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Abstract 

Mohar, B., Laplace eigenvalues of graphs-a 
171-183. 

Several applications of Laplace eigenvalues of 
optimization are outhned. 

1. Introductioo 

survey, Discrete Mathematics 109 (1992) 

graphs in graph theory and combinatorial 

There are several important results in combinatorics whose proofs use linear 
algebra although the results as such have no direct connection with algebra. One 
of the early results of this type is the well-known Fischer’s inequality [36] which 
imposes a simple nontrivial condition on the parameters of a design. A similar 
result is the theorem of Feit and Higman [30]. There are several other results, 
using linear algebra in their proofs, about non-existence of several combinatorial 
objects, such as designs, codes, or graphs with certain properties. Let us refer to 
[8,26,27,53]. The adjacency matrix of a graph and its eigenvalues are closely 
related to the generating function of the number of walks on graphs. This 
relationship was particularly useful in the theory of distance-regular graphs, cf. 
[8,14]. LovGsz [54] used linear algebra in the problem of determining the 
Shannon capacity of graphs. Finally, let us mention the explicit construction of 
expanders [55,56] which were previously known to exist only by probabilistic 
methods. The proof that the constructed ‘Ramanujan graphs’ give rise to very 
good expanders relies on the estimates of eigenvalues of these graphs. Cf. also 

[% 601. 
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In this paper we survey several applications of eigenvalues of Laplace matrices 
of graphs, in graph theory and in combinatorial optimization. We refer to the 
survey paper [60] for a detailed introduction to the Laplace spectrum of graphs. 
The reason for another survey on a similar topic lies in the fact that since 1988 
when (601 was prepared, many new applications of Laplace eigenvalues were 
discovered. Here we shall shortly discuss the following topics: edge density in 
cuts, partition of vertices using eigenvectors, an extension to hypergraphs, 
hamiltonicity, c-functions on graphs and some related problems. Several other 
applications are described in [60]. The main intention of the paper is more in 
motivating some further research in the outlined areas than presenting new 
results. 

Given a graph G of order n, let A =A(G) be its adjacency matrix. It will be 
assumed that rows and columns of graph matrices are indexed by V = V(G). The 
same holds for vectors x E e’(V) on which such matrices act by matrix 
multiplication. The entry am, of A(G) is equal to the number of edges between 
vertices u and V. If D = D(G) is the diagonal mat. .A + with vertex degrees on the 
diagonal then the matrix L(G) := D - A is the so-called Laplacian matrix of the 
graph G. The matrix L(G) which will be our main concern, is positive 
semidefinite and symmetric. Its smallest eigenvalue is A, = 0. Dencte by 
Ak = &(G) the kth smallest eigenvalue of L(G), respecting the multiplicities, 
k=l,2,... , n. In particular, A, is the maximal eigenvalue of L(G). Cf. [60] for 
more details. 

Let us mention that most of the results presented in this paper hold for general 
weighted graphs where one has to change the definitions accordingly. Almost all 
of the proofs and ideas follow the same lines in this general setting. Of course, 
the adjacency matrix is replaced by the weighted adjacency matrix, the degree of 
a vertex by the sum of the weights of the edges incident to the vertex, etc. 

2. EQge density in cuts 

A set of edges F s E(G) in a graph G is a cut (sometimes also called edge-cut) 
if there is a set X s V(G) of vertices of G such that F consists of precisely those 
edges of G which have one end in X and the other end in V(G)\X. We also write 
F = 6X = 6(V(G)\X). Given X, the corresponding cut 6X is also called the 
coboundary of X. A cut F is nontrivial if F = 6X for some X c V(G), X #go. The 
edge-density of such a cut 6X is defined as 

IW 
p(x):= 1x1 IV(G)\Xl (2-l) 

and it represents the density of the edges between the set X and its complement. 
Notice that in a connected graph G, p(X) depends on the cut only, but in general 
it also depends on the choice of X corresponding to the cut. 
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It is very important that the eigenvalue A2 = n,(G) imposes a nontrivial lower 
bound on edge-densities in cuts. 

Proposition 2.1. Let G be a graph of order n. For any nontrivial subset X of 
vertices of G, X Z 0, X # V(G), the edge-density is uniformly bounded below and 

above as 

h(G) L(G) 
~~P(XFIV(G)I. 
IV(G)1 

(2.2) 

The proof of Proposition 2.1 is ‘standard’: If x E e’(V) is a vector with entries 
x, = l/IX1 for v E X, and x, = -l/jV\X] f or v $ X, then x is orthogonal to the 
eigenvector (1, 1, . . . , 1)’ of the smallest Laplacian eigenvalue A, = 0 of G. 
Therefore, by the well-known Courant-Fischer’s principle, 

A (G) < (L(G)x9 x, < A (G) 
2 - 

(x, x) - n . 

