be easily found.

Proposition 5.5 Let G be a connected, nonbipartite weighted graph. Then the stationary
distribution of the simple random walk on G is given by

x(∞)
v =

dv

2m
, v ∈ V (G) ,

where 2m =
∑

v∈V (G) dv. In particular, if G is d-regular, then the stationary distribution is
uniform,

x(∞)
v =

1

n
, v ∈ V (G) .

Proof. It suffices to check that x(∞) is an eigenfunction of P (G)T corresponding to the
eigenvalue 1:

(P (G)T x(∞))v =
∑

u∈V (G)

P (G)Tvux
(∞)
u

=
∑

u∈V (G)

auv

du
· du

2m
=

dv

2m
= x(∞)

v . 2
Let us conclude this subsection by an example.

Example 5.6 Card shuffling: Suppose that a deck of n cards c1, . . . , cn is lying on the
table. We would like to shuffle the cards according to the following rule: select randomly
i, j (1 ≤ i, j ≤ n) and exchange the cards ci and cj . To simulate this shuffling process as
a simple random walk on a graph, consider the Cayley graph Cay(Sn, T ) of the symmetric
group Sn, where T is the set of all transpositions in Sn. Since this graph is bipartite, it is
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a standard trick to add a loop to each vertex to avoid the periodicity of the random walk.
Denote the obtained graph by G. To assure that our card-shuffling process is faithfully
modelled by the simple random walk on G, we have to assign weights to the edges of G
appropriately. There are n2 distinct possibilities to choose the pair i, j: two for each of
the

(n
2

)

transpositions, and n to choose i = j in which case the deck remains unchanged.
Therefore we set

auv =







1
n, u = v

2
n2 , u 6= v.

(35)

Well, shuffling cards is fun, but we would like to know how long do we have to shuffle so
that the cards are properly shuffled. Or, more formally, how fast does the simple random
walk on G converge to the stationary distribution? We address this type of questions in the
next subsection.

Example 5.6 belongs to a broader class of random walks on groups. Suppose that we
have a (finite) group Γ and a symmetric probability distribution p on Γ, i.e., a probability
distribution with the property p(g) = p(g−1) for every g ∈ Γ. Define S = {g ∈ Γ | p(g) > 0}.
Then a random walk on Γ is actually a random walk on the graph G = Cay(Γ, S) where the
weight of the edge gh ∈ E(G) is equal to p(g−1h). In particular, since Cayley graphs are
regular, the uniform distribution is stationary for any random walk on any (finite) group.

5.3 Rate of convergence of a random walk

As suggested by the results of the previous subsections, there is a close relationship between
the eigenvalues of P (G) and the rate of convergence of the simple random walk on G to the
stationary distribution.

Theorem 5.7 Let G be a connected, nonbipartite weighted graph and x(0) the initial prob-
ability distribution on V (G). Set

λ = max{|λi(P (G))| | λi(P (G)) 6= 1} .

For the simple random walk on G we have

‖x(t) − x(∞)‖ < λt .

Proof. For i = 1, . . . , n, let y(i) be the eigenfunction of Q = P (G)T corresponding to
the eigenvalue λi = λi(Q) = λi(P (G)). We may assume that ‖y(i)‖ = 1 and that y(i),
i = 1, . . . , n, are pairwise orthogonal. Recall that λn(Q) = 1 and that the assumptions in
theorem imply λ < 1. Moreover, the Perron-Frobenius theorem shows that all components
of y(n) are positive.

Let us write

x(0) =
n

∑

i=1

αiy
(i)

and observe that αn = 〈x(0), y(n)〉 6= 0. Then

x(t) = Qtx(0) =
n

∑

i=1

αiλ
t
iy

(i) =
n−1
∑

i=1

αiλ
t
iy

(i) + αny
(n) .

30



Since λ < 1, x(t) converges to αny
(n) = x(∞). Therefore,

‖x(t) − x(∞)‖2 =
∥

∥

∥

n−1
∑

i=1

αiλ
t
iy

(i)
∥

∥

∥

2
=

n−1
∑

i=1

‖αiλ
t
iy

(i)‖2

=
n−1
∑

i=1

α2
i λ

2t
i ‖y(i)‖2 ≤ λ2t

n−1
∑

i=1

α2
i .

Since also
n−1
∑

i=1

α2
i <

n
∑

i=1

α2
i = ‖x(0)‖2 ≤ 1 ,

we finally get ‖x(t) − x(∞)‖ < λt. 2
Example 5.8 Let us consider the random walk on the d-dimensional hypercube Qd. Note
that Qd is a Cayley graph of the group Zd

2. Since Qd is bipartite, we add a loop to each
vertex, and denote the obtained graph by G. We would like to assign the weights to the
loops and proper edges of G in such a way that λ becomes as small as possible. Let α be
the weight assigned to the loops and β the weight of the proper edges of G. We also require
α+ dβ = 1. Then

P (G) = αI + βA(Qd)

where A(Qd) is the adjacency matrix of Qd. Example 2.5 shows that the eigenvalues of
P (G) are α + β(d − 2i), i = 0, . . . , d, where the multiplicity of λi = α + β(d − 2i) is equal
to

(d
i

)

. Therefore
λ = max{α+ β(d− 1), |α − βd|} .

By balancing both terms, we get equality when α = β = 1
d+1 . Hence

λ =
d− 1

d+ 1
= 1 − 2

d+ 1
.

By Theorem 5.7, the rate of convergence can be estimated by

λt =

(

d− 1

d+ 1

)t

=

(

1 − 2

d+ 1

)t

≤ exp
(

− 2t

d+ 1

)

.

Let us remark that similar estimates can be established for other Abelian groups (cf.,
e.g., [Ros]).

Example 5.9 Card shuffling: In this case, general analysis is more complicated than for
the d-cube since it involves group representations of Sn. In the special case of Example 5.6
we obtain

λ = 1 − 2

n
≤ exp(−2/n) ,

and consequently

‖x(t) − x(∞)‖ ≤ exp(−2t

n
) .

