
INSTITUTE OF PHYSICS PUBLISHING WAVES IN RANDOM MEDIA

Waves Random Media 14 (2004) S155–S171 PII: S0959-7174(04)60740-3

On the spectrum of the Laplacian on regular
metric trees

Michael Solomyak

Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel

E-mail: solom@wisdom.weizmann.ac.il

Received 12 January 2003
Published 5 December 2003
Online at stacks.iop.org/WRM/14/S155 (DOI: 10.1088/0959-7174/14/1/017)

Abstract
A metric tree � is a tree whose edges are viewed as non-degenerate line
segments. The Laplacian ∆ on such a tree is the operator of second
order differentiation on each edge, complemented by the Kirchhoff matching
conditions at the vertices. The spectrum of ∆ can be quite varied, reflecting
the geometry of a tree.

We consider a special class of trees, namely the so-called regular metric
trees. Any such tree � possesses a rich group of symmetries. As a result, the
space L2(�) decomposes into the orthogonal sum of subspaces reducing the
operator ∆. This leads to detailed spectral analysis of ∆. We survey recent
results on this subject.

1. Introduction

In classical graph theory a graph is considered as a combinatorial object. A function on such
a graph is defined on the set of its vertices, and the Laplacian is a discrete operator.

In contrast, a metric graph G is a graph whose edges are regarded as non-degenerate line
segments. A function on G is a family of functions defined on its edges, and the Laplacian on
G acts as ∆ f = − f ′′ on each edge; we include the sign ‘−’ in the definition of the Laplacian.
Functions in its domain satisfy certain matching conditions at the vertices. The spectral theory
of the Laplacian on metric graphs is much less developed than its counterpart for the discrete
Laplacian.

Regular metric trees form an important subclass of general metric graphs. We define
regular trees in definition 2.1. The reader should keep in mind that the term ‘regular’ is
universally overloaded. In particular, it may have different meanings in different branches of
graph theory.

A regular tree� has a rich group of symmetries. This allows one to construct an orthogonal
decomposition of the space L2(�) (the basic decomposition) which reduces the Laplacian.
With its help a detailed spectral analysis of the Laplacian is possible.

0959-7174/04/010155+17$30.00 © 2004 IOP Publishing Ltd Printed in the UK S155

http://stacks.iop.org/WRM/14/S155


S156 M Solomyak

Our goal is to survey the recent results on this subject. The paper can be considered as
an expanded version of the article [15]. Many results are presented here in more detail, but
we often give references and informal explanations rather than rigorous proofs. Among the
new results we specially mention theorem 5.3 and example 6.2. On the other hand, we do not
reproduce the results of [15] concerning the Schrödinger operator.

There are several papers devoted to differential operators on regular metric trees and related
problems. In [9] the weighted spectral problems of the type ∆ f = λV f were investigated,
with a non-negative weight function V ∈ L1(�). For this equation the eigenvalue estimates
were obtained in terms of the geometry of � and properties of V . The tree � was not assumed
to be regular. Some of the results of [9] for general trees were later refined in the paper [5].

In the same paper [9] the notion of a regular metric tree was singled out and the basic
decomposition of the space L2(�) on such trees was constructed. It is reproduced here as the
first part of the formula (3.5). With its help much more precise results were obtained for regular
trees than for arbitrary trees. Let us note that for the combinatorial trees a decomposition similar
to (3.5) was known before, see e.g. [1] and [12].

In the paper [3] the basic decomposition was discovered independently and applied to the
spectral analysis of the Laplacian and the Sturm–Liouville operator on the regular trees � of
finite height. In particular, it was proved in [3] that for such trees each operator Ak appearing
in the decomposition (3.13) is compact and the counting functions for its eigenvalues satisfies
the estimate N(λ; Ak) = O(λ1/2+ε) with any ε > 0. Our theorem 4.1 substantially refines this
result.

In the same way as in the Rd -setting, the spectral theory of the Laplacian on trees is closely
related to the theory of Sobolev spaces. One has to distinguish between two types of such
spaces on a tree. Let � be a rooted tree with the root o. We define the spaces

H1,•(�) =
{

f ∈ C(�) : f (o) = 0,
∫
�

(| f ′|2 + | f |2) dx < ∞
}

(cf section 3.1 for the detailed description), and

H1(�) =
{

f ∈ H1,•
loc (�) :

∫
�

| f ′|2 dx < ∞
}
,

see section 7.3. The space H1,•(�) is the quadratic domain of the Laplacian as an operator
in L2(�), and it is important that it is not always dense in H1(�). The trees which meet this
density condition are called recurrent; otherwise they are called transient.

The difference between these two types of tree is important when studying Hardy’s
inequalities. A function V � 0 is called a Hardy weight on a tree � with the root o if
the inequality ∫

�

V | f |2 dx � c
∫
�

| f ′|2 dx, c > 0 (1.1)

holds for all f ∈ H1(�). In the paper [6] a criterion on a function V � 0 to be a Hardy weight
on an arbitrary tree was established. The similar problem in Lp, 1 < p < ∞, was also solved
there.

The positive definiteness of the Laplacian is equivalent to the inequality (1.1) with V ≡ 1
but for the functions from the narrower space H1,•(�). For this space the class of admissible
weights is wider, and the result of [6] does not apply. The description of all symmetric
(i.e. depending only on dist(x, o)) admissible weights on H1,•(�) was given in [10]. The
criterion of positive definiteness of the Laplacian on� (see theorem 5.2 of the present paper) is
a particular case of the description obtained. Note that the conditions of [6] are never satisfied
for V ≡ 1, provided that � is a tree of infinite height.
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A tree is called homogeneous if all its edges have equal length and all its vertices are of the
same degree. This is a special case of a regular tree. Homogeneity of a tree can be regarded as a
sort of periodic structure. Hence, it is natural to expect some resemblance between the spectral
properties of the Laplacian on such trees and those of the periodic differential operators on the
real axis. Such resemblance was revealed in the paper [2]. In particular, the bandgap structure
of the spectrum of the Laplacian on the homogeneous trees was established there.

