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1. Introduction

1.1. Spectral theory on graphs, in particular on trees, is a fairly popular field; see,
for example, the recent book [6]. In the standard setting, a graph is a
combinatorial object. In contrast to this, what we consider are metric graphs.
This means that we regard each edge of I' as a non-degenerate line segment of
finite length. This difference is important because it affects the nature of functions
on a graph: a function on a combinatorial graph is actually defined on the set of
its vertices, while a function on a metric graph is a family of functions, defined
on its edges and usually subject to some compatibility conditions at the vertices.

The Laplacian on I' reflects both the metric and the combinatorial nature of
the graph: on the edges we have just Au=u" but the description of
Dom(A) involves compatibility (Kirchhoff) conditions at each vertex, whose origin
is rather combinatorial.

In this paper we study the eigenvalue problem on a rooted tree I':

—Nu=VuonT, u(o)=0. (1.1)

In (1.1), V is a given non-negative ‘weight function’ on I', and o is the root of I'.
A rigorous statement of the problem is described in §3.1; it uses the techniques
of quadratic forms.

Our attention to the problem (1.1) was attracted by the paper [7] by W. D.
Evans and D. J. Harris. The spectral properties of the Neumann Laplacian Ay in
L,(Q), where Q is a domain in RY, are determined by the nature of the
embedding of the Sobolev space W'2(Q) into L,(Q). The compactness of this
embedding, and hence the discreteness of the spectrum of A, heavily depends on
the regularity of the boundary 9. In [7], the authors studied the properties of the
embedding of W"7(Q) into L,(Q) for special domains with non-smooth (in
particular, fractal) boundary. A characteristic feature of these domains is that they
have a ‘ridge’ or a ‘skeleton’, this being a metric tree. It was shown in [7] that
the study of the mentioned embedding can be reduced to the investigation of a
weighted Volterra operator on this tree. For p =2, such an operator is closely
related to the problem (1.1). This is discussed in §3.3.

A boundedness criterion for weighted Volterra operators in L,(I') was
established in [8]. The next natural question concerns quantitative characteristics
of these operators, in particular the behaviour of their approximation numbers.
Practically nothing was known about this subject until now. The results presented
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in our paper give some answers for the case p =2, when the approximation
numbers coincide with the singular numbers.

Let us describe the structure of the paper in more detail. In §2 some pieces
of auxiliary material are presented. We define the Neumann—Schatten operator
classes %, and their weak analogues %), ., and discuss triangle inequalities in the
quasi-normed spaces 4,, %, ., with p<1. We describe the technique of
quadratic forms which we will need further for the precise statement of our
problem. We also cite some results for eigenvalue problems similar to (1.1) on an
interval; we will use these results later, when we reduce our problem to a family
of 1-dimensional ones.

In §3 the rigorous statement of the problem (1.1) is given. Namely, we
associate with (1.1) the self-adjoint operator Ap y on the Dirichlet space # (T');
actually, this is a realization of (—A)~'V.

Spectral properties of Ay depend on V and on the geometry of I'. In principle,
Ary may be of any of the classes 4, with p>1, or %, with p=1, and our
results concern the whole of this scale. In §3.4 we present the boundedness
criterion from [8], prove an elementary but very useful Trace class (%) criterion
(Theorem 3.3), and then interpolate between the two criteria. This leads to the
upper estimates for Ap y in %, and %, » for 1 <p < oo.

The case p < 1 is investigated in much more detail. In particular, one of the key
questions analysed in the paper concerns the membership of Ay in the class
%1/2.0 and the validity of the Weyl type asymptotics. The corresponding
eigenvalue behaviour is N,(Ar.y) = O(n™?) and \,(Ap.y) ~ (7' Jr VVdx)*n?,
respectively, which is typical for second-order differential operators in dimension
1. We suggest two different ways to treat the case p < 1. In both of them, the
problem is reduced to a family of 1-dimensional problems.