See [D-Sa] for more details.
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Example 5.10 Usual card shuffling: This problem was considered by Bayer and Diaco-
nis [B-D]. They showed that 3

2 log2 n iterations are enough (and also necessary) for good
card shuffling of the deck of n cards. An interesting result of their analysis of the rate of con-
vergence of random walks on Sn corresponding to card shuffling is the cut-off phenomenon
which states that n cards become “well shuffled” (with high probability) all of the sudden in
a very short period at the time 3

2 log2 n+ o(log2 n). In particular, 7 ordinary “riffle” shuffles
are (required and) enough to properly mix the ordinary deck of 52 cards. For additional
background see [Di].

Perhaps the most useful distance between probability distributions x, y of the Markov
chain is the so-called “chi-squared” distance which is defined as follows:

χ2(x, y) =
∑

v∈V (G)

(xv − yv)
2

yv
.

Obviously, the definition makes sense only when yv > 0 for every v ∈ V (G). A proof similar
to the proof of Theorem 5.7 gives:

Theorem 5.11 For the simple random walk on a non-bipartite weighted graph we have

χ2(x(t), x(∞)) ≤ λt · χ2(x(0), x(∞)).

The quantity
1

1 − λ
is called the mixing time of the random walk and is obviously of interest since the above the-
orem implies that in this many steps, the chi-squared distance to the stationary distribution
x(∞) is cut by a constant factor.

The quantity 1 − λ is related to the second smallest eigenvalue λ2(I − P ) which is the
same as the second smallest eigenvalue of the transition Laplace matrix L′(G).

The isoperimetric constant related to the transition Laplacian is also known as conduc-
tance of the corresponding Markov chain (cf., e.g., [Sin]). In case of the simple random walk
on the graph G, the conductance is defined as

iP (G) = min











∑

u∈S

∑

v/∈S
puvdu

d(S)

∣

∣

∣

∣

∣

S ⊂ V (G), 0 < d(S) ≤ m











where

d(S) =
∑

v∈S

dv and m =
1

2

∑

v∈V

dv =
1

2
d(V ).

If the graph G is regular, then the conductance coincides with the isoperimetric number of
G (divided by the degree).

Similar proofs as given in Section 3 (for Corollary 3.8 and Theorem 3.10) give the fol-
lowing bounds:

Theorem 5.12 For the simple random walk on the graph G we have

1

2
i2P (G) ≤ λ2(I − P ) = λ2(L

′(G)) ≤ 2 iP (G).

For proofs we refer, for example, to [Mo1, Mo4].
Since λ2(I − P ) ≥ 1 − λ, Theorem 5.12 gives a bound on the mixing time as well.
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5.4 Some applications

Rapidly mixing Markov chains proved to be an important tool in the design of polynomial
time randomized algorithms. In what follows, we will describe two such applications, and
we refer the reader to [M-R, Kan, Ros] for additional applications and for more detailed
presentation.

First we describe an application which concerns computing an approximation of the
volume of a convex body. Suppose that the convex bodyK ⊆ Rn is given by the membership
oracle, i.e., for each point x ∈ Rn, one can decide in constant (or polynomial) time if x ∈ K
or not. Bárány and Füredi [B-F] proved that an approximation V for the volume of K such
that

1

2
Vol(K) < V < 2Vol(K)

(or even with 2 being replaced by a polynomial function in n) cannot be computed in
polynomial time. See also [L-S1, L-S2]. However, Dyer, Frieze, and Kannan [D-F-K] found
a polynomial time randomized approximation algorithm for computing the volume of the
convex set K based on sampling random points in K. Lovász and Simonovits [L-S1, L-S2]
improved their algorithm by providing random walk sampling with better mixing and by
proving better isoperimetric estimates. Further improvements have been obtained since;
cf. [Kan].

The basic idea of the randomized algorithms for approximating the volume of the convex
body K is as follows. Let B be a ball contained in K. (Usually, such a ball is part of the
input.) The algorithm constructs a sequence of convex bodiesK0 = B ⊂ K1 ⊂ · · · ⊂ Kt = K
such that:

(i) There is a constant c > 0 such that for i = 1, . . . , t, we have

Vol(Ki) ≤ c · Vol(Ki−1) .

(ii) The length t of the sequence is polynomial in n.

In such a situation, it suffices to construct a fully polynomial randomized approximation
scheme that estimates the ratio

Vol(Ki)

Vol(Ki−1)
(i = 1, . . . t) .

The idea is to choose a random point in Ki and check whether it also belongs to Ki−1.
Property (i) guarantees that such an approach works. The nontrivial part of this procedure
is to choose a random point in Ki. This is done by imposing a suitably fine grid over Ki

and performing a random walk on the vertices of the grid. The crucial step in the method
is to prove that the random walk is rapidly mixing: in a number of steps that is polynomial
in n, the probability distribution of the walk becomes almost uniform on all vertices of the
grid. The reader is invited to consult [D-F-K, L-S1, L-S2] for details.

Another application, in a way similar to the first one, deals with approximate counting
of perfect matchings in a (bipartite) graph (and therefore also with the approximation of
the permanent of a 01-matrix). Let us recall that computing the permanent of a 01-matrix
is #P -hard [Val]. Each 01-matrix A of size n× n determines a bipartite graph G on n+ n
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vertices in which the ith vertex in the first bipartition class is adjacent to the jth vertex in the
second class if and only if aij = 1. Then per(A) is equal to the number of perfect matchings
of G. Broder [Bro] proposed the following Markov chain approach to approximating the
number of perfect matchings of G.

One starts with a bipartite graphG on n+n vertices having at least one perfect matching.
The state space V of the Markov chain is the set of all perfect and all near-perfect matchings.
(The matching is said to be near-perfect if it covers all vertices but one in each bipartition
class of the graph.) We start by an arbitrary matching M ∈ V. The transitions in the
Markov chain are as follows. Let M be the current state. We stay with probability 1/2 in
the same state, and with probability 1/2 we do the following. Pick an edge e = uv of G
uniformly at random and:

(a) If M is a perfect matching and e ∈M , then move to M\{e}.

(b) If M is a near-perfect matching and no edge of M contains u or v, then move to the
matching M ∪ {e}.

(c) If M is a near-perfect matching, an edge uw incident with u is in M , and no edge of
M contains v, then move to (M ∪ {e}) \ {uw}.

(d) In all other cases stay at M .

Jerrum and Sinclair [J-S, S-J] proved (by estimating the isoperimetric number) that this
random walk mixes rapidly if the graph is “dense enough” (e.g., if each row and column
of A contains at least n/2 ones). This yields a polynomial time randomized approximation
algorithm for computing the number of perfect matchings of “dense” bipartite graphs. For
details, the reader is invited to consult [J-S] or [Sin].