Finally, @(C)x, x)/(x, x) t urns out to be equal to 1SXl - IV(G)(/(lXj - IVWl), 
which in turn implies the bounds of (2.2). 

Let us mention that the above proof and (2.2) remain valid also in the (;ase 
when the graph G is weighted. In this case Ic?X] means the weighted Iardinality, 
i.e., the sum of the weights in the coboundary of X. 

There is another upper bound on the minimal density of cuts in terms of A,(G). 

Proposition 2.2. If G f K2 is a nontrivial graph then 

min(p(X) 1 X c V(G), X #O} 62d 
IVWI 

A,(G) . [WG) - A2(G)1 

where A(G) is the maximal vertex degree In G. 

Proof. If G = K3, the result obviously holds. Otherwise, let X be a subset of 
V(G) containing at most half of the vertices such that the ratio 16X l/l X I is 
as minima! as possible. It is shown in [61, Theorem 4.21 that ]SXl/lX I Q 

2(2A - n2). Since 1x1 d $ IV(G)(, p(X) s (2/IV(G)()(l6XI/lXj) which implies 
our inequality. Cl 

Inequalities of the above type are discrete versions of the well-known 
Cheeger’s inequality from differential geometry [16]. Such a bound appeared in 
[4] and later as an improved edge version in [61]. 

3. Partitioning with eigenvectors 

An eigenvector xt2) corresponding to A,(G) provides a very good heuristic for 
partitioning the vertices of a graph into two parts with small interference 
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(relatively few edges between the two parts). Partitions V(G) = A U B with i?A 
relatively small in size can be obtained as follows. Order the vertices of G 
according to the inc-ease of their coordinates in xt2), if i.e.. u S v then xL2) d x(,~). 

Let A ,:=(v~V(G)(v3u}andletB,.- -- V(G)\A, for u E V(G). Depending on 

the problem where we need the partition we choose a vertex u such that the 
partition A, U B, is as good as possible. Usually one wants the sets A, B of the 
partition to be of equal cardinality (within one element). 

The reason why such partitions give satisfactory results is simple. Eigenvectors 
x(1! of A2 are the vectors for which the minimum of the quadratic form 
(L(G)x, x), where (x, x) = 1 and (x, 1) = 0 where 1 = (1, 1, . . . , 1)‘. By using the 
Lagrange identity 

n(x, x) - (x, 1)2 = i C C (xl1 - -G )’ 

where n = (1, 1) = WI, and the well-known expression for (L(G)x, x): 

(W)x, x) = 2 k., --xv)~J 

(3.1) 

(3.2) 

one immediately has that among all vectors x orthogonal to 1, the eigenvectors of 
A2 attain the minimum of 

c (xld -x,)’ 
a(x) := xu;;,zv (xu _ _yu)2‘ (3-3) 

But cc(x) is invariant for adding a constant multiple of 1 to x, so these 
eigenvectors also give the minimum of a(x) on f2(V) without the constant 
vectors. This means (heuristically) that most of the edges of G will join vertices 
which are not too far w.r.t. our ordering s. 

It was mentioned in [60] that this strategy based on eigenvectors of A2 is a good 
general heuristic for all problems of ‘divide and conquer’ type, and it was later 
applied by Pothen et al. [67] on the problem of partitioning sparse matrices into 
an ‘almost block diagonal’ structure. Similar heuristic was also investigated by 
Juvan and the author [49, SO] on some problems using linear labellings of graphs 
(bandwidth, cutwidth, the min-sum problem, etc.). 

Juhasz and Malyusz [48,46] considered the question of finding a vertex set X 
which minimizes a quantity similar to p(X). They used the eigenvalue approach 
as well but with a different matrix-PA(G)P where P is the projection to the 
orthogonal complement of (1, 1, . . . , 1)‘. Juhasz [46,47] and Bolla [9] further 
analyse eigenvalue approach for partitioning the vertices of a graph into two or 
more clusters. Further progress in this direction was made by Boppana [lo]. 

A similar idea is used in connection to the max-cut problem by Poljak et al. 