A complete description of the spectrum of the Laplacian on homogeneous trees was given
in [13] where also the Schrödinger operator with a symmetric potential was analysed. This
description is reproduced below as example 6.3.

In the paper [14] a new approach to the eigenvalue estimates for the equation ∆ f = λV f
on metric graphs of finite length (not necessarily trees) was developed. As one application, the
Weyl-type asymptotics for this equation was justified. Our theorem 4.1(ii) is a special case of
this result. Another proof was given in [15]. The results of the paper [5] on asymptotics can
also serve as a basis for obtaining this theorem.

The approach of [14] is based upon a special technique of approximation of functions
from the Sobolev space H1 = W1

2 on graphs. In [16] this approach was extended to the spaces
W1

p with p �= 2.
In this short survey we listed only the results directly related to the material of the work

presented. In the paper [7] the reader can find a detailed survey of the whole field, with the
comprehensive list of literature.

2. Regular rooted metric trees

2.1. Geometry of a tree

Let � be a rooted tree with the root o, the set of vertices V = V(�) and the set of edges
E = E(�). We suppose that #V = #E = ∞. Each edge e of a metric tree is viewed as
a non-degenerate line segment of length |e|. The distance ρ(x, y) between any two points
x, y ∈ �, and thus the metric topology on �, is introduced in a natural way, and |x | stands for
ρ(x, o). A subset E ⊂ � is compact if and only if it is closed and has non-empty intersections
with only a finite number of edges.

For any two points x, y ∈ � there exists a simple polygonal path in � which starts at x and
terminates at y. This path is unique and we denote it by 〈x, y〉. We write x ≺ y if x ∈ 〈o, y〉
and x �= y. The relation ≺ defines a partial ordering on �.

For any vertex v its generation gen(v) is defined as

gen(v) = #{x ∈ V(�) : x ≺ v}.
In particular,v = o is the only vertex such that gen(v) = 0. For any edge emanating from vertex
v (which means that e = 〈v,w〉 and v ≺ w) we define the generation as gen(e) := gen(v).

The branching number b(v) of a vertex v is defined as the number of edges emanating
from v. We assume that gen(v) < ∞ for any v and b(v) > 1 for v �= o. We denote by e−

v the
only edge which terminates at a vertex v �= o, and by e1

v, . . . , eb(v)
v the edges emanating from

v ∈ V .

Definition 2.1. We call a tree � regular if all the vertices of the same generation have equal
branching numbers, and all the edges of the same generation are of the same length.

Any regular tree is fully determined by specifying two number sequences (generating
sequences) {bn} = {bn(�)} and {tn} = {tn(�)}, n = 0, 1, . . . such that

b(v) = bgen(v), |v| = tgen(v) ∀v ∈ V(�).
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We assume that bn � 2 for any n > 0. This means that we ignore ‘unessential’ vertices v �= o,
such that b(v) = 1. It is clear that t0 = 0 and the sequence {tn} is strictly increasing, and we
denote

h� = lim
n→∞ tn = sup

x∈�
|x |.

We call h� the height of �. Another useful characteristic of the regular tree is its branching
function

g�(t) = #{x ∈ � : |x | = t}, 0 � t < h�.

Clearly,

g�(0) = 1; g�(t) = b0 · · · bn, tn < t � tn+1, n = 0, 1, . . . .

We also introduce the reduced height of �

L� =
∫ h�

0

dt

g�(t)
.

It follows from g�(t) � 1 that L� � h� , so that h� < ∞ implies L� < ∞. For the trees of
infinite height both L� < ∞ and L� = ∞ are possible.

The natural measure dx on � is induced by the Lebesgue measure on the edges. The
spaces Lp(�) are understood as Lp-spaces with respect to this measure. We denote by |E | the
measure of a (measurable) subset E ⊂ � and call the number |�| the total length of �. It is
clear that ρ(x, y) = |〈x, y〉| for any pair of points x, y ∈ � and that |�| = ∫

�
g�(t) dt .

2.2. Special subtrees of �

Subtrees T ⊂ � of the following two types play a special part in the further analysis. For any
vertex v and for any edge e = 〈v,w〉, v ≺ w we set

Tv = {x ∈ � : x � v}, Te = e ∪ Tw.

Evidently, To = � and

Tv =
⋃

1� j�b(v)

Te j
v
, ∀v ∈ V(�).

Along with the function g�, define the functions

gk(t) = #{x ∈ Te : |x | = t}, ∀e ∈ E(�) : gen(e) = k. (2.1)

It is clear that g0 = g� and

gk(t) = (b0 · · · bk)
−1g�(t), t ∈ [tk, h�), k ∈ N. (2.2)

3. The Laplacian on a regular tree

The notion of differential operator on any metric graph, in particular on a tree, is well known.
Still, for the sake of completeness we present here the variational definition of the Laplacian
on a tree.
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3.1. The Sobolev space on �

We say that a scalar-valued function f on � belongs to the Sobolev space H1 = H1(�) if f is
continuous, f � e ∈ H1(e) for each edge e and

‖ f ‖2
H1 :=

∫
�

(| f ′(x)|2 + | f (x)|2) dx < ∞.

The derivative of a function f � e at an interior point x ∈ e is always taken in the direction
compatible with the partial ordering on �. This agreement is irrelevant for the definition of H1

but we shall use it later. By H1,• = H1,•(�) we denote the subspace { f ∈ H1 : f (o) = 0}. We
do not impose any conditions on the behaviour of functions f ∈ H1,• as |x | → h� , other than
those implied by the requirement f, f ′ ∈ L2. For this reason, we prefer to avoid the notation
H1,0.

Actually, this precaution is necessary only if h� < ∞. This is implied by the following
simple fact.