6 Infinite graphs

In this section we show how to extend the results of previous sections to infinite locally finite
graphs. Most of the results can be derived for weighted graphs where the local finiteness
condition is replaced by the requirement that dv < ∞ for each v ∈ V (G). However, some
results, for instance those about the growth, do not extend to the weighted case.

In considering the appropriate notions of infinite graphs there is a possibility of intro-
ducing the essential graph invariants, examples of which are presented in Subsection 6.1. In
Subsection 6.2 we introduce the Laplace matrix and the Laplace spectrum of infinite graphs
and prove some counterparts to the results of Section 3. In the last subsection we touch the
concepts of amenability and transience of graphs. A thorough treatment of these results
can be found in [Mo4] whose presentation is partially followed also in this section.

6.1 Essential invariants of infinite graphs

Graphs G and H are said to be equivalent (by finite) or almost isomorphic if there is a
bijection ψ : V (G) → V (H) which maps adjacent, or non-adjacent pairs of vertices of
G to adjacent and non-adjacent pairs in H, respectively, with finitely many exceptions.
Equivalently, H can be obtained from G by first deleting and then adding finitely many
edges, up to an isomorphism.
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We shall denote by ∆(G) and δ(G) the maximum and minimum vertex degree in G,
respectively. It is possible that ∆(G) = ∞. These numbers have their “essential” counter-
parts, the essential maximum degree ∆′(G) and the essential minimum degree δ′(G), defined
by

∆′(G) := inf {∆(H) | H equivalent to G}
and

δ′(G) := sup {δ(H) | H equivalent to G} .
It may happen that ∆′(G) = ∞ and δ′(G) = ∞. Clearly, ∆′(G) is equal to the minimal
value d for which there are only finitely many vertices of G of degree > d. Similarly, δ′(G)
is the minimal d with infinitely many vertices of degree d. It is obvious that δ′(G) ≤ ∆′(G).
These two quantities are defined in such a way that no finite perturbation of G changes
their values, i.e., if G and H are equivalent then ∆′(G) = ∆′(H) and δ′(G) = δ′(H). Graph
invariants with this property are said to be essential. So, ∆′(G) and δ′(G) are the first
examples of essential graph invariants we met.

Let v ∈ V (G). Denote by Bn(v) the set of all vertices of G at distance at most n from v
(the ball of radius n centred at v), and let bn(v) := |Bn(v)|. If necessary to expose the graph,
we write bn(G, v) and Bn(G, v). The graph G has exponential growth (from the vertex v) if
bn(v) ≥ Cqn for some constants C > 0, q > 1, and each n ≥ 0. It has polynomial growth
if bn(v) ≤ p(n) where p(.) is a polynomial. G has subexponential growth if it does not grow
exponentially. Note that the type of the growth is independent of v if G is connected. Let

ε(G, v) := lim sup
n→∞

(bn(G, v))1/n

and
τ(G, v) := lim inf

n→∞
(bn(G, v))1/n .

If v and u are vertices in the same component of G, then bn(u) ≤ bn+d(v) ≤ bn+2d(u) where
d = dist(u, v). It follows that ε(G, v) and τ(G, v) are constant on each component of the
graph. Define

ε(G) := sup {ε(G, v) | v ∈ V (G)}
and

τ(G) := sup {τ(G, v) | v ∈ V (G)} .
By the above conclusion, the suprema might be taken on representatives of each of the
connected components only.

Lemma 6.1 If e is an edge of the graph G, then ε(G− e) = ε(G) and τ(G− e) ≤ τ(G). If
e is not a cutedge then τ(G− e) = τ(G).

Proof. The proof of ε(G − e) = ε(G) can be found in [Mo1]. To verify the relations
for τ , let e = uv. Clearly, τ(G, v) ≥ τ(G − e, v) and τ(G, v) = τ(G,u) ≥ τ(G − e, u).
Consequently, τ(G) ≥ τ(G − e). Assume now that e is not a cutedge. Then u and v
belong to the same component of G − e. Let d be the distance between u and v in G − e.
Clearly, bn(G, v) ≤ bn+d(G − e, v). Therefore τ(G, v) ≤ τ(G − e, v). The same holds for u
instead of v. This implies that τ(G) ≤ τ(G−e), so by the converse inequality proved above,
τ(G) = τ(G− e). 2
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It may happen that τ(G − e) < τ(G). There are also cases where τ(G) > 1 and
τ(G− e) = 1. Examples are not hard to construct.

Corollary 6.2 The numbers ε(G) and τ ′(G) := inf {τ(H) | H equivalent to G} are essen-
tial graph invariants.

Proof. ε is essential by Lemma 6.1, since addition or deletion of edges does not affect its
value. On the other hand, τ ′ is essential since for G and G′ equivalent, the set of graphs
which are equivalent to G is equal to the equivalence class of G′. 2
Proposition 6.3 Let G be a graph and v ∈ V (G). Then τ(G, v) > 1 if and only if G has
exponential growth at v.

Proof. First, if bn(v) ≥ Cqn, q > 1, C > 0, then τ(G, v) ≥ q > 1. Conversely, if
τ(G, v) > 1, then for an arbitrarily small α > 0,

bn(v)1/n ≥ τ(G, v) − α (36)

for all but finitely many values of n. Take α := 1
2 (τ(G, v)− 1) and q := τ(G, v)−α > 1. By

(36), bn(v) ≥ qn for all but finitely many n, thus bn(v) ≥ Cqn for some C > 0 and for each
n. 2

The isoperimetric number i(G) of G is the number

i(G) := inf

{

e(S, S̄)

|S|
∣

∣

∣ S ⊂ V (G), 0 < |S| <∞
}

.

The essential isoperimetric number of G is

i′(G) := sup {i(G′) | G′ equivalent to G} .