[28,64]. 
We shall do the basic analysis of the proposed partitioning algorithm. We start 

with some results about trees which show that the heuristic is good but also 
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‘arbitrarily bad’ in some degenerate cases. Let Scl,k be the tree obtained from d 
copies of the path Pk by identifying an end-vertex of each of the paths to obtain a 
vertex in Sd,k of degree d. It is easy to see, using the symmetries of Z&k, that there 
exist eigenvectors of &(S& which have values 0 on all except on two of the 
original paths. In this case, without an extreme care how to separate vertices with 
xt2)= 0 the obtained separations may be far from the optimum. It should be 
mentioned that this example is degenerate in a sense that it is very unlikely that 
a numerical algorithm would produce the above eigenvector since A2 has large 
multiplicitv in &. 

By a result of Fiedler [32], every eigenvector x of A2( T) of a tree T has either 
(a) all values x, different from 0. In this case T contains exactly one edge uw 

such that x, < 0 and x, > 0. The values x,, along any path in T - uw starting at u 
decrease, and along the paths starting at w increase. 

(b) or N:={ueV(T)Ix,= O> f fi Then the subgraph of T induced on N is 
connected, and there is exactly one vertex w E N which has neighbours not 
belonging to N. The x-values along paths in T starting from w either increase, 
decrease, or are equal to zero. 

In [32] there is also a generalization of the above result to the sign structure of 
xt2) with respect to the block structure of the graph. 

Fiedler’s results show that the separation of vertices in a tree based on the sign 
of xL2) is heuristically good. A heuristic argument for a general graph is as 
follows. Eigenvectors of h2(G) minimize the quadratic form (3.2) subject to 
11x11 = 1 and (x, 1) = 0. Let x = xC2) and let A = {v 1 xv < r}, B = {v 1 x, 2 r). , for 
some chosen r, be our vertex partition. Thzn it is very likely that this partition is 
a local optimum with respect to exchange of a vertex in A with a vertex in B. The 
reason is simple: suppose we exchange v E A with u E B. Define x’ E t2(V) by 
setting x: =x,, x: = xv, and XL = xW for other vertices w. Then llx’ll = 1 and 
(x’, 1) = 0. The quadratic form (3.2) will not decrease if we take x’ instead of x 
since x determines its minimum. This means that it is very likely that IdAI and 
p(A) will increase as we... ii -The reader is referred to [49] and [67] for some 

additional analysis. Further results can be found in [68]. 

4. Laplacian on hypergraphs 

I was asked several times how could one extend the graph eigenvalue results to 
hypergraphs. Here we point out one possibility. 

Bolla [9] defines the ‘Laplacian’ matrix L,(H) of a hypergraph H = (V, E) in 
the following way. Let D = D(H) be the diagonal matrix of size I r/l with vertex 

degrees on the diagonal, and let D’ = D’(H) be the diagonal matrix indexed by E 

and with edge cardinalities on the diagonal. If Q = Q(H) is the V X E 

(unoriented) incidence matrix of H then 

L,(H) := D - QD’-‘QT. 
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It is easily seen that 

L,(H) = L(G) (4-l) 
where G = (V, E’) is the weighted graph on the same vertex set V as H, obtained 
by replacing each edge e of H by a clique on the set of vertices of e, and with 
edge-weights in this clique equal to l/le]. Of course, if a pair of vertices belongs 
to more than one edge of H then the weight of the corresponding edge in G is 
equal to the sum of the contributiorrs ll]e] for all such edges e. 

It should be mentioned that there are other possibilities how to assign a graph 
G to a hypergraph H. For example, the edges in the cliques in the above case 
may be assigned some other weights. The choice depends on the problem where 
we try to apply algebraic methods on the graph G to obtain results for H. 

Let us mention that the Laplacian of a block design as introduced above can 
also be used in statistical design [17, 23-251. 

A different and slightly less obvious approach to the eigenvalues of hyper- 
graphs was introduced by Friedman and Wigderson [38]. Having a 3-uniform 
hypergraph H, they look at the norm of the natural trilinear form associated to 
H, and define A,(H) as the absolute difference to the norm of the trilinear form 
obtained from the original one by subtracting a multiple of the trilinear form with 
all coefficients equal to 1. However, their ‘eigenvalues’ are not eigenvalues in any 
classical sense. 

Another possibility is presented in [74,76,77]. 

5. Hamiltonicity 

The prob!em to determine whether the given graph G contains a hamilton cycle 
is extremely difficult. If G is hamiltonian then one may be lucky tiy guessing a 
solution, but proving that a graph is not hamiltonian is a hopeless task since this 
problem is co-NP-complete. Let us present a surprising eigenvalue based criterion 
for non-hamiltonicity which is proved in [62]. 