The well-studied case I' = R (see [3, 15] and references there) serves us as a
prototype for our first approach (§ 4). The 1-dimensional problems arise as a result
of decomposition of the tree into a family of segments. Theorem 4.1 gives the
upper estimates for Ary in %,, with 1<p<1 and in %, ., with 1<p<1.
However, the results for general trees are not as exhaustive as the ones for R .
The nature of this difference is discussed in §4.2. The converse of Theorem 4.1
holds only under additional conditions on I'; the corresponding result is given in
Theorem 4.6.

The second approach (§5) is based upon a useful orthogonal decomposition of
A (T'), described in Theorem 5.1. This decomposition is of quite a general nature,
related to the geometry of trees; it has analogues for combinatorial trees (with or
without conductances). For the simplest case of a binary tree without
conductances one such analogue was used recently in [1].

In §6 we introduce a special class of trees, the so-called regular trees. We will
make full use of their properties later, in § 7. Here we show how the structure of
the space #(I") can be analysed for such trees.

The most complete results can be obtained if the tree is regular and the weight
is symmetric, that is, V(x) depends only on the distance between x and the root o.
This is done in §7. Here the operator Ary admits a decomposition into the
orthogonal sum of second-order operators on intervals (Theorem 7.2). This leads
to the complete spectral analysis of the problem.

In § 8 we discuss several examples. All of them fall into the situation described
in §7, and our approach allows us to exploit the self-similar structure of the
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problem and on this basis to describe its spectral asymptotics. Sometimes it is of
the standard Weyl type, and sometimes it is of the same type as for many other
problems with self-similarity; see, for example, [9, 11, 12, 14].

We think it is important to obtain some general picture in the whole scale of
the classes 4,, %, ; this is done in §3.4 and §4. In addition to Theorems 3.3,
4.1 and 4.6, we would like to draw attention to the discussion in §4.2. We present
there several examples and counter-examples, which demonstrate the strengths and
weaknesses of the general theorems.

We believe that the idea of the second approach applied to the regular trees
with symmetric weights is of particular interest. In this direction, the main results
are Theorems 5.1 and 7.2 and their illustration in the examples of § 8.

As a rule, the notation we use is standard, other notation is introduced in the
course of our presentation. Notation such as C,, for a repeated constant means
that this constant appears first in the equation (2.4).

1.2. Geometry of a tree

Our understanding of a metric tree is the same as in [7, § 2]. Let I" be a rooted
tree with the set of vertices 7" (I') and the set of edges &(I'). We assume that
#7(I') = #&(T') = co. We regard every edge e as a non-degenerate closed line
segment, so its length |e| is well defined. We assume that any two points y, z € I" are
connected by a unique polygonal path. (This excludes the pathological situation of
infinitely many vertices lying between y and z.) Then the distance between y and
z is defined as the length of this path. Endowed with this distance, I' becomes a
metric space. The Lebesgue measure on I' is introduced in a natural way.

We denote by o the root of I'. Given two points y,z €', we write y <z if y
lies on the path connecting o with z. The relation < defines on I' a partial
ordering. If y <z, we denote

(yoz)i={xely<x=<z}

Given a point y € T', |y| stands for the length of the path (o, y).

The branching number b(y) of a vertex y is defined as the number of edges
emanating from y. We suppose that b(y) < oo for any y. We also suppose that
b(o) =1 and denote by e, the only edge emanating from o. For any vertex
y#o the degree of y, that is the quantity of all vertices z adjacent to y
(notation z~y), is b(y) + 1. We consider only trees with no leaves, that is
b(y) >0 for any y € v (T).

The semiaxis R becomes a tree if we choose a positive sequence y; " o and
call the points y, vertices. Their choice is indifferent.

Given a subtree T cI', we denote its root by o;. We say that T is a W-subtree
(T € #°(I')) if it satisfies the following property:

if o A#x€T and y > x, then y € T.

We call two subtrees disjoint if they have no points in common except, may be,

for their common root. Any two W-subtrees either are disjoint, or one of them is

a subtree of the other. We say that 7' is a Wy-subtree (T € W,(I')) if T is a W-

subtree and contains only one edge originating at op. In particular, T' € #;(T").
For any z € 7"(T") put

T.={xeT: x>z}
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The subtree T, belongs to # (I") and splits into b(z) disjoint W,-subtrees rooted at
z. We call all of them daughter subtrees of T, and denote them by 77, for
Jj=1,...,b(z). Any subtree T € # (') rooted at z is the union of some of the
daughter subtrees of T. It follows that the set # (I') is countable.