It is clear that i′(G) ≥ i(G). It is also immediate that i(G) ≤ δ(G) and i′(G) ≤ δ′(G).
However, these inequalities need not be very tight since there are examples where i′(G) = 0
and δ′(G) = ∞. On the other hand,

i′(G) ≤ ∆′(G) − 2. (37)

This can be shown as follows. Let G′ be equivalent to G. Then it has only finitely many
vertices of degree greater than ∆′(G). Therefore one can find an arbitrarily large finite
S ⊂ V (G′) such that all vertices in S have degree at most ∆′(G) in G′, and the subgraph
of G′ induced on S is connected. Then, in G′,

e(S, S̄) ≤ ∆′(G) · |S| − 2e(S, S) ≤ ∆′(G)|S| − 2(|S| − 1) ,

which implies (37). This bound is best possible since for the ∆-regular tree T∆, i(T∆) =
i′(T∆) = ∆ − 2.
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Theorem 6.4 Let G be a connected locally finite graph with ∆′(G) <∞. Then

i(G) ≤ i′(G) ≤ ∆′(G)
τ(G) − 1

τ(G) + 1
. (38)

Proof. The first inequality is obvious. By Lemma 6.1, τ(G) does not change after adding
finitely many edges to G since G is connected. Thus we may assume that i(G) is arbitrarily
close to i′(G), and so it is sufficient to show that

i(G) ≤ ∆′(G) · τ(G) − 1

τ(G) + 1
. (39)

Choose a vertex v ∈ V (G) and let sn := bn(v)− bn−1(v). For n large enough, all vertices at
distance n from v have degree at most ∆′(G). Hence

∆′(G)sn+1 ≥ e(Bn+1, V \Bn+1) + e(Bn, V \Bn)

≥ i(G)(bn+1 + bn) = i(G)(2bn + sn+1).

It follows that (∆′(G) − i(G))sn+1 ≥ 2i(G)bn and hence

bn+1 = bn + sn+1 ≥ bn
∆′(G) + i(G)

∆′(G) − i(G)

for n large enough. Therefore

bn ≥ C ·
(

∆′(G) + i(G)

∆′(G) − i(G)

)n

for some C > 0 and each n ≥ 1. So τ(G) ≥ (∆′(G) + i(G))/(∆′(G) − i(G)). This is
equivalent to (39). 2
Corollary 6.5 If ∆′(G) < ∞ and i′(G) > 0, then τ(G) > 1, and so G has exponential
growth in some of its components.

There are graphs with exponential growth and with i′(G) = 0. For example, Cayley
graphs of some soluble groups which are not nilpotent by finite are known to grow exponen-
tially but having i′(G) = 0, see [Ro]. On the other hand, there are graphs with ∆′(G) = ∞
and i′(G) > 0 and having polynomial growth. Take, for example, the graph whose vertices
are all integers, and between i and i + 1 there are |i| + 1 parallel edges, −∞ < i < +∞.
This graph is easily seen to have i(G) = i′(G) = 1, but it grows linearly. If we want simple
graphs, we may add a vertex of degree two on each edge, or replace each vertex i by a clique
of order |i| + 1, and between any two consecutive cliques put a complete join. This shows
that the assumptions in Corollary 6.5 cannot be omitted.

There are other possibilities to define isoperimetric constants of graphs, by taking other
distances in graphs. The transition isoperimetric number iP (G) is defined as follows. If G
is a graph with no edges, then we set iP (G) = 0. Otherwise

iP (G) := inf
{e(S, S̄)

d(S)

∣

∣

∣ S ⊂ V (G),d(S) 6= 0, |S| <∞
}
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where d(S) :=
∑

v∈S dv is the sum of the degrees of the vertices in S. Clearly, 0 ≤ iP (G) < 1.
In contrast to i(G), the transition isoperimetric number does not properly measure the
connectivity of the graph since it may happen that adding an edge to a graph decreases
its value. It is easily seen that δ(G)iP (G) ≤ i(G) ≤ ∆(G)iP (G). Therefore iP (G) has
advantage over i(G) in case ∆(G) = ∞ only. The essential transition isoperimetric number
i′P (G) is equal to the supremum of all iP (G′), where G′ is equivalent by finite to G. A
similar result as Theorem 6.4 holds for iP (G).

Theorem 6.6 Let G be a connected locally finite graph. Then:

(a) Regardless of the degrees in G,

τ(G) ≥
√

1 + i′P (G)

1 − i′P (G)
, i.e., iP (G) ≤ i′P (G) ≤ τ2(G) − 1

τ2(G) + 1
. (40)

(b) For a vertex v ∈ V (G), let Dn be the maximum degree of vertices at distance n from

v. If lim supn→∞ D
1/n
n = 1 then

τ(G) ≥ 1 + i′P (G)

1 − i′P (G)
, i.e., iP (G) ≤ i′P (G) ≤ τ(G) − 1

τ(G) + 1
. (41)

(c) If there is a constant M < ∞ such that each vertex of G is contained in at most M
edge-disjoint cycles, then (41) holds.

For a proof we refer to [Mo4].

Corollary 6.7 If i′P (G) > 0, then τ(G) > 1, and so G has exponential growth in some of
its components.

6.2 The Laplace spectrum of infinite graphs

We define the Laplace matrix L(G) of an infinite locally finite graph G in the same way as
for finite graphs.

Let ℓ2(V ) denote the Hilbert space of all functions f : V → R such that

‖f‖2 =
∑

v∈V

|fv|2 <∞ .

The inner product in ℓ2(V ) is defined as 〈x, y〉 =
∑

v∈V fvgv. The Laplace matrix L(G) acts
naturally on ℓ2(V ) as a linear operator. In the following it will be assumed that ∆(G) <∞.
This condition implies that L(G) determines a bounded self-adjoint linear operator on ℓ2(V ).
Its spectrum σL(G) is real and (cf., e.g., [M-W])

σL(G) ⊆ [0, 2∆(G)] .

The reader is referred to [M-W] for more details about the spectra of infinite graphs.
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There is an alternative way of defining σL(G) since the spectrum of L(G) is the approx-
imate point spectrum in ℓ2(V ). This means that λ ∈ σL(G) if and only if there is a sequence
of (not necessarily distinct) unit1 functions f (n) (n = 1, 2, 3, . . .) such that

‖L(G)f (n) − λf (n)‖ → 0 , as n→ ∞ .

The number λ is an eigenvalue of L if there exists a function f ∈ ℓ2(V ) such that Lf = λf .
The dimension of the eigenspace {f ∈ ℓ2(V ) | Lf = λf} ⊆ ℓ2(V ) is called the multiplicity
of λ.