Lemma 3.1. Let h� = ∞, then any function f ∈ H1(�) vanishes as |x | → ∞. More exactly,
for any ε > 0 there exists a number tε = tε( f ) > 0, such that

| f (x)| < ε ∀x ∈ � : |x | > tε. (3.1)

Proof. Take any infinite path � ⊂ � starting at the root o. Any such path can be identified
with R+, and f ∈ H1(�) implies f � � ∈ H1(R+). Hence, f (x) → 0 along �, and therefore
for any x ∈ �

| f (x)|2 = −
∫
�x

2 Re( f ′(y) f (y)) dy, �x = {y ∈ � : x ≺ y}.

Given an ε > 0, choose tε such that∫
x∈�:|x|>tε

(| f ′(x)|2 + | f (x)|2) dx < ε2.

Then
∫
�x
(| f ′(x)|2 + | f (x)|2) dx < ε2 for any x ∈ � with x > tε and any path � � x . This

yields (3.1) by Cauchy’s inequality. �

3.2. The operator ∆

We define the (positive) Laplacian ∆ as the self-adjoint operator in the space L2(�), associated
with the quadratic form

∫
�

| f ′|2 dx considered on the form domain Quad(∆) = H1,•(�).
Let us describe the operator domain Dom(∆), though we do not use this description in

our further reasonings.
Evidently f ∈ Dom(∆) ⇒ f � e ∈ H2(e) for each edge e and the Euler–Lagrange

equation reduces on e to ∆ f = − f ′′. Hence,
∑

e∈E(�)

∫
e
(| f ′′|2 + | f ′|2 + | f |2) dx < ∞, ∀ f ∈ Dom(∆).

At the root we have the boundary condition f (o) = 0. At each vertex v �= o the functions
f ∈ Dom(∆) satisfy certain matching conditions. In order to describe them, denote by
f− the restriction f � e−

v and by f j , j = 1, . . . , b(v) the restrictions f � e j
v . The matching

conditions at v �= o are

f−(v) = f1(v) = · · · = fb(v)(v); f ′
1(v) + · · · + f ′

b(v)(v) = f ′
−(v). (3.2)
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These are nothing but the Kirchhoff laws well known in the theory of electrical networks. The
first condition in (3.2) comes from the requirement f ∈ H1(�) which includes continuity of f ,
and the second arises as the natural condition in the sense of calculus of variations. If h� = ∞,
the functions f ∈ Dom(∆) vanish as |x | → ∞ by lemma 3.1, and the conditions listed give
the complete description of Dom(∆).

If h� < ∞, the functions f ∈ Dom(∆) satisfy the natural condition (again, in the sense
of calculus of variations) as |x | → h� . Roughly speaking, it consists in the requirement
g(|x |) f ′(x) → 0. We give the precise formulation in section 3.4. In this paper we do not
discuss the conditions at |x | = h� , other than the natural condition; see [3] in this connection.

Due to the boundary condition f (o) = 0, the Laplacian on � splits into the orthogonal
sum of the Laplacians on the subtrees whose initial edges are e1

o, . . . , eb(o)
o . For this reason, in

what follows we assume b(o) = 1. Only in the last section 7, where we discuss the Neumann
Laplacian and the Laplacian on trees without boundary, will this assumption be discarded.

3.3. Reduction of the Laplacian

Our further analysis is based upon an orthogonal decomposition of the space L2(�) which, for
the case of regular trees, reduces the Laplacian.

Given a subtree T ⊂ �, we say that a function f ∈ L2(�) belongs to the set (a closed
subspace) FT if and only if

f (x) = 0 for x /∈ T ; f (x) = f (y) if x, y ∈ T and |x | = |y|.
In particular, F� consists of all symmetric (i.e. depending only on |x |) functions from L2(�).

We need the subspacesFT associated with the subtrees Te and Tv, introduced in section 2.2.
To simplify our notations, we shall write Fe, Fv instead of FTe ,FTv .

Let e ∈ E(�) and gen(e) = k. Each function f ∈ Fe can be identified with a function ϕ̂ f

on [tk, h�) such that

f (x) = ϕ̂ f (t), ∀x ∈ Te : |x | = t .

It is clear that ∫
�

| f (x)|2 dx =
∫ h�

tk

|ϕ̂ f (t)|2gk(t) dt

where gk is the function introduced in (2.1). In order to deal with a single weight function
which does not depend on k, define

ϕ f (t) = (b0 · · · bk)
−1/2ϕ̂ f (t).

Then ∫
�

| f (x)|2 dx =
∫ h�

tk

|ϕ f (t)|2g�(t) dt, ∀ f ∈ Fe, gen(e) = k

and the operator Je : f �→ ϕ f acts as the natural isometry of Fe onto the weighted space
L2((tk, h�); g�).

Let now v ∈ V(�) and gen(v) = k. Let e j
v , j = 1, . . . , bk be the edges emanating from

v. The corresponding subspaces Fe j
v

are mutually orthogonal and their orthogonal sum F̃v
contains Fv:

F̃v := Fe1
v
⊕ · · · ⊕ F

e
bk
v

⊃ Fv.
Given a function f ∈ F̃v , denote by f j its component in the subspace Fe j

v
, j = 1, . . . , bk .

Consider the operator

Jv : f �→ ϕ f := {ϕ f 1 , . . . , ϕ f bk }.
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The operator Jv defines an isometry of the subspace F̃v onto the Hilbert space Cbk ⊗
L2((tk, h�); g�).

We need a special orthogonal decomposition of F̃v . Denote ωk = e2π i/bk . The vectors

h〈s〉 = b−1/2
k {ωs

k, . . . , ω
s(bk−1)
k , 1} s = 1, . . . , bk

form an orthogonal basis in Cbk . With each s and each scalar-valued function ϕ ∈
L2((tk, h�); g�), let us associate the vector-valued function

ϕ〈s〉 = h〈s〉 ⊗ ϕ.

The set of all such functions ϕ〈s〉 is a subspace in C
bk ⊗ L2((tk, h�); g�); we denote it by G〈s〉

k .
Note that

‖ϕ〈s〉(t)‖Cbk = |ϕ(t)| a.e. on (tk, h�). (3.3)

Define the subspaces F 〈s〉
v = J −1

v G〈s〉
k ⊂ F̃v . According to this definition, f ∈ F 〈s〉

v if and only
if there exists a function ϕ ∈ L2((tk, h�); g�) such that Jv f = h〈s〉 ⊗ ϕ. Taking (3.3) into
account, we see that the operator

J 〈s〉
v = Jv � F 〈s〉

v (3.4)

acts as an isometry of F 〈s〉
v onto L2((tk, h�); g�).