Theorem 5.1. Let G be a cubic graph of order n, and let 0 = A, s A2 s - - - 6 A, be 
its Lapiace eigenualues. If there is an index k such that either 

(i) Ak > 4 - 2 cos((2zfn)[k/2]), or 
(ii) n/2<k s n and & < 4 - 2 cos((2nfn) [(Sn + 2 - 2k)/4]) 

then G does not contain a hamilton cycle. 

The Petersen’s graph is an example of a graph whose eigenva!ue distribution 
implies on the basis of Theorem 5.1 that it is not hamiltonian. Unfortunately, it 
seems that Theorem 5.1 can not be applied on very large graphs. But already the 
fact that algebraic properties may affect hamiltonicity is important since it 
provides us with a hope that some graphs with ‘unusual’ eigenvalue properties 
may be non-hamiltonian. Based on this observation there is an ongoing research 
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about hamiltonicity of certain Cayley graphs of some simple groups which are 
known to have strange eigenvalue distribution. 

Finally let us mention another algebraic sufficient condition for non- 
hamiltonicity. Heilmann and Lieb [44] proved that all the zeros of the matching 
polynomial of a hamiltonian graph must be simple. Therefore multiple zeros 
indicate non-hamiltonicity. So far, the presented results are the only ‘useful’ 
results in this direction known to the author. 

6. C-Functions on graphs 

The Riemann zeta function is defined as 

5;(s) := I+ 1-T + 2-5 +3-s + * . . . (6-l) 

It is naturally connected to the Laplace differential operator on the l-sphere 
whose nth eigenvalue is J., = n2, n = 0, 1, 2, . . . , and thus 

5;(2s) = 1+ 2 A,“. (6.2) 
n=l 

In analogy to this expression, every Laplacian operator determines the cor- 
responding c-function. So, if G is a connected graph with Laplace eigenvalues 
O=&<Q++ - -<A,, then the c-function of G is 

c(G; 2s) := 1 + i Ai”, s E @. (6.3) 
i=2 

Some known results can be formulated in terms of the (;-function. 

Theorem 6.1 (McKay). If G is a tree of order n then 

where p(G) is the mean distance of G. 

The proof of this result can be found for example in [63], or in [57]. Another 
result is just the reformulation of the well-known Matrix Tree Theorem. 

Theorem 6.2 (Kirchhoff). If G is a graph of order n, and K(G) denotes the 
number Qf spanning trzss of G then 

5;‘(G; 0) = -ln(nK(G)). 

There is some evidence that one might predict chemical and physical properties 
of a (hypothetical) molecule, whose underlying structural graph G is known, on 
the basis of the c-function of 63. 
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Another promising area of research might be investigating the properties of 
zeros or singularities of f;(G;s). No results or experiments in this direction are 

known. 
There are other expressions for the Riemann zeta function. A well-known 

formula, which shows why the properties of c(s) are so closely related to the 

distribution of primes, is the following: 

&)=!--I (l-+)-l, 
P 

(6.4) 

where the product runs over all primes p. There is an analogous function related 
to the Laplacian on manifolds. It is important because of its close relationship tu 
the geodesics on manifolds. A corresponding function on graphs was introduced 
by ihara and Sunada [71] in case of regular graphs. 

Let G be a k-regular graph. Let us for simplicity also assume that G is simple. 
A closed walk x0, xl, . . . , x, =X0 is reduced if Xi-1 #Xi+1 for i = 1, 2, . . . , n. It is 
prime if it is not of the form 

Y(~~Y~~-~-~Y,,y,,yl,--.,y,,...,y(),y, ,..., y, 

with the sequence y,,, . . . , y, reoeated at least twice. Call closed walks 

x0,x1, - - - , x, =XO and yco, y,, - . , y, = y. equivalent if y, = x,+~ (indices modulo 
n) for each t and some fixed ~1. 

The Ihara-Sunada’s zeta function of the graph G 1s 

where the product runs over all equivalence classes of prime reduced closed walks 
C in G, and I(C) denotes the length of C. 

Theorem 6.3 (Sunada). Ail the singularities (poles) of Z(s) in the strip 0 < Re s < 
I are on the line Re s = 4 if and only if G is a Ramanujan graph. 