The value related to the second smallest eigenvalue of finite graphs is the infimum of
σL(G):

λ1(G) := inf σL(G).

It can be expressed as

λ1(G) = inf

{

〈L(G)f, f〉
〈f, f〉

∣

∣

∣ f ∈ ℓ2(V ), f 6= 0

}

. (42)

The “essential” invariant corresponding to the spectrum is the essential spectrum of
L(G). The essential spectrum of a self-adjoint linear operator B on a Hilbert space consists
of all those elements in the spectrum of B which are not isolated eigenvalues of finite
multiplicity. It is well-known (cf., e.g., [Kat, §X.2]) that these are exactly those λ ∈ σ(B)
which remain in the spectrum whenever B is changed by a compact perturbation, i.e.,
λ ∈ σ(B +K) for every compact linear operator K. It follows that the essential spectrum
is an essential graph invariant since equivalence by finite perturbs the graph matrices in
finitely many entries only and thus presents only compact perturbations. The elements
of the essential spectrum are also characterized as the approximate eigenvalues of infinite
multiplicity [F-S-W] (cf. also [Kat]). This means that λ is in the essential spectrum of B if
and only if there are pairwise orthogonal unit functions f (n), n = 1, 2, 3, . . . , such that

‖Bf (n) − λf (n)‖ → 0 , as n→ ∞ .

We shall denote by λ′1(G) the infimum of the essential spectrum of L(G). Clearly,
λ1(G) ≤ λ′1(G). Later we shall need the following inequality:

λ′1(G) ≤ ∆′(G) + δ′(G)

2
− 1 < ∆′(G) (43)

if δ′(G) ≥ 1. Its proof goes as follows. There are infinitely many pairs ui, vi of adjacent
vertices, such that deg(ui) ≤ δ′(G) and deg(vi) ≤ ∆′(G). Let g(1), g(2), ... be their normalized

characteristic functions (i.e., g
(i)
vi = g

(i)
ui = 1√

2
, and g

(i)
v = 0 at other vertices v). Then

〈L(G)g(i), g(i)〉 ≤ 1

2
(dui

+ dvi
− 2) ≤ ∆′(G) + δ′(G)

2
− 1.

Since this happens for infinitely many pairwise orthogonal unit functions g(i), an element of

the essential spectrum must be ≤ ∆′(G)+δ′(G)
2 − 1. The last conclusion is proved as follows.

1A function f ∈ ℓ2(V ) is called a unit function if ‖f‖ = 1.
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We claim that if 〈Lf (i), f (i)〉 ≤ t for infinitely many pairwise orthogonal unit functions f (i),
then there is some λ ≤ t in the essential spectrum of L. It is known [St] that for some
compact symmetric operator K, the spectrum of L +K is equal to the essential spectrum
of L. Since K is compact, 〈Kf (i), f (i)〉 → 0 as i→ ∞. Consequently

λ′1(L) = λ1(L+K) = inf{〈(L +K)f, f〉 | ‖f‖ = 1}
≤ inf{〈Lf (i), f (i)〉 + 〈Kf (i), f (i)〉} ≤ t.

Theorem 6.8 Let G be a locally finite graph, let ∆ = ∆(G) < ∞, and let ∆′ = ∆′(G).
Then

i(G) ≥ λ1(G)
∆2

∆2 − ∆ − λ1(G)
≥ λ1(G) (44)

and

i′(G) ≥ λ′1(G)
∆′2

∆′2 − ∆′ − λ′1(G)
≥ λ′1(G) . (45)

Proof. Let U be an arbitrary finite subset of V = V (G). Define f ∈ ℓ2(V ) by setting
fv = 1 if v ∈ U , and otherwise fv = 1

∆nv, where nv is the number of edges joining v to
vertices in U . Denote by W the set of those vertices of V \ U which have a neighbor in U .
By (42),

λ1(G)‖f‖2 ≤ 〈L(G)f, f〉 . (46)

Similarly as in the finite case we have

〈L(G)f, f〉 =
∑

uv∈E(G)

(fu − fv)
2 . (47)

Since fu − fv is non-zero only if v or u lies in W , we get from (46) and (47):

λ1‖f‖2 = λ1

(

|U | +
∑

v∈W

n2
v

∆2

)

≤
∑

vu∈E(G)

(fu − fv)
2

≤
∑

v∈W

(

nv

(

1 − nv

∆

)2
+ (∆ − nv)

(nv

∆

)2)

=
∑

v∈W

nv −
∑

v∈W

n2
v

∆
= e(U, Ū ) − 1

∆

∑

v∈W

n2
v . (48)

By rearranging this inequality and using the fact n2
v ≥ nv, one immediately gets

e(U, Ū ) − λ1|U | ≥ ∆ + λ1

∆2

∑

v∈W

nv ≥ ∆ + λ1

∆2
e(U, Ū ).

It follows that
e(U, Ū )

|U | ≥ λ1
∆2

∆2 − ∆ − λ1

which implies (44) since U was arbitrary.
The proof of (45) needs more care. Fix an arbitrarily small ε > 0. First we shall prove

that there exists a graph G1, which can be obtained from G by adding finitely many edges,
such that λ1(G1) ≥ λ′1(G) − ε.
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The only elements in the Laplacian spectrum of G which are smaller than l = λ′1(G)
are isolated eigenvalues of finite multiplicity. Let N be the span of the eigenspaces of all
those eigenvalues of L(G) which are smaller than l − ε

2 , and let n := dim N < ∞. Fix

an orthonormal basis f (1), f (2), . . . , f (n) of N . It should be mentioned at once that for any
f ∈ ℓ2(V ) which is orthogonal to N

〈L(G)f, f〉 ≥ (l − ε

2
)‖f‖2 . (49)

Let U be a finite subset of V (G) such that for each i = 1, 2, . . . , n ,

∑

u∈U

(

f (i)
u

)2
> 1 − δ , i.e.,

∑

u/∈U

(

f (i)
u

)2
< δ , (50)

where δ > 0 is a small number to be fixed later (it will depend on ε, n,G).
Let G1 be the graph which is obtained from G by adding, for each vertex u ∈ U , m

edges joining u to m new distinct neighbors which lie out of U . Denote by L1 := L(G1) its
Laplacian matrix. We shall prove that λ1(G1) ≥ l − ε, assuming m is large enough. Note
that m may depend on ε, n, and G.