2. Preliminary information
2.1. The spaces 1, and [, o

We begin with notation concerning countable families of complex numbers.
Let h = {A;} be such a family, indexed by elements j running over a finite or a
denumerable set #. The distribution function of h is defined as

n(\h) =#{jec 7 |h| >N}, for \>0.
Given 0 <p < o0, we denote ||h|, := [[h]]; and, for 0 <p < oo,

Y= iupo)\(n()\, h))!/7. (2.1)
>

The space [, o =1

b.0o(F) is defined as

Ly = {h: ||h]], o <00}

This is a complete linear quasinormed space with respect to the quasinorm (2.1).

2.2. Operator classes %, and %,

Let $ be a Hilbert space. By # = #(9) and ¥ = ¥(9) we denote the spaces
of all bounded and all compact linear operators in £. The sequence of singular
numbers (counting multiplicities) of an operator A€ % is denoted by
s(A) = {sx(A)}; if A€ ¥ is non-negative, its singular numbers coincide with its
eigenvalues. The corresponding distribution function is denoted by

n(\,A) :=n(\ s(A)), forAe®.
The classes %, and %, o are defined for an arbitrary p > 0 as
6, ={AcC:s(A)cl,}, b,0={AC: s(A)El,}. (2.2)
The quasinorms in %, and %, . are induced by the definition (2.2):

T

k
and

1Al poo == (I8 ()]l oo = iu%%(n(kf‘))l/” = sup k' Psi(A).
>

2.3. Triangle inequalities in 6, 6, «

Here we present some inequalities for the quasinorms in %, and 6, ., with p < 1.

ProposiTION  2.1. (i) The following triangle inequality is walid in €,

for 0<p=<1:
‘E:Aj
J

p
<> Il (23)
p J
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(ii) For any 0 < p <1 there exists a constant C,4(p) such that for any family of
operators {A;}, with j = 1,2,..., of the class 6, « one has

‘ STAll =Caul) Y Al (2.4)

The triangle inequality (2.3) for p <1 was proven independently by McCarthy
[13] and by Rotfeld [16]. For the proof of (2.4) see [17, § 3]. More exactly, it was
shown in [17] that the expression

w (X )

k=1

p
p,®

is equivalent to ||A||} . and meets the usual triangle inequality. This immediately
leads to (2.4). Moreover, the inequality (3.4) in [17] shows that one can take

Cp4(p) = 2mp/ sinmp.
2.4. Quadratic forms

Here we recall some elementary facts concerning bounded quadratic forms in a
Hilbert space 9. Let Qlu, 2] be a sesqui-linear Hermitian form on $x $ and
O[u] := Qlu, u] be the corresponding quadratic form on $. Note that Qu, v] can
be recovered from Q[u| by the polarization formula, and is Hermitian if and only
if Q[u] is real-valued. Boundedness of Q[u] means that sup{|Q[u]|: ||u|| = 1} < co.
With any real-valued bounded quadratic form @, a unique self-adjoint bounded
operator, say Ag, is associated by the following rule:

Agu=f <= Qlu,v]=(f,v) forany vec #. (2.5)

If necessary, we use for A, more detailed notation, like A(9, Q), and if Ap €T,
write n(\; 9, Q) instead of n(N, Ap). Recall that, according to the variational
principle, the non-zero eigenvalues of A, coincide with the critical values of the
ratio (Rayleigh quotient)

R(u]

Now we present a version of Proposition 2.1 which is convenient when dealing
with quadratic forms. Suppose that a Hilbert space £ is decomposed into the
orthogonal sum of its subspaces,

T
5= 9
J

Let P;, for j = 1,2,..., stand for the corresponding orthogonal projections. Suppose
also that a bounded non-negative quadratic form Q[u] is given on $, and the operator
A is compact. Along with A introduce the operators Ay ; = A(9;, Q) on 9.

Qlu]

] *

forue$, u#0.