Let us recall that a k-regular graph G is a Ramanujan graph [55] if all its 
Laplace eigenvalues except 0 and possibly 2k lie in the interval [k - 2dm, 
k + 2-d%?]. Up to the breakthrough of Lubotzky et al. [55] and independent 
discovery of Margulis [56], Ramanujan graphs were known to exist only by 
probabilistic methods. Explicitly constructed Ramanujan graphs play an impor- 
tant role in the construc+ion of several networks (e.g., the expanders and 
superconcentrators), in the design of explicit algorithms, and in several other 
problems of theoretical computer science (see, e.g., [4,5], or the survey [60]). 
Therefore it is not surprising that other papers appeared with constructions of 
Ramanujan graphs [7,18,52,66]. It should, however, be pointed out that all 
known constructions are number theoretic in nature. 
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7. Some other results 

Given a walk W in graph G, the cover time of W is the number of steps of W 
required to visit every vertex of G. Considering a random walk, one can ask 
about the expected cover time. It turns out that the expected cover time relates to 
the eigenvalues of the random walk transition matrix which is, at least for regular 
graphs, related to the Laplacian. Upper and lower eigenvalue bounds on the 
expected cover time were derived by Broder and Karlin [ 111. The bounds depend 
on &(G). Related results were obtained by some other authors [l-3,51,65,69]. 
A similar approach gives useful results for some other problems, e.g., the rapidly 
mixing Markov chains [70]. 

Let us finally mention several papers which investigate properties (not 
applications) of Laplace eigenvalues of graphs, and may therefore contain useful 
results for applications described above or in applications to be discovered in the 
future. The earliest applications of Laplace eigenvalues in graph theory go back 
to Fiedler [31] (cf. [60] for other early works of Fiedler). His recent works in this 
area are [31,33,34]. Another source of new results about the Laplace eigenvalues 
of graphs emerges from Merris et al. [40-42,57-591. Some additional references 
are [73,43]. 

Broder and Shamir [12] estimated the second eigenvalue of random regular 
graphs of fixed even valency. Their result was improved by Friedman et al. [37]. 
They showed that all nontrivial Laplace eigenvalues of a 2d-regular graph of 
order n lie in an O(a)-interval around the mean 2d with high probability. More 
precisely, the expected value of 2d - &(G) and of A,(G) - 2d over all 2d-regular 
graphs of order n is bounded above by 

2~~+2logd+O(l)+O 
dg log log n 

> logn ’ 

where the logarithms are base e and the constants in the oh-notation do not 
depend on d. 

The behaviour of adjacency matrix eigenvalues of random graphs was 
determined by Juhasz [45] and Fiiredi and Komlos [39]. Using their results the 
Laplace eigenvalues of random graphs (edge probability p) are shown in [50] to 
lie between pn -f(n) and pn + f (n) (a.s.), where 

n = IV(G)l, f(n) = V(3 + E)( 1 - p)pn log; 

and E > 0 arbitrary. 
The eigenvalue beha:iiour of random graphs is important because it implies 

several other properties to hold for almost all graphs. More important is that 
many such properties are mutually equivalent and equivalent to the property that 
except A, = 0 all other eigenvalues are close to the average degree of the graph. A 
graph having any of these properties possesses all others, and it is said to be 
quasi-random [21] since it shares many properties of random graphs. See Chung 
et al. for more details [19-221. The idea of mimicing a random structure by 
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explicit objects appears also in other disciplines. Let us only mention the use of 
eigenvalues for such a purpose in the discrepancy theory (irregularities of 
partitions). See, e.g., [6]. 

Finally let us mention another area of mathematics where the Laplace 
eigenvalues of graphs came into the game. The spectral properties of the 
Laplacian on Riemannian manifolds are closely related to eigenvalue properties 
of corresponding graphs. The relation is mutual-graphs give rise to certain 
Riemannian manifolds with spectral properties inherited from the graph Lapla- 
cian, and conversely, the geometric dual graphs of certain ‘nice:’ triangulations of 
a Riemannian manifold represent the manifold well enough in order that the 
graph eigenvalues give some information about the manifold. Let us mention just 
a recent reference [ 151 and an older one [ 131. 

Note added in proof. There are several recent achievements related to the topic 
of this survey [74-331. 

References 

[I] D. Aldous, On the time taken by random walks on finite groups to visit every state, ZW 62 
(1983) 361-374. 

[2] D. Aldous, Hitting times for random walks on vertex-transitive graphs, Math. Proc. Cambridge 
Philos. Sot. 106 (1989) 179-191. 

[3] D. Aldous, Lower bounds for covering times for reversible Markov chains and random walks on 
graphs, J. Theoret. Probab. 2 (1989) 91-100. 

[4] N. Alon, Eigenvahres and expanders, Combinatorics 6 (1986) 83-96. 
[S] N. Alon and V-D. Milman, I,. isoperimetric inequalities for graphs and superconcentrators, J. 