Take an arbitrary f ∈ ℓ2(V ), ‖f‖ = 1. We shall prove that 〈L1f, f〉 ≥ l − ε which will
imply, by (42), that λ1(G1) ≥ l − ε. It is easy to see that we may assume that fv ≥ 0 for
each v ∈ V (G) (apply, for example, (47)). Write now f = g + h where g agrees with f on
U , and h agrees with f at other coordinates.

If ‖g‖2 ≤ δ, then we do the following calculation. Let f = p+q where p ∈ N and q ⊥ N .
By (49), 〈Lq, q〉 ≥ (l− ε

2)‖q‖2, while 〈Lp, p〉 can be estimated as follows. If p =
∑n

i=1 αif
(i),

then ‖p‖2 =
∑n

i=1 |αi|2 and

|αi| = |〈f, f (i)〉| =
∑

u∈U

fuf
(i)
u +

∑

v/∈U

fvf
(i)
v < ‖g‖ + ‖f‖

√
δ ≤ 2

√
δ . (51)

In the last inequality we applied the Cauchy-Schwartz inequality and (50). Consequently,
‖p‖2 < 4nδ = ε

2∆(G) if we choose δ := ε
8n∆(G) . Therefore ‖q‖2 = ‖f‖2 − ‖p‖2 > 1 − ε

2∆(G) .

Using this estimate, the fact that 〈Lp, q〉 = 〈Lq, p〉 = 0, and (43) we get

〈L1f, f〉 ≥ 〈Lf, f〉 = 〈Lp, p〉 + 〈Lq, q〉

≥ (l − ε

2
)‖q‖2 > (l − ε

2
)(1 − ε

2∆(G)
) ≥ l − ε .

The other possibility to consider is the case when ‖g‖2 > δ = ε
8n∆(G) . In this case let

B := L1−L(G) and let F := E(G1)\E(G). If h = p+q where p =
∑n

i=1 αif
(i) ∈ N , q ⊥ N ,

then we see as in (51) that
|αi| = |〈h, f (i)〉| <

√
δ‖h‖

and hence ‖p‖2 < nδ‖h‖2, so ‖q‖2 > (1 − nδ)‖h‖2. Therefore

〈L1h, h〉 ≥ 〈Lh, h〉 = 〈Lp, p〉 + 〈Lq, q〉 ≥ (l − ε

2
)‖q‖2 > (l − ε)‖h‖2 . (52)

41



Finally:

〈L1f, f〉 = 〈L1g, g〉 + 2〈L1g, h〉 + 〈L1h, h〉

≥ (l − ε)‖h‖2 + 〈Bg, g〉 + 2〈L1g, h〉

= (l − ε)‖h‖2 +
∑

uv∈F

(gu − gv)
2 + 2

∑

uv∈E(G1)

(gu − gv)(hu − hv)

≥ (l − ε)‖h‖2 +m
∑

u∈U

g2
u − 2

∑

uv∈E(G1)

guhv

≥ (l − ε)‖f‖2 + (m− l)‖g‖2 − 2
∑

uv∈F1

guhv

where F1 = F ∪E(U, Ū ) ⊆ E(G1), and it is assumed that u ∈ U, v /∈ U . It remains to show
that

(m− l)‖g‖2 − 2
∑

uv∈F1

guhv ≥ 0 . (53)

By the Cauchy-Schwartz inequality and assuming that each edge uv ∈ F1, u ∈ U , has
different endvertex v /∈ U , we estimate:

(

∑

uv∈F1

guhv

)2
≤

∑

uv∈F1

|gu|2
∑

uv∈F1

|hv |2 ≤ (m+ ∆(G))‖g‖2 · (∆(G) + 1)‖h‖2 .

This inequality and the assumption ‖g‖2 > δ imply that

(m− l)‖g‖2 − 2
∑

uv∈F1

guhv ≥ (m− l)
√
δ − 2

√

m+ ∆(G)
√

∆(G) + 1
√

1 − δ .

Obviously, the last expression is ≥ 0 if m is large enough. It should be added that m
depends on l, ∆(G) and δ = δ(ε, n,∆(G)) but not on f . This finally establishes (53). Thus
we succeeded to show 〈L1f, f〉 ≥ l − ε, and consequently that λ1(G1) ≥ l − ε.

It is clear that adding edges to a graph cannot decrease the isoperimetric number. There-
fore there exists a graph G2 which can be obtained from G1 by adding finitely many edges
so that i(G2) ≥ i′(G) − ε. Clearly, also λ1(G2) ≥ λ1(G1) ≥ l − ε.

Let S ⊂ V (G2) be the set containing all vertices of degree greater than ∆′(G) and all
their neighbors. Let G3 be the graph obtained from G2 by adding m parallel edges between
any two vertices of S, where m = ∆′(G)|S|.

Choose a finite U1 ⊂ V (G3) such that eG3
(U1, Ū1)/|U1| ≤ i(G3) + ε (the index G3 in

eG3
(U1, Ū1) represents that the edges are in the graph G3). If U1 ∩S = ∅, then let U := U1,

otherwise let U := U1 ∪ S. So U either contains S, or it is disjoint from S. Therefore no
vertex adjacent to U in G2 has degree greater than ∆′(G). It is easily seen that in each case

eG2
(U, Ū )

|U | =
eG3

(U, Ū )

|U | ≤ eG3
(U1, Ū1)

|U1|
≤ i(G3) + ε ≤ i′(G) + ε (54)

since m = ∆′(G)|S|.
Now we may repeat the first part of the proof for the graph G3, using ∆′(G) instead

of ∆. Note that in (48) we need the fact that nv ≤ ∆′(G) for each vertex v adjacent to
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U . This completes the proof since i(G3) and λ(G3) are arbitrarily close to their essential
values. 2

Cheeger inequality of Theorem 3.10 extends to infinite graphs as shown by the next
theorem [Mo4].