LEMMA 2.2. Under the above conditions, one has

14olly <" g lly.  for0<p=1, (2.6)
j

1Agllh.co < Caa(p) > IAgjllhcer for0O<p<l. (2.7)
J
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Proof. Relations (2.6) and (2.7) are proved similarly. For definiteness, we give
the proof of (2.7).
We have

gl = 143,00 = H ZPAl/z

g g,

Now, consider the operators P;A, P;. Clearly each of them coincides with Ay ; on
9, and is zero on its orthogonal complement, so that s(P;AyP;) =s(Ag ;).
Therefore for any p >0,

2 2 2 2
IAY 2P AY |l .o = |1 PAY A Pl o = [ PiAGP; | p.co = |0, jl] . co-

2p,00

(2.8)

ZAI/ZP A1/2

, 00

Taking this into account and applying Proposition 2.1 to (2.8), we finally
obtain (2.7):

1/2p 41/2

[Agllp.es < C2a(P) D 145 *PAG 1.0 = C2a(P) D |Ag, Il
J J

This completes the proof of Lemma 2.2.

It is worth observing that the relations (2.6), (2.7) are valid in spite of the fact
that, in general, Ay # > ; P;ApP;.

2.5. Eigenvalue problems on an interval

We will reduce our problem on the tree to a family of 1-dimensional problems.
The latter are well studied; here we present some results for them which we will
need later; see [3, 15].

Consider the eigenvalue problem

" =Vu, u(a)=0, u'(b)=0, (2.9)
on a finite interval I = (a, b) of length |I| = b — a. The corresponding Rayleigh
quotient is

i Vu|?dx

Ji [u'] 2dx
The formulation of the following result is borrowed essentially from [15]; for
proof and further references see [3].

, where uc H'(I), u#0, u(a) = 0. (2.10)

ProOPOSITION 2.3.  There is a constant C, 11 < © such that for any finite interval
I = (a, b) R, any non-negative function V€ L|(I) and any X\ >0 the following
estimate for the eigenvalue distribution function of the problem (2.9) is valid:

1/2
x‘/zn(x)sczll(|1|/ de> . (2.11)
1

In [15] the result was stated for the problem with the Dirichlet boundary
condition at both ends of /. Our Proposition 2.3 reduces to this case by passing
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to the Dirichlet problem on the ‘doubled’ interval (a,2b — a) with the weight
function V| obtained from V by reflection about the point b. This passage does
not change the eigenvalues. The important point in Proposition 2.3 is
independence of the constant factor C,;; of the interval and weight function.
Actually, C, 1y = 1.

We will also need results on the eigenvalue problem for the equation

~Ngu') =Vu, u(a)=0, u'(b)=0, (2.12)

on a finite or infinite interval I = (a, b) with —oc0 <a < b < 0. More exactly, let g
be a piecewise continuous and positive function on /. Introduce the weighted
Sobolev space

%v@w—&emunww@mw—[wu%w<wuwww} (2.13)

We are interested in the operator generated by the quadratic form f, V|u|2dx in
this space.

COROLLARY 2.4. Suppose that

Then for the eigenvalue distribution function of the problem (2.12) one has

A Zn(N) ch“([ ;—;[ de>l/2. (2.14)

Proof. The Rayleigh quotient for our problem is
Ji Viu|*dx
[; glu'|? dx

The standard substitution s = s(x) = [ g '(¢)dt reduces it to the ratio (2.10) for
the interval (0,7) and weight function g(x(s))V(x(s)), where x(s) is the function
inverse to s(x). Applying Proposition 2.3 to this new problem, we obtain (2.14).

, whereue #(I,g), u0.

3. Setting of the problem. Estimates in the classes
%, with p=1, and ¢, ., with p>1

3.1. The space # (T') and the operator Ar y

The Dirichlet space #(I') is defined as follows: we say that a function u on T'
belongs to #(T') if it is absolutely continuous on T, u(0) = 0, and [ |u'|* dx < oo.
The latter integral is taken as the metric form on # (I"). Equipped with it, #(T")
becomes a Hilbert space.