Combin. Theory Ser. B 38 (1985) 73-88. 
[6] J. Beck and V.T. SOS, Discrepancy theory, in: Graham, Griitschel. and Lovisz, cds., Handbook 

of combinatorics (North-Holland. Amsterdam, 1991). 
[7] F. Bien. Constructions of telephone networks by group representations, Notices Amer. Math. 

Sot. 36 (1989) 5-22. 
[S] N.L. Biggs, Algebraic Graph Theory (Cambridge Univ. Press, Cambridge, 1974). 
[9] M. Bolla, Spectra, Euclidean representations and vertex-colourings of hypergraphs, 

1989, preprint. 
[IO] R.B. Boppana, Eigenvalues and graph bisection: an average-case analysis (extended abstract), 

in: 28th Ann. Symp. FOCS, Los Angeles, CA (1987) 286-294. 
[II] A.Z. Broder and A.R. Karlin. Bounds on the cover time. J. Theoret. Probab. 2 (1989) 101-120. 
[12] A. Broder and E. Shamir. On the second eigenvalue of random regular graphs (extended 

abstract). in: 28th Ann. Symp. on FOCS. Los Angeles, CA (1987) 286-294. 
[13] R. Brooks, Combinatorial problems in spectral geometry, in: Curvature and Topology of 

Riemannian Manifolds, Lecture Notes in Math., Vol. 1201 (Springer, Berlin, 1986) 14-32. 
[14] A.E. Brouwer. A.M. Cohen and A. Neumaier, Distance Regular Graphs (Springer, Berlin, 

1989). 
[IS] M. Burger. Small eigenvalues of Riemann surfaces and graphs, Math. Z. 205 (1990) 395-420. 
[16] J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. in: R.C. Gunnig. eds., 

Problems in Analysis (Princeton Univ. Press, Princeton, NJ, 1970) 195-199. 
[17] C.S. Cheng, Maximizing the total number of spanning trees in a graph: two related problems in 

graph theory and optimum design theory, J. Combin. Theory Ser. B 31 (1981) 240-248. 
[18] P. Chiu, Cubic Ramanujan graphs, 1989, preprint. 
(191 F.R.K. Chung. Quasi-random classes of hypergraphs, Random Struct. Algor.. to appear. 



WI 

1211 

P21 
(231 
WI 
PI 

1261 

PA 

P81 
PI 
1301 

1311 
[321 

1331 

f341 

[351 

[361 

[371 

1381 
1391 

[401 

[411 

I421 

(431 

WI 

[451 

1461 
1471 

[481 

Lcpluce eigenvalues of graphs 181 

F.R.K. Chung and R.L. Graham, Quasi-random hypergraphs, Random Struct. Algor. 1 (1990) 
105-124. 
F.R.K. Chung, R.L. Graham rind R.M. Wilson, Quasi-random graphs, Combinatorics 9 (1989) 
345-362. 
F.R.K. Chung and P. Tctali, Communication complexity and quasi-randomness, 1990, preprint. 
G. Constantine, On the optimality of block designs, Ann. Inst. Statist. Math. 38 (1986) 161-174. 
G. Constantine, Combinatorial Theory and Statistical Design (Wiley, New York, 1987). 
G.M. Constantine, Graph complexity and the Laplacian matrix in blocked experiments, Linear 
and Multilinear Algebra 28 (1990) 49-56. 
D.M. Cvetkovic, M. Doob, I. Gutman and A. TorgaSev, Recent Results in the Theory of Graph 
Spectra, Ann. Discr. Math., Vol. 36 (North-Holland, Amsterdam, 1988). 
DM. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs-Theory and Applications 
(Academic Press, New York, 1979). 
C. Delorme and S. Poljak, Laplacian eigenvalues and the maximum cut problem, 1990, preprint. 
P. Diaconis and D. Stroock, Geometric bounds for eigenvalues of Markov chains, 1989, preprint. 
W. Feit and G. Higman, The non-existence of certain generalized polygons, J. Algebra 1 (1964) 
114-131. 
M. Fiedler, Algebraic connectivity of graphs, Czech. Math. J. 23 (98) (1973) 298-305. 
M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its appiication to 
graph theory, Czech. Math. J. 25 (100) (1975) 619-633. 
M. Fiedler, Laplacian of graphs and algebraic connectivity, in: Combinatorics and Graph 
Theory, Banach Center Publ., Vol. 25 (PWN, Warsaw, 1989) 57-70. 
M. Fiedler, Absolute algebraic connectivity of trees, Linear and Multilinear Algebra 26 (1990) 
85-106. 
M. Fiedler, A minimax problem for graphs and its relation to generalized doubly stochastic 
matrices, Linear and Multilinear Algebra 27 (1990) l-23. 
R.A. Fischer, An examination of the different possible solutions of a problem in incomplete 
blocks, Ann. Eugen. 10 (1940) 52-75. 
J. Friedman, J. Kahn and E. Srcmeredi, On the second eigenvalue in random regular graphs, 
Proc. 21st Annual ACM Symp. Theory Comput., Seattle (1989) 587-598. 
J. Friedman and A. Wigderson, 1990, preprint. 
Z. Fiiredi and J. Komlds, The eigenvalues of random symmetric matrices, Combinatorics 1 
(1981) 233-241. 
R. Grone and R. Merris, Ordering trees by algebraic connectivity, Graphs Combin 6 (1990) 
229-237. 
R. Grone and R. Merris, Coalescence, majorization, edge valuations and the Laplacian spectra 
of graphs, Linear and Multilinear Algebra 27 (1990) 139-146. 
R. Grone, R. Merris and V.S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix 
Anal. 11 (1990) 218-238 
R. Grone and G. Zimmermann, Large eigenvalues of the Laplacian, Linear and Multilinear 
Algebra 28 (1990) 45-47. 
O.J. Heilmann and E.H. Lieb, Theory of monomer-dimer systems, Commun. Math. Phys. 25 
(1972) 190-232. 
F. Juhhz, On the spectrum of a random graph, in: L. Lo&z et al., eds., Algebraic Methods in 
Graph Theory (North-Holland, Amsterdam, 1981) 313-316. 
F. Juhasz, On a method of cluster analysis, 2. Angew. Math. Mech. 64 (1984) T335-T336. 
F. Juhasz, On the theoretical backgrounds of cluster anal:!sis based on the eigenvaiue problem of 
the association matrix, Statistics 20 (1989) 573-581. 
F. Juhbz and K. Malyusz, Problems of cluster analysis from the viewpoint of numerical analysis, 
in: Rosza, ed., Numerical Methods (North-Holland, Amsterdam, 1980) 405-415. 