Given a vertex v, the subspaces F 〈s〉
v , s = 1, . . . , bk are mutually orthogonal and

F 〈bk 〉
v = Fv , therefore

F ′
v := F̃v � Fv = F 〈1〉

v ⊕ · · · ⊕ F 〈bk −1〉
v .

The following result was proved in [9, 10] and, in a slightly different form, in [3].

Theorem 3.2. Let � be a regular metric tree and b(o) = 1. Then the subspaces F ′
v , v ∈ V(�)

are mutually orthogonal and orthogonal to F� . Moreover,

L2(�) = F� ⊕
∑
v∈V(�)

⊕F ′
v = F� ⊕

∞∑
k=1

∑
gen(v)=k

bk−1∑
s=1

⊕F 〈s〉
v (3.5)

and both decompositions reduce the Laplacian on �.

3.4. Parts of the Laplacian in the reducing subspaces

Suppose that v ∈ V(�) and 1 � s � b(v). We call the pair (v, s) admissible if either v = o
and s = 1, or v �= o and 1 � s < b(v). Note that F 〈1〉

o = F� . Our next goal is to understand
the nature of each operator	 � F 〈s〉

v where (v, s) is an admissible pair.
To this end, let us consider the Hilbert space Hk := L2((tk, h�); g�) and the quadratic

form in it,

ak[ϕ] =
∫ h�

tk

|ϕ′(t)|2g�(t) dt, ϕ ∈ H1,•((tk, h�); g�). (3.6)

Here H1,•((tk, h�); g�) stands for the weighted Sobolev space which is defined by the following
conditions: ϕ and its distributional derivativeϕ′ belong to L2((tk, h�); g�), and ϕ(tk) = 0. The
quadratic form ak is non-negative and closed in Hk . Let Ak be the corresponding self-adjoint
operator.

Theorem 3.3. Let� be a regular tree, b0(�) = 1, (v, s) be an admissible pair and gen(v) = k.
Then the part of the operator ∆ in the reducing subspace F 〈s〉

v is unitarily equivalent to the
operator Ak .
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Proof. It is sufficient to show that the operator J 〈s〉
v (see (3.4)) sends the set F 〈s〉

v ∩ H1,•(�)
onto H1,•((tk, h�); g�), and that f ∈ F 〈s〉

v ∩ H1,•(�) yields
∫
�

| f ′|2 dx = ak[J 〈s〉
v f ]. All these

properties can be easily checked by direct inspection. �
The operator domain Dom(Ak) can be described with the help of the Euler–Lagrange

procedure. When giving this description, we use the notation I j = (t j−1, t j ), j ∈ N.

Theorem 3.4. A function ϕ lies in Dom(Ak) if and only if it satisfies the following conditions.

(i) ϕ � I j ∈ H 2(I j ) for all j > k and
∑
j>k

∫
I j

(|ϕ′′|2 + |ϕ′|2 + |ϕ|2)g�(t) dt < ∞.

(ii) ϕ and ϕ′g� are continuous on [tk, h�) and ϕ(tk) = 0.
(iii) If |�| = ∞ (in particular, if h� = ∞), then

lim
t→h�

ϕ(t) = 0. (3.7)

If |�| < ∞ (and hence, h� < ∞), then

lim
t→h�

ϕ′(t)g�(t) = 0. (3.8)

On this domain the operator acts as

(Akϕ)(t) = −ϕ′′(t), t �= tk, tk+1, . . . . (3.9)

The proof is standard and we confine ourselves to a few remarks, mostly concerning the
conditions (3.7) and (3.8).

The continuity of ϕ′g� at the points t j appears as the natural condition in the sense of
calculus of variations. It can be re-written as

ϕ′(t j +) = b−1
j ϕ

′(t j−), ∀ j > k;
this is an analogue of the second matching condition in (3.2).

If h� = ∞, the condition (3.7) follows from lemma 3.1. Now let h� < ∞ but |�| = ∞.
Then we change the variables, taking

s = s(t) =
∫ t

tk

dτ

g�(τ )
.

For definiteness, in the further analysis we take k = 0 which corresponds to the operator A0.
Let t (s) stand for the function inverse to s(t) and ψ(s) = ϕ(t (s)). We have∫ h�

0
|ϕ(t)|2g�(t) dt =

∫ L(�)

0
|ψ(s)|2W (s) ds, W (s) = g2

�(t (s)), (3.10)

∫ h�

0
|ϕ′(t)|2g�(t) dt =

∫ L(�)

0
|ψ ′(s)|2 ds. (3.11)

Since the latter integral is finite, the function ψ is continuous at s = L� , and hence ϕ is
continuous at t = h� . Further,∫ L(�)

0
W (s) ds =

∫ h�

0
g�(t) dt = |�|.

If |�| = ∞ and the integral in the right-hand side of (3.10) is finite, then necessarily
ϕ(h�) = ψ(L(�)) = 0. This is exactly the condition (3.7).

The equality (3.7) for the case considered can also be derived from the analysis of
deficiency indices, carried out in [3].
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Now we turn to the case |�| < ∞. Since forϕ ∈ Dom(Ak) the functionϕ′g� is continuous
and g′

�(t) = 0 a.e., we have

ϕ′(t)g�(t)− ϕ′(s)g�(s) =
∫ t

s
ϕ′′(τ )g�(τ ) dτ, tk < s < t < h�.

Hence,

|ϕ′(t)g�(t)− ϕ′(s)g�(s)|2 �
∫ t

s
g�(τ ) dτ

∫ t

s
|ϕ′′(τ )|2g�(τ ) dτ

� |�|
∫ t

s
|ϕ′′(τ )|2g�(τ ) dτ.