Now let V€L (I') be a given non-negative function (weight) on I'. On
A (I') we consider the quadratic functional

Or.vli = [ vluldx. (3.1)
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Suppose that this functional is bounded, that is,
/Vu|2deC/ | dx, for uc #(T).
T T

Then we call V a Hardy weight; see §3.4.1 for the complete description
(borrowed from [8]) of Hardy weights on trees. Here we only note that any Hardy
weight must be integrable away from the root, since for arbitrary 6 > 0 the space
A (T') contains functions which are equal to 1 for |x| > 6. The required behaviour
of V near the root is not related to the geometry of the tree and is the same as for
the well-studied case of an interval (see [3]). For simplicity, and without essential
loss of generality, we often assume V € L,(T").

Our main object is the operator Ar y := A(H# ('), Qr.y); cf. §2.4. According to
(2.5), for a given u € #(I") the function f = A yu is the unique element from
A (T') such that

/ Vuddx = /f/aldx for any ¢ € #(T). (3.2)
r r

The assumption V = 0 is not necessary in order to define the bounded operator
Ar.y by (3.2): it is enough to assume that | V| is a Hardy weight. Thus admissible
weights form a linear space, where interpolation is possible. We use such
interpolation as a technical tool in some proofs. However, if not stated otherwise,
everywhere in this paper we assume the weight to be non-negative.

In order to represent Ap yu in a more explicit way, we need some more
notation. Let z7# o0 be a vertex of I' and b = b(z). Given a function f € #(T),
denote by f_ its restriction to the edge terminating at z and by fi,...,f, its
restrictions to the edges originating at z. Finally, denote

(£ = fi(@) = fL(2)

j=1

Standard reasonings show that (3.2) corresponds to the differential equation

—f" =Vu on each edge e € &(T), (3.3)

with the following conditions at the vertices:
flo) =0, (3:4)
[@)=fGk) =...=f), [f'k)=0, forze? (T),z#o. (3.5)

Our main goal is the investigation of the eigenvalue behaviour of Ar . According
to (3.3)—(3.5), any eigenpair {\, u} satisfies the equation —\u" = Vu on each edge
e € (T') and the conditions (3.4) and (3.5) at the vertices. It is useful to write down
the Rayleigh quotient corresponding to this eigenvalue problem:

o Viuldx

Rlul =
4 o lu'|? dx

, forue #(T'), u#0. (3.6)

3.2. Harmonic functions from # (T')

The set of compactly supported functions from #(T') is not necessarily dense
in A#(I'). We denote by #°(T') its closure and by H(T') the orthogonal
complement of # °(T'). The functions from H(T') are called harmonic. It follows
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from the definition that any harmonic function from ' (T') is linear on each edge
of T', and hence determined by its values at the vertices. In other words, the set of
harmonic functions on the metric tree I' is the same as on the combinatorial tree
with weights (conductances), when the weight of the edge e is |e|71. Recall that
the tree T' is called recurrent if H(T') is trivial; otherwise, it is called transient
(see, for example, [18]). In particular, R, is recurrent.

Along with Ap y we also consider the operators

AI‘ y i=A(°(T), Or.v), AP,V = A(H(T), Or,v). (3.7)

Evidently any estimate for n(N, Ap y) yields the same estimate for these two
operators. Note that Ay y can be referred to as the inverse to the weighted
Dirichlet Laplacian on T'.

We pay special attention to the followmg question. The space H(T') is rather
‘poor’, so one may expect that n(\, Ap v) =o0(n (N Ar,y)) as N — 0. In Theorem
6.3 we point out a condition under which this relation holds, and in §8 we give
examples showing that this is not always the case.

3.3. Formulation in terms of Volterra operators

An equivalent description of the problem can be given in terms of the singular
number behaviour for a weighted Volterra operator in L,(T'):

(Kp.wo)(x) = W() /< |l

Indeed, assume that Kr w is a compact operator and recall that the squared
singular numbers s, (Kp w) are the stationary values of the ratio
||KI‘,W7)||L2(I‘)
2
||‘U||L2(r)

The mapping v(x) — u(x) = [, ) v(¢)dr defines the natural isometry between
the spaces L,(T') and #(T'). In terms of u the ratio (3.8) turns into (3.6) for
= |W|% So we arrive at the following conclusion.