Theorem 6.9 For an arbitrary locally finite graph G with bounded degrees

i(G) ≤
√

λ1(G)(2∆(G) − λ1(G)) (55)

and
i′(G) ≤

√

λ′1(G)(2∆′(G) − λ′1(G)) . (56)

Proof. The spectrum σL(G) is closed, so λ1 = λ1(G) ∈ σL(G). For each small enough
ε > 0 there is a function f ∈ ℓ2(V (G)) with finite support (only finitely many fv are nonzero)
and with ‖f‖ = 1 such that

〈Lf, f〉 ≤ λ1 + ε ≤ ∆(G) . (57)

If
η :=

∑

uv∈E(G)

|f2
u − f2

v |

then it can be shown by the summation per partes that

η ≥ i(G) (58)

(see the proof of Theorem 3.10). On the other hand,

η2 =
(

∑

uv∈E

|f2
u − f2

v |
)2

=
(

∑

uv∈E

|fu + fv||fu − fv|
)2

≤
∑

uv∈E

(fu + fv)
2 ·

∑

uv∈E

(fu − fv)
2

=
∑

uv∈E

(2f2
u + 2f2

v − (fu − fv)
2) · 〈Lf, f〉

=
(

2
∑

v∈V

dvf
2
v − 〈Lf, f〉

)

· 〈Lf, f〉

≤ (2∆(G)‖f‖2 − 〈Lf, f〉)〈Lf, f〉
≤ 2∆(G)(λ1 + ε) − (λ1 + ε)2 . (59)

In the first inequality we used the Cauchy-Schwartz inequality, while in the last one we
needed (57). Since ε was arbitrarily small, it follows that i2(G) ≤ η2 ≤ 2∆(G)λ1 − λ2

1 and
the proof of (55) is done.

To prove (56), let G1 be a graph obtained from G by adding finitely many edges and
such that i(G1) ≥ i′(G) − ε where ε > 0 is arbitrarily small again. As we know from the
proof of Theorem 6.8, there is a graph G2 obtainable from G1 by addition of finitely many
edges such that λ1(G2) ≥ λ′1(G) − ε. Since i(G2) ≥ i(G1), we have i(G2) ≥ i′(G) − ε.

Let S be the set of vertices of G2 having degree > ∆′(G). The set S is clearly finite.
Since λ′1 = λ′1(G) = λ′1(G2) is in the essential spectrum, there are arbitrarily many unit
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functions f (i), i = 1, 2, ... such that 〈L(G2)f
(i), f (i)〉 ≤ λ′1 + ε, and such that 〈f (i), f (j)〉 = 0

for i 6= j. Let us take N = |S| + 1 such functions f (i). They are linearly independent, so
any nontrivial linear combination is nonzero. On the other hand, there exist α1, α2, . . . , αN

with some αi 6= 0 such that
∑N

i=1 αif
(i) =: f has the values fv = 0 for each v ∈ S. If we

require that
∑

α2
i = 1, then

‖f‖2 = 〈
N

∑

i=1

αif
(i),

N
∑

i=1

αif
(i)〉 =

N
∑

i=1

α2
i = 1 .

The functions f (i) may also be assumed to satisfy ‖L(G2)f
(i) − λ′1f

(i)‖ ≤ ε/N . Then:

〈L(G2)f, f〉 =
N

∑

i=1

N
∑

j=1

αiαj〈L(G2)f
(i), f (j)〉

=
N

∑

i=1

α2
i 〈λ′1f (i), f (i)〉 +

N
∑

i=1

N
∑

j=1

αiαj〈L(G2)f
(i) − λ′1f

(i), f (j)〉

≤ λ′1 +
N

∑

i=1

N
∑

j=1

|αiαj |‖L(G2)f
(i) − λ′1f

(i)‖ · ‖f (j)‖

≤ λ′1 +
ε

N

N
∑

i=1

N
∑

j=1

|αiαj | ≤ λ′1 + ε.

Now we may carry out the same calculation as to obtain (58) and (59), this time for G2.
The inequality dvf

2
v ≤ ∆′(G)f2

v is clearly satisfied, and the only remaining fact to verify
is λ′1 + ε ≤ ∆′(G). But we have shown this by (43) for any graph with δ′(G) ≥ 1. The
remaining case δ′(G) = 0 is unimportant since in this case i′(G) = 0 and l = 0, so (56) is
trivial. 2
6.3 Amenability

In this section we shall shortly exhibit the notion of amenability of infinite graphs. This
concept was originally introduced as a property of locally compact groups. We refer to
[Pa, Pi] for more information.

Let Γ be a locally compact group. By L∞(Γ) we denote the set of all functions Γ → R

which are bounded a.e. with respect to the Haar measure λ(.) on Γ. The group Γ is amenable
if L∞(Γ) has an invariant mean, i.e., a linear functional m : L∞(Γ) → R which satisfies the
following conditions:

(i) For f ∈ L∞(Γ), if f ≥ 0 (a.e.) then m(f) ≥ 0.

(ii) m(χΓ) = 1, where χΓ is the constant function 1 on Γ.

(iii) It is Γ-invariant, i.e., m(g ·f) = m(f) for every g ∈ Γ. (Note that (g ·f)(x) = f(g−1x).)

By a theorem of Følner [Fo], the amenability is equivalent to the following condition:
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(F) Given ε > 0 and a compact set K ⊆ Γ there is a Borel set U ⊆ Γ of positive finite
measure λ(U) <∞ such that

λ(kU∆U) < ελ(U)

for all k ∈ K, where ∆ denotes the symmetric difference of sets.

For a discrete group, the Haar measure counts the number of elements of the set. Then
it is easy to see that (F) is equivalent to:

(F’) For every ε > 0 and finite K ⊆ Γ one can find a finite set U ⊆ Γ such that

|KU∆U | < ε|U | .

Lemma 6.10 Let Γ be a group generated by a finite set of generators S = {g1, . . . , gk}.
Then Γ is amenable if and only if for every ε > 0 there is a finite set U ⊆ Γ such that
|SU \ U | < ε|U |.

Proof. (⇒) Let K := S ∪ {e}, where e is the identity in Γ. Then KU∆U = SU \U . We
are done by the amenability of Γ.