It follows that the function ϕ′(t)g�(t) has a limit as t → h� . The equality (3.8) says that this
limit must be zero; this is the natural boundary condition at the point t = h� .

Theorem 3.4 also gives an implicit description of the natural boundary conditions at t = h�
for the whole operator ∆.

3.5. Second realization of ∆ � F 〈s〉
v

The operators Ak act in the weighted spaces L2. Often it is more convenient to pass on
to operators acting in L2 without weight. To this end, we make the substitution u(t) =
ϕ(t)

√
g�(t). It defines an isometry of the space L2((tk, h�); g�) onto L2(tk, h�). Under this

substitution Ak turns into the operator Ak whose description is as follows. Its domain Dom(Ak)

consists of all functions u on [t j , h�), such that u � I j ∈ H2(I j ) for any j > k,

∑
j>k

∫
I j

(|u′′|2 + |u′|2 + |u|2) dt < ∞,

and the following boundary condition at tk and the matching conditions at the points t j , j > k
are satisfied:

u(tk) = 0; u(t j +) = b1/2
j u(t j−), j > k;

u′(t j +) = b−1/2
j u′(t j−), j > k.

(3.12)

If |�| = ∞, then by (3.7) u(t)→ 0 as t → h�; if |�| < ∞, then by (3.8) lim
t→h�

u′(t)
√

g�(t) = 0.

On this domain the operator Ak acts according to the same rule (3.9).
The quadratic form of Ak is

ak[u] =
∑
j>k

∫
I j

|u′|2 dt .

Its domain is

Quad(Ak) =
{

u ∈ L2(tk, h�) : u � I j ∈ H1(I j )∀ j > k,

∑
j>k

∫
I j

|u′|2 dt < ∞, and the conditions (3.12) are satisfied

}
.

This realization was used in the papers [9, 10, 13] and [14]. In the present paper we make
use of the first realization, that is of the operators Ak .
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3.6. Spectrum of A0 and spectrum of ∆

The outcome of our analysis is the following result. It was proved in [10] for the general case of
Schrödinger operators. Below A[r] stands for the orthogonal sum of r copies of a self-adjoint
operator A, and ‘∼’ means unitary equivalence.

Theorem 3.5. Let� be the regular tree with the generating sequences {bn}, {tn} where b0 = 1.
Then

∆ ∼ A0 ⊕
∞∑

k=1

⊕Ak
[b0···bk−1(bk−1)]. (3.13)

The operators Ak in (3.13) can be replaced by Ak .

We conclude from the description of Quad(Ak) and (3.6) that

Quad(A0) ⊃ Quad(A1) ⊃ Quad(A2) ⊃ · · ·
and

ak = a0 � Quad(Ak), ∀k ∈ N.

By the variational principle, this implies that the spectral properties of all the operators Ak

and of the whole operator ∆ are basically determined by the properties of the single operator
A0. In particular, the following statement holds. As usual, we denote by σ(A) and σp(A) the
spectrum and the point spectrum of a self-adjoint operator A.

Theorem 3.6. Let Ak, k = 0, 1, . . . be the above defined operators in L2((tk, h�); g�). Then
we have the following.

(i) If A0 is positive definite, then the same is true for any operator Ak, k ∈ N, and

min σ(A0) � min σ(A1) � · · · � min σ(Ak) � · · · .
(ii) If the spectrum of A0 is discrete, then the same is true for any operator Ak, k ∈ N.

(iii) If the spectrum of A0 is discrete, then

min σ(Ak) → ∞ as k → ∞. (3.14)

Note that theorem 3.6(iii) does not follow from the above construction and needs a separate
proof. It will be given in section 4 (see (4.3)) for trees of finite height and at the end of section 5.3
for trees of infinite height.

It follows from theorem 3.2 that

σp(∆) =
∞⋃

k=0

σp(Ak); σ(∆) =
∞⋃

k=0

σ(Ak). (3.15)

Together with theorem 3.6, this leads to the following result.

Corollary 3.7.

(i) The Laplacian ∆ on a regular tree is positive definite if and only if the operator A0 is
positive definite. Moreover,

min σ(∆) = min σ(A0).

(ii) The spectrum of ∆ is discrete if and only if the spectrum of A0 is discrete.
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4. Laplacian on regular trees of finite height

Here we assume h� < ∞.

Theorem 4.1.

(i) Let � be a regular tree and h� < ∞. Then the spectrum of ∆ is discrete. For each
operator Ak, k � 0 the Weyl asymptotic formula for its eigenvalue counting function is
satisfied:

N(λ; Ak) = π−1(h� − tk)λ
1/2(1 + o(1)), λ → ∞. (4.1)

(ii) Suppose in addition that |�| < ∞. Then the Weyl asymptotic formula is satisfied for the
operator ∆:

N(λ;∆) = π−1|�|λ1/2(1 + o(1)), λ → ∞. (4.2)

This is basically theorem 5.3 of paper [15]; for this reason we only outline the proof of
the first statement in (i). Note also that statement (ii) is a particular case of theorem 7.2 below
and one more proof can be derived from [5].

Proof. We have to show that σ(A0) is discrete and (3.14) holds. The change of variables

s(t) =
∫ t

0

dτ

g�(τ )

shows that A0 ∼ B0 where B0 is the operator in L2((0, L�); W ) generated by the quadratic
form

∫ L�
0 |ψ ′(s)|2 ds, with the domain

H1,•(0, L�) = {ψ ∈ H1(0, L�) : ψ(0) = 0};
cf (3.10), (3.11). The operator B−1

0 can be identified with the operator in H1,•(0, L�), generated

by the quadratic form
∫ L�

0 |ψ(s)|2W (s) ds. Since
∫ L�

0 W (s) ds = |�| < ∞, the operator B−1
0

is compact which is equivalent to the discreteness of σ(A0). Besides, for ψ ∈ H1,•(0, L�) we
have |ψ(s)|2 � L�

∫ L�
0 |ψ ′(s)|2 ds which implies

∫ L�

0
|ψ(s)|2W (s) ds � L�|�|

∫ L�

0
|ψ ′(s)|2 ds.