, foroveL,(T), v#0. (3.8)

LEMMA 3.1.  The operator Ky y is compact in Ly(T') if and only if Ap w2 is
compact in H(T'). Moreover,

si(Krw) = Na(Ap y2),  forn=12,....

3.4. Estimates in 6, for p=1, and 6, » for p>1

Locally, any tree is 1-dimensional; therefore n (N, Ap ) grows at least as
0()\_1/ ?) as N — 0. We are interested in the conditions on V guaranteeing
Ary €%, or Ary €%, , for p= >é In this subsection we treat the cases p = o
and p = 1 and then interpolate between them. The more complicated case p < 1 is

investigated in §§4-5.

3.4.1. Boundedness criterion. The main result on the boundedness of Ar y is
due to Evans, Harris and Pick [8]. It is given there in terms of Volterra operators.
We present it as applied to our situation.
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Let K be a subtree of T' containing o, and denote by dK the set of boundary
points of K. We mean here the boundary points in the topology of I', so they are
all a finite distance from o. A point 7 € 0K is called maximal if every x > ¢ lies in
I'\K. Denote by .# the set of all subtrees K cT' containing 0 whose boundary
points are all maximal. For K € .# define

t
oy = inf{||u||L2(p): A | dx = 1 for all teaK}.

The following statement gives a boundedness criterion for Ap y (equivalently, for
V being a Hardy weight); see [8, Theorem 3.1].

THEOREM 3.2. The operator Ar,y is bounded if and only if

sup (agz/ de) < 00, (3.9)
Ked T\K

REMARK. Condition (3.9) is hard to verify in practice. This fact also affects
the applicability of Theorem 3.4 below, which depends on choosing a ‘model’
Hardy weight. For a special class of trees, we can give a simpler description of
symmetric Hardy weights (that is, V = V(|x|)); see the Remark after Theorem 7.2.

3.4.2. Trace class criterion. Here we give a simple necessary and sufficient
Trace class condition for the operator Ar y.

THEOREM 3.3. The operator Arp y belongs to €, if and only if

/ x|V (x) dox < oo, (3.10)
T

and moreover

Ayl =TrAny = [ x|V dx (3.11)
Proof. Based upon Lemma 3.1, we get directly

Il = 1Ko lB= [dx [ vigay= [ 1aveax
The relation (3.11) is an extension to trees of a well-known result for the semi-axis.

3.4.3. Interpolation: p > 1. Based on Theorems 3.2 and 3.3, we obtain estimates
in the classes %, and %, ., with p > 1, by means of interpolation; see [2] for an
exposition of interpolation techniques. The results we shall obtain are of a
‘parametric type’: they involve an auxiliary Hardy weight as a parameter. For
operators on [Rd, estimates of a similar character were found in [5].

Let ¥ >0 be a normalized Hardy weight, that is,

/\If|u|2dx</|u/|2dx, for u € #(T). (3.12)
T T

Assume that the function V satisfies |V| < CV¥; then Ar y is well defined and
|Ar,v || < C. Interpolation between this boundedness condition and the Trace class
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criterion (3.10) leads to the following result. In its formulation V is assumed to
be non-negative, though in the proof we consider arbitrary weights in order to

use interpolation.

THEOREM 3.4. Let ¥ >0 be a normalized Hardy weight. Then for 1 <p < o,

Aryv]h =) N(A s/ x|VP¥ P dx 3.13
e llf =3 Miany) = [ 1 (3.13)
and
[Ar,v l|5,c0 = sup(N'n (X, Ar,v))
A>0
< C3.14(p) sup (tp/ |x|‘I'dx>. (3.14)
t>0 xeT:V(x)/¥(x)>t
Proof. Tt follows from (3.12) that for any real function V one has

1Ar v lls < V¥ L )- (3.15)

On the other hand, the equality (3.11) after the passage to sign-indefinite V turns
into the inequality

lAr vl < A x| V()| d. (3.16)

Let us write (3.15) and (3.16) in a consistent way. Denote V = V¥ ! Consider
the family of weighted spaces L, = L,(I'; |x|¥) and the mapping

II: V HAI‘,V'
Now (3.15) and (3.16) can be interpreted as
ITV]y <[Vl and [TIV],;=<]V|

L.