[49] M. Juvan and B. Mohar, Optimal linear labelings and eigenvalues of graphs, Discrete Appl. 
Math. 36 (1992) 153-168. 

[SO] M. Juvan and B. Mohar, Laplace eigenvalues and bandwidth-type invariants of graphs, 1990, 
preprint. 

[51] J.N. Kahn, N. Linial, N. Nisan and M.E. Saks, On the cover time of random walks on graphs, J. 
Theoret. Probab. 2 (1989) 121-128. 



182 6. Mohar 

152) W. Li. Abelian Ramanujan graphs. 1989. preprint. 
[53] L. b&z, Topological and algebraic methods in graph theory, in: Graph Theory and Related 

Topics (Academic Press, New York. 1979) 1-14. 
[54! L. Low&z. On the Shannon capacity of a graph, IEEE Trans Inform. Theory 25 (1979) l-7. 
[SS~ A Lubotzky, R. Phillips and P. Sarnak. Ramanujan graphs, Comhinatorica 8 (1988) 261-277. 
[561 GA. Margulis. Explicit group-theoretical constructions of combinatorial schemes and their 

application to the design of expanders and superconcentrators. Problemy Peredachi Informatsii 
24 (1988) 51-60 (in Russian): English translation: Problems inform. Transmission 24 (1988) 
39-46. 

(571 R. Merris. An edge version of the matrix-tree theorem and the Wiener index. Linear and 

Multilinear Algebra 25 (1989) 291-2%. 
[SS] R. Merris. Almost all trees are co-de-two too, 1989. preprint. 
[591 R. Merris, The distance spectrum of a tree, J. Graph Theory 14 (1990) 365-369. 
[601 B. Mohar, The Laplacian spectrum of graphs, in: Y. Alavi et al., eds., Graph Theory 

Combinatorics. and Applications (Wiley. New York, 1991) 871-898. 
[61] B. Mohar, Isoperimetric numbers of graphs. J. Combin. Theory, Ser. B 47 (1989) 274-291. 
[62] B. Mohar. A domain monotonicity theorem for graphs and Hamiltonicity. Discrete Appl. Math. 

36 (1992) 169- 177. 
(63) B. Mohar, Eigenvahres, diameter, and mean distance in graphs, Graphs Combin. 7 (1991) 53-64. 
[64] B. Mohar and S. Poljak, Eigenvalues and the max-cut problem, Czech. Math. J. 40 (1990) 

-343-352. 
(651 J.L. Palacios, Bounds on expected hitting times for a random walk on a connected graph, Linear 

Algebra Appi. lril (is?; XI-d2 - 2. 