This shows that

min σ(A0) = min σ(B0) � (L�|�|)−1.

Applying the same argument to the operators Ak with k > 0, we find that

min σ(Ak) � (LTe |Te|)−1, gen(e) = k. (4.3)

This gives (3.14) and, hence, justifies (i). �

Note that the Weyl formula (4.2) also remains valid for the Laplacian with the boundary
condition lim|x|→h� f (x) = 0.
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5. Laplacian on regular trees of infinite height

5.1. Trees with arbitrarily long edges

Our next result is quite elementary and its proof is standard. The result applies to arbitrary
metric graphs rather than to trees only, see [15]. Still, below we formulate only the particular
case in which we are interested in this paper.

Theorem 5.1. Let G be a regular metric tree and supe∈E(�) |e| = ∞. Then σ(∆) = [0,∞).

Proof. It is enough to show that for any r > 0 the point λ = r2 belongs to the spectrum. For
this purpose we fix a non-negative function ζ ∈ C∞

0 (−1, 1) such that ζ(t) = 1 on (−1/2, 1/2).
Further, choose an edge e ∈ E(�). In an appropriate coordinate system, e can be identified
with the interval (−l, l) where l = |e|/2. The function f on �,

f (t) = ζ(t/ l) sin r t on e, f (t) = 0 otherwise,

belongs to Dom(∆). An elementary calculation shows that

‖∆ f − r2 f ‖ � ε(l)‖ f ‖, ε(l) → 0 as l → ∞.

Choosing a sequence of edges e such that |e| → ∞, we obtain a Weyl sequence for the operator
∆ and the point λ = r2. This implies that λ ∈ σ(∆). �

The assumption of theorem 5.1 does not exclude the embedded eigenvalues. This will be
shown in the example 6.2.

5.2. Criterion of positive definiteness of the Laplacian

Theorem 5.2. Let � be a regular tree and h� = ∞. Then the Laplacian on � is positive
definite if and only if L� < ∞ and

B(�) = B(g�) := sup
t>0

(∫ t

0
g�(τ )dτ

∫ ∞

t

dτ

g�(τ )

)
< ∞. (5.1)

Moreover,

(4B(g�))
−1 � min σ(∆) � B(g�)

−1. (5.2)

Proof. According to corollary 3.7, we have to establish positive definiteness of the operator
A0. Let c0 := min σ(A0). Taking (3.6) into account, we come to the inequality

c0

∫ ∞

0
|ϕ(t)|2g�(t) dt �

∫ ∞

0
|ϕ′(t)|2g�(t) dt, ∀ϕ ∈ H1,•(R+; g�). (5.3)

It is enough to have this inequality for functions with compact support.
The inequality (5.3) with c0 > 0 is a special case of the Hardy inequality with two

weights. Necessary and sufficient conditions for such inequalities to be satisfied (Muckenhoupt
conditions) are well known; see e.g. [8], section 1.3.1. Since g�(t) � 1, they are never satisfied
if L� = ∞, so that the condition L� < ∞ is necessary for positive definiteness of the Laplacian.

Let ϕ ∈ H1,•(R+; g�) be a function with compact support. Then its derivative ω = ϕ′ lies
in L2(R+; g�) and also has compact support. Besides,

∫
R+
ω dt = 0. Denote by � the class of

all such functions ω. For any ω ∈ � the function ϕ(t) = − ∫ ∞
t ω(τ) dτ lies in H1,•(R+; g�)

and has compact support. For this reason, (5.3) is equivalent to

c0

∫ ∞

0

∣∣∣∣
∫ ∞

t
ω(τ) dτ

∣∣∣∣
2

g�(t) dt �
∫ ∞

0
|ω(t)|2g�(t) dt, ∀ω ∈ �. (5.4)



Laplacian on metric trees S167

Since 111 /∈ L2(R+; g�), the set � is dense in the whole of L2(R+; g�). Hence, (5.4) is valid
on L2(R+; g�) if and only if it is valid on �. The condition (5.1) is exactly the Muckenhoupt
condition for (5.4) to be satisfied with some constant c0 > 0, see [8], theorem 1.3.1/3. The
inequality (5.2) is also a part of this theorem. �

It follows from theorem 5.2 that in the case L� = ∞ the point λ = 0 lies in σ(∆). A
straightforward calculation shows that λ = 0 is not an eigenvalue and, hence, 0 ∈ σess(∆).

5.3. Discreteness of σ(∆)

Theorem 5.3. Let � be a regular tree and h� = ∞. Then the Laplacian on � has discrete
spectrum if and only if L� < ∞, B(�) < ∞ and

lim
t→∞

(∫ t

0
g�(τ ) dτ

∫ ∞

t

dτ

g�(τ )

)
= 0. (5.5)

Proof. The necessity of the assumption L� < ∞ is clear from theorem 5.2. Under this
assumption, the condition B(�) < ∞ is necessary and sufficient for the boundedness of the
operator A−1

0 . It follows in a standard way that the condition (5.5) is necessary and sufficient for
the compactness of this operator. By theorem 3.6(ii), each operator A−1

k is also compact, and
it remains for us to show that ‖A−1

k ‖ → 0 as k → ∞. For this purpose we apply theorem 5.2
to the function gk , cf (2.1). Taking (2.2) into account, we find

B(gk) = sup
t>tk

(∫ t

tk

gk(τ ) dτ
∫ ∞

t

dτ

gk(τ )

)

= sup
t>tk

(∫ t

tk

g�(τ ) dτ
∫ ∞

t

dτ

g�(τ )

)
� sup

t>tk

(∫ t

0
g�(τ ) dτ

∫ ∞

t

dτ

g�(τ )

)
.

In view of (5.5), B(gk) → 0 as k → ∞. By (5.2), min σ(Ak) → ∞ and we are done. �

6. Examples

In our first example we show that for a tree� of finite height but infinite volume the eigenvalues
of the Laplacian may have quite an unusual behaviour; see [15] for the proof.