(⇐) Choose ε > 0 and a finite K ⊆ Γ, K = {k1, k2, . . . , kt}. It may be assumed that
e /∈ K. If ki can be written as a word of length l(i) in terms of S ∪ S−1, let

εi :=
ε

2t · l(i)

and let U ⊆ Γ be a set for which |SU \ U | < ε′|U |, where ε′ = min εi. For each generator
gj ∈ S, |gjU \ U | ≤ |SU \ U | < ε′|U |. From this we also see that |gjU ∩ U | > (1 − ε′)|U |,
therefore also |g−1

j U ∩ U | > (1 − ε′)|U |, so |g−1
j U \ U | < ε′|U |. It follows that |kiU \

U | < l(i)ε′|U | ≤ ε
2t |U |. This implies that |KU \ U | < ε

2 |U |. Since |KU | ≥ |U |, we get
|KU △ U | < ε|U |. 2
Corollary 6.11 A finitely generated infinite group Γ is amenable if and only if the Cayley
graph Cay(Γ, S) with respect to some (and hence every) finite generating set S has the
isoperimetric number i(Cay(Γ, S)) = 0.

By Corollary 6.11 it follows trivially that every finitely generated group with polynomial
or subexponential growth is amenable. The converse is not true. For example, all soluble
groups are amenable but some of them have exponential growth [Ro].

The importance of Corollary 6.11 lies in the fact that it gives a possibility to extend the
notion of amenability to graphs in such a way that a finitely generated group Γ is amenable if
and only if it has an amenable Cayley graph. So, let us call a graph G amenable if i(G) = 0.

The case of graphs with bounded degrees was investigated in detail by Peter Gerl and we
refer to his works [Ge1, Ge2] where several conditions equivalent to amenability are derived.
For a possibility of extending the notion to graphs with unbounded degrees see [Mo4]. We
refer to [S-W] for additional results on amenability of graphs.
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6.4 Random walks on infinite graphs

The transition matrix P (G) = [puv] of a locally finite infinite graph G has entries puv =
auv/du. This matrix is usually assumed to act on the Hilbert space ℓ2d(V ) endowed with the
inner product is given by

〈f, g〉d =
∑

v∈V

fvgvdv

and whose elements f satisfy 〈f, g〉d < ∞. Then P (G) defines a bounded self-adjoint
linear operator on ℓ2d(V ) (even though the matrix P (G) need not be symmetric). It is
important that G is locally finite but the requirement ∆(G) < ∞ is not needed for P (G)
to be everywhere defined and bounded. The spectrum σP (G) of P (G) is real and always
contained in the interval [−1, 1] (cf., e.g., [M-W]). We define

ρ1(G) := supσP (G).

The Rayleigh characterization of ρ1 similar to (42) is

ρ1(G) = sup

{

〈P (G)f, f〉d
〈f, f〉d

∣

∣

∣ f ∈ ℓ2d(V ), f 6= 0

}

. (60)

We can also define the essential spectrum and set ρ′1(G) to be the supremum of the
essential spectrum of P (G).

Relations between ρ1(G), ρ′1(G) and isoperimetric invariants are proved in [Mo4]. They
seem to be more natural than the corresponding relations with the Laplacians.

The transition matrix is related to simple random walks on the graph G. The most
important problem is the type problem for the simple random walks on graphs which asks if
the random walk is recurrent or transient. It is well known that the random walk on Z2 (the
2-dimensional integer lattice) is recurrent, while the random walk on Z3 is transient. For
this type of graphs, the threshold between recurrence and transience lies somewhere between
the quadratic and cubic growth (cf. [D-S]). More generally, Varopoulos [Var] proved:

Theorem 6.12 The simple random walk on a Cayley graph of a finitely generated group is
recurrent if and only if the graph has polynomial growth of degree at most two.

This result was extended to general (locally finite) infinite graphs by Thomassen [Th]
as follows. We say that G satisfies the connected φ-isoperimetric inequality at the vertex
v0 ∈ V (G), where φ : N → N, if there is a constant c > 0 such that every finite connected
subgraph H of G with v0 ∈ V (H) satisfies

e(V (H), V (G)\V (H)) ≥ c φ(|V (H)|).
Let us observe thatG satisfies the connected isoperimetric inequality for the identity function
if and only if i(G) > 0.

Theorem 6.13 If G satisfies the connected φ-isoperimetric inequality at some vertex v0 and
if

∑∞
k=1 φ(k)−2 <∞, then the simple random walk on G is transient.

For further reading we refer to [Woe].

Acknowledgement: I am greatly indebted to the notetaker Dr. Martin Juvan who wrote
the first draft of these notes.
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[H-T] C. Hendré, P. Tetali, Isoperimetric invariants for product Markov chains and graph prod-
ucts, submitted to Ann. Appl. Probab., 1996.

[H-L] B. Hendrickson, R. Leland, An improved spectral graph partitioning algorithm for mapping
parallel computations, SIAM J. Sci. Comput. 16 (1995) 452–469.

[He] M.-C. Heydemann, Cayley graphs and interconnection networks, this collection.

[H-M-S] M.-C. Heydemann, J.-C. Meyer, D. Sotteau, On forwarding indices of networks, Discrete
Appl. Math. 23 (1989) 103–123.

[Ho] A. J. Hoffman, On eigenvalues and colorings of graphs, in “Graph Theory and Its Appli-
cations” (B. Harris, ed.), Acad. Press, 1970, pp. 79–91.

[J-S] M. Jerrum, A. Sinclair, Approximating the permanent, SIAM J. Comput. 18 (1989) 1149–
1178.

[Ju] F. Juhász, On a method of cluster analysis, ZAMM 64 (1984) T335–T336.

[J-M1] M. Juvan, B. Mohar, Optimal linear labelings and eigenvalues of graphs, Discrete Appl.
Math. 36 (1992) 153–168.

[J-M2] M. Juvan, B. Mohar, Laplace eigenvalues and bandwidth-type invariants of graphs, J.
Graph Theory 17 (1993) 393-407.

[Kan] R. Kannan, Markov chains and polynomial time algorithms, Proc. 35rd FOCS, 1994, pp.
656–671.

[K-M-S] D. Karger, R. Motwani, M. Sudan, Approximate graph coloring by semidefinite program-
ming, Proc. 35th Ann. Symp. FOCS, 1994, pp. 2–13.

[Karm] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica
4 (1984) 373–395.

[Karp] R. M. Karp, Reducibility among combinatorial problems, in: “Complexity of Computer
Computation” (R. E. Miller, J. W. Thather, eds), Plenum Press, New York, 1972, pp. 85–
103.

[Kat] T. Kato, Perturbation Theory for Linear Operators, Springer, 1966.

[Kh] L. G. Khachiyan, A polynomial algorithm in linear programming, Soviet. Math. Dokl. 20
(1979) 191–194.
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