[66] A.K. Pizer, R amanujan graphs and Hecke operators, Bull. Amer. Math. Sot. (N-S.) 23 (1990) 
12?- 137. 

[67! A. Pothen, H.D. Simon and K.-P. Liou, Partitioning sparse matrices with eigenvectors of 
graphs, SIAM J. Matrix Anal. Appl. 11 (1990) 430-452. 

!681 D.L. Powers, Graph partitioning by eigenvectors, Linear Algebra Appl. 101 (1988) 121-133. 
1691 R. Rubinfeld, The cover time of a regular expander is C(n logn), Inform. Process. Lett. 35 

(1990) 49-51. 
170) A. Sinclair and M. Jerrum. Approximate counting, uniform generation and rapidly mixing 

Markov chains. Inform. Comput. 82 (1989) 93-133. 
(711 T. Sunada. <-Functions on graphs. Private communication. 
1721 V.S. Sanderam and P. Winkler. Fast information sharing in a distributed system, 1988. preprint. 
(73) W. Watkins. The Laplacian matrix of a graph: Unimodular congruence, Linear and Multilinear 

Algebra 28 (1990) 35-43. 
[74] R. Adin, Counting colorful multi-dimensional trees, 1989, preprint. 
[75] G. Brightwell and P. Winkler, Maximum hitting time for random walks on graphs, Random Str. 

Algor. 1 (1990). 
(761 F.R.K. Chung and R.L. Graham, Cohomological aspects of hypergrphs, 1991, preprint. 
1771 F.R.K. Chung. The Laplacian of a hypergraph, 1991, preprint. 
(781 C. Delonne and S. Poljak, Combinatorial properties and the complexity of a max-cut 

approximation, Technical Report 91687. institut fiir Diskrete Mathematik, Universitit Bonn, 
1w1. 

[79] C. Delorme and S. Poljak. The performance of an eigenvalue bound +n the max-cut problem in 
some classes of graphs. in Colloque Marseille, 1990. 

1801 C. Delorme and P. Sole. Diameter, covering radius and eigenvalues. EuropLan J. Combin. 12 
(1991) 9j-108. 

(811 M. Dyer, A. Frieze and R. Kannan. A random polynomial-time algorithm for approximating the 
volume of convex bodies. J. Assoc. Comput. Mach. 38 (1991) l-17. 

1821 S. Friedland, Lower bounds for th first eigenvaiue of certain M-matrices associated with graphs, 
1991, preprint. 

[83] S. W. Hadley, F. Rend1 and H. Wolkowicz. Symmet.ization of non-symmetric quadratic 

assignment problems and the Hoffman-Wielandt ineqlrahty, Linear Algebra Appl., to appear. 
[84] S. W. Hadley, F. Rend1 and H. Wolkowicz. Bounds for the quadratic assignment problem using 

continuous optimization techniques. in: Proc. Combinatorial Optimization, WPierloo (1990) 
237-248. 



Laplace eigenvalues of graphs 183 

[85] S. W. Hadley, F. Rend1 and H. Wolkowicz, A new lower bound via projection for the quadratic 
assignment problem, 1991, preprint. 

(861 L. Lovasz and M. Simonovits, The mixing rate of Markov chains, an isoperimetric inequality, 
and computing the volume, !3?Q, preprint. 

[87] B. Mohar and S. Poljak, Eigenvalues in combinatorial optimizatic,t, 1992, preprint. 
[88] G. Narasimhan and R. Manber, A generalization of Lovasz 8 function, DIMACS Series in 

Dicrete Math. Comp. Sci. 1 (1990) 19-27. 
[89] S. Poljak, Polyhedral and eigenvalue approximations of the max-cut problem, Technical Report 

91691, Institut fur Diskrete Mathematik, Universitiit Bonn, 1991. Submitted to Proc. Cont. 
‘Sets, Graphs and Numbers’ (Budapest 1991). 

190) S. Poljak and F. Rend& Computing the max-cut by eigenvalues, Report No. 91735OR, Institut 
fur Diskrete Mathematik, Universitit Bonn, 1991. 

[91] F. Rend1 and H. Wolkowicz, Applications of parametric programming and eigenvalue maximiza- 
non to the quadratic assignment problem, Math. Progr. 53 (1992) 63-78. 

[92] F. Rend1 and H. Wolkowicz. A projection technique for partitioning the nodes of a graph, 
Technical Report, University of Technology, Graz, 1990. 

[93] P. Sole, Expanding and forwarding, submitted. 