Example 6.1. Fix the numbers q ∈ (0, 1) and b ∈ N. Consider the tree � defined by the
sequences tn = 1 − qn, n = 0, 1, . . . and bn = b = constant, n = 1, 2, . . .. Then h� = 1,
so that the spectrum of the Laplacian on � is always discrete. Further, g�(t) = bn for
tn < t � tn+1. The total length of � is

|�| = 1 − q +
∞∑

n=1

bn(qn − qn+1) = (1 − q)
∞∑

n=0

(bq)n.

Hence, |�| = 1−q
1−bq < ∞ if bq < 1 and |�| = ∞ otherwise. In the first case, theorem 4.1

shows that for the eigenvalues of ∆ the Weyl law (4.2) holds.
If bq = 1, then

N(λ;∆) = 1 − q

2π ln b

√
λ(ln λ + O(1)), λ → ∞,

and if bq > 1, then there exists a bounded and bounded away from zero periodic function ψ
with the period ln(q−2) such that

N(λ;∆) = λβ/2(ψ(ln λ) + o(1)), λ → ∞
where β = − logq b > 1.
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In our next example we show that under the assumptions of theorem 5.1 the spectrum
σ(∆) may have a dense set of embedded eigenvalues.

Example 6.2. Consider the tree � with tn = 2n−1π, n ∈ N. The sequence bn such that
b0 = 1 and bn > 1 for n � 1 can be arbitrary. A direct inspection shows that for any
integer l the function ul(t) = (g�(t))−1 sin(lt) is an eigenfunction of the operator A0, with the
eigenvalue λl = l2. In the same way, the function ul,k(t) = (g�(t))−1 sin(2−nlt), t � tk is an
eigenfunction of any operator Ak with k > n. The corresponding eigenvalue is λl,n = 2−2nl2,
and the result follows from (3.15).

Note that in this example the spectrum of (∆) is not pure point, since for each k we have
σ(Ak) �= σp(Ak).

Now we present an example (borrowed from [13]) of a tree for which the Laplacian is
positive definite.

Example 6.3. Consider the tree � = �b with bn = b = constant, n ∈ N and tn = n; so, all
the edges of �b are of the same length 1. We have g�b(t) ∼ exp(βt), β = ln b, so that the
conditions of theorem 5.2 are satisfied, which yields positive definiteness of the Laplacian.

For the tree�b all the operatorsAk, k ∈ N can be identified with A0, and the equality (3.13)
takes the form

∆ ∼ A[∞]
0 .

The spectrum of A0 can be calculated explicitly. Define

θ = arccos
2

b1/2 + b−1/2
.

It turns out that σ(A0) consists of the bands [(π(l − 1) + θ)2, (πl − θ)2] and the eigenvalues
λl = (πl)2, l = 1, 2, . . .. So, the spectrum has the bandgap structure typical for periodic
problems. The spectrum of ∆ is geometrically the same but has infinite multiplicity.

For comparison, consider the discrete Laplacian ∆d on the combinatorial rooted tree, with
the branching numbers as for our tree �b. It is well known (and can be easily calculated, see
e.g. [1] where this was done for b = 2) that σ(∆d) = [(b1/2 − 1)2, (b1/2 + 1)2].

We conclude this section with an example of a tree for which the Laplacian has discrete
spectrum.

Example 6.4. Consider the tree � with bn = b = constant, n ∈ N and tn = n1/α, α > 1.
Then g�(t) = bn for n1/α < t � (n + 1)1/α, which implies g�(t) ∼ exp(βtα) as t → ∞. It is
easy to check that condition (5.5) is satisfied. Hence, σ(∆) is discrete.

An alternative way to construct a similar example is to take tn = n and bn growing fast
enough.

7. Concluding remarks

7.1. The Neumann boundary condition at the root

By definition, the Neumann Laplacian ∆N is the self-adjoint operator in L2(�), associated
with the quadratic form

∫
�

| f ′|2 dx considered on the form domain

Quad(∆N ) = H1(�),

cf the definition of ∆ in section 3.2. The codimension of the subspace H1,0(�) in H1(�) is one,
which implies that the qualitative properties of the operators ∆N and ∆ are the same. But as
a matter of fact, much more can be said about the relations between these two operators.
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Let us return to the orthogonal decomposition (3.5) of the space L2(�). If f ∈ F 〈s〉
v ∩H1(�)

and gen(v) = k > 0, s < bk , then f (v) = 0. Indeed, f is continuous on � and f (x) = 0
outside the subtree Tv. It follows that

∆N � F 〈s〉
v = ∆ � F 〈s〉

v .

Therefore, the analogue of the decomposition (3.13) for the operator ∆N takes the form

∆N ∼ A′
0 ⊕

∞∑
k=1

⊕Ak
[b0 ···bk−1(bk−1)] (7.1)

where only the first term differs from the one in (3.13): namely, in (3.12) for k = 0 the
condition u(0) = 0 is replaced by u′(0) = 0.

The only point where this difference might be important is theorem 5.2, where a bound for
min σ(∆) was found. However, even here the inequality (5.2) remains valid for the Neumann
Laplacian. Indeed, the condition ϕ(t) = 0 for large t was used when justifying (5.4), rather
than the condition ϕ(0) = 0.

7.2. Regular trees without boundary

Let � be a general metric tree. Choose a vertex o ∈ E(�) and suppose that there are b0 > 1
edges of � adjacent to o. Then� splits into b0 rooted subtrees�1, . . . , �b0 having the common
root o. We say that the tree � is regular if and only if all the subtrees � j are regular in the
sense of definition 2.1 and the corresponding sequences {tn} and {bn} are the same for all
j = 1, . . . , b0. Note that this definition is not invariant with respect to the choice of the vertex
o.

The definition of the Laplacian ∆ extends to the trees without boundary in a natural way.
The only difference is that now we have no boundary condition at o. Instead, the functions
from Quad(∆) are required to be continuous at o; the functions f ∈ Dom(∆) also satisfy (3.2)
for v = o.

Theorems 3.2 and 3.5 extend to the new situation, with small changes appearing due to the
fact that now b0 > 1. As a result, the subspace F ′

o is no longer trivial, and the operator ∆ � F ′
o

is unitary equivalent to the orthogonal sum of (b0 − 1) copies of the operator A0 described in
section 3.2 (for k = 0). The analogue of the decomposition (3.13) now takes the form

∆ ∼ A′
0 ⊕ Ab0−1

0 ⊕ A
b0(b1−1)
1 ⊕ A

b0b1(b2−1)
2 · · ·

where A′
0 is the same operator as in (7.1).

7.3. Harmonic functions on �

Material of section 5 shows that for the trees with h� = ∞ there is a big difference between
the spectral properties of the operator ∆ on � for the cases L� < ∞ and L� = ∞. In this
section we discuss the difference between these two cases from another point of view.

Let � be a rooted tree. Along with the space H1,•(�), let us introduce the homogeneous
Sobolev space

H1 = H1(�) =
{

f ∈ H1,•
loc (�) :

∫
�

| f ′(x)|2 dx < ∞
}
. (7.2)

We consider H1 as the Hilbert space with respect to the scalar product

( f1, f2)H1 =
∫
�

f ′
1(x) f ′

2(x) dx .
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Functions u ∈ H1 do not necessarily lie in L2 and it is clear that H1,• = H1 ∩ L2.
The class H1,•(�) is not always dense in H1(�). The functions from H1 which are

orthogonal to H1,• are called harmonic. Any such function is linear on each edge and satisfies
the boundary condition f (o) = 0 and the Kirchhoff matching conditions (3.2) at each vertex
v �= o. Harmonic functions play an important part in the theory of Brownian motion on trees.
The above definition makes sense for arbitrary (not necessarily regular) rooted trees.

The tree� is called recurrent if H1,•(�) is dense inH1(�) and is called transient otherwise.
It turns out that for the regular trees the quantity L� is the distinguishing parameter between
these two cases.

Theorem 7.1. Let � be a regular rooted tree. Then � is transient if and only if L� < ∞.

This result is well known in the theory of combinatorial trees, see e.g. [11], example 8.3.
For metric trees, the result was proved in [9] and [10]. Theorem 7.1 can also be easily derived
from its counterpart for combinatorial trees.

7.4. Eigenvalue problems for the weighted Laplacian on metric graphs of finite total length

In conclusion, we discuss the ‘eigenvalue problem with weight’

λ∆ f = V f (7.3)

on the metric graphs (not necessarily trees) of finite total length. Here V ∈ L1(�) is an
arbitrary real-valued weight function. For technical reasons, it is convenient to put the spectral
parameter in front of the Laplacian rather than in the right-hand side.

As in section 3, we use the variational approach to the problem. Let G be a metric graph,
and let a point x0 ∈ G be singled out. Consider the Sobolev space

H1(G, x0) := { f ∈ H1(G) : f (x0) = 0},
with the metric form

∫
G | f ′|2 dx . For any function V ∈ L1(G) the quadratic form

∫
G V | f |2 dx

is bounded in H1(G), and therefore generates a bounded compact operator, say BV , in this
space. If V is real valued, the operator BV is self-adjoint. Its spectrum can be identified, in a
natural way, with the spectrum of the equation (7.3), under the boundary conditions

f (xo) = 0; f ′(v) = 0 for all v ∈ ∂G, v �= x0. (7.4)

We explain that the boundary ∂G of the graph G consists of all vertices v having only one
neighboring vertex. Note that the case ∂G = ∅ is not excluded.

The following result was established in [14].

Theorem 7.2. Let G be a connected graph of finite total length, x0 ∈ G be its arbitrary point,
and let V = V ∈ L1(G). Then the positive eigenvalues λ+

n and the negative eigenvalues −λ−
n

of the problem (7.3) under the boundary conditions (7.4) satisfy the inequality

λ±
n �

|G| ∫G V± dx

n2
, ∀n ∈ N (7.5)

where 2V± = |V | ± V . Along with the estimate (7.5), the Weyl-type asymptotics holds:

n
√
λ±

n → π−1
∫
G

√
V±(x) dx, n → ∞.

The estimate (7.5) is sharp for any n ∈ N, including the value of the constant factor; this
was shown in [16]. The statement (ii) of theorem 4.1 is a particular case of theorem 7.2.
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52 121–36
[7] Kuchment P 2002 Graph models for waves in thin structures Waves Random Media 12 R1–24
[8] Maz’ja V G 1985 Sobolev Spaces (Berlin: Springer)
[9] Naimark K and Solomyak M 2000 Eigenvalue estimates for the weighted Laplacian on metric trees Proc. Lond.

Math. Soc. 80 690–724 (prepublished as a preprint of the University of Sussex, Brighton, 1998)
[10] Naimark K and Solomyak M 2001 Geometry of the Sobolev spaces on the regular trees and Hardy’s inequalities

Russ. J. Math. Phys. 8 322–35
[11] Peres Y 1999 Probability on trees: an introductory climb Lectures on Probability Theory and Statistics (Saint-

Fleur, 1997) (Springer Lecture Notes in Mathematics vol 1717) (Berlin: Springer) 193–280
[12] Romanov R V and Rudin G E 1995 Scattering on the Bruhat–Tits tree. I Phys. Lett. A 198 113–18
[13] Sobolev A V and Solomyak M 2002 Schrödinger operators on homogeneous metric trees: spectrum in gaps

Rev. Math. Phys. 14 421–67
[14] Solomyak M 2002 On the eigenvalue estimates for a weighted Laplacian on metric graphs Nonlinear Problems

in Mathematical Physics and Related Topics I (Dordrecht: Kluwer) 327–47 (in honor of Professor O A
Ladyzhenskaya)

[15] Solomyak M 2003 Laplace and Schrödinger operators on regular metric trees: the discrete spectrum case
Function Spaces, Differential Operators, Nonlinear Analysis—the Hans Triebel Anniversary Volume (Basel:
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