The complex interpolation between these two inequalities gives ||Ar v ||, < || V| L
for 1 <p <oo, which is exactly (3.13). The real interpolation with the functor
H1/po gives [|Ar v, =<c(p)|V] L. (The weak spaces L, are defined
similarly to the weak spaces [, ; for more details, see, for example, [2, §4.2].)
Replacing the quasinorms in %, . and in L, . by their explicit expressions, we
come to the inequality (3.14) with C3 4(p) = c”(p).

4. Estimates in 6, and 6, » with p <1: first approach

It follows from Theorem 3.3 that under the assumption (3.10),
n(\ Ary) = o(N"") as A — 0. For the weight functions decaying fast enough,
n(\,Ar,y) should grow more slowly, the limiting case being n(N Arpy) =
0()\_1/ %), which is typical for 1-dimensional problems. We suggest two general
ways to obtain estimates of the order n(\, Ary) = O(N") with 1<p<1, the
first is presented in this section, and the second in § 5.

In the first approach we choose a partition % of the tree I" into a denumerable union
of segments (yj, zj>, whose interiors do not intersect. It is not necessary (and not
always convenient) to assume that y;, z; € "(I'). Given a partition Z, with any
function V=0 on I' we associate the sequence 5 = (V) =9(V, ) = {n;,(V)},
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where

n;(V) = |zl Vdx.
(¥ 2)

4.1. The upper estimates

Denote by x; the characteristic function of the segment (y;,z;), and let
V; := Vx;. If the operator Ay is bounded in #(T"), then the operators Ar,y, are
also bounded and, moreover,

Ary = Z Arv;
J

the series converges at least in the weak sense. Indeed, for any u, v € #(T') one has

Z (Ar,v,u, v)y 2/ Vu‘vdx—ﬁVu‘vdx— (Ar,vit, 0) p(r)-
- (¥j»2;)

J

Consider the operator A v,- We have Qr v[ ] = 0 on the subspace #; < #'(T'),

constituted by the functions u vanishing on <0 z;). Hence the non-zero spectrum
of Ap, v, does not change if we restrict Oy, y, t0 the orthogonal complement %L
which consists of functions u € #(T") such that u' =0 outside of (0,2;).
Identifying (o, z;) cT' with the segment [0, |z;]] R, we see that for u € %L the
ratio (3.6) turns into the ratio (2.10) for 7 = (0, |z;|). Proposition 2.3 applies to

the corresponding problem (2.9) and gives the estimate

1/2
)\1/2n()\,AF,Vj)$C2_11 <|Z]|/< >de) .

IATy,ll1 /2.0 = sup An*(N, Ar,y,))
’ A>0

Therefore,

< C3lz)l Vdx=C3m;(V). (4.1)

Yj»Zj

Now we are in a position to prove the main result of this section.

THEOREM 4.1. Let & be an arbitrary partition of T
(1) The following holds:

1A l}7% o = sup (NN Ary)) < Ca2 Y0} 2(V) = Caalln(V)IL 5. (42)
! .
J

If the expression on the right-hand side of (4.2) is finite, then the Weyl type
asymptotic formula is also valid:

1
lim N'/2n(\ Apy) == [ V!/2ax. 4,
Jlim A (N Ap,v) Tlv dx (4.3)

(i1) For %<p <,

[Ar v, = Z N (Arv) < Cua(p) Z ﬂf(V) = Caa(P)[n(V)Il}- (4.4)
k

J
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(iii) For 1 s<p<l,
A1 vl[5,e = sup (N'n(N, Ar v))
A>0

< Cas(p)sup (174 {j: mi(V) > 1})

= C4.5(P)HTI(V)||§,°°' (4.5)

The constant factors Cy,, Cu4, Cas do not depend on the choice of E.

Proof.  Proposition 2.1(ii) and (4.1) imply (4.2) with Cyp = Cp4(3)Cay;-
Further, it follows from (3.16) that

||AFV|1<Z/y IV @Iar= 3 a0V,
7’ ]
which gives (4.4) for p = 1 with C,4(1) = 1.

We use interpolation in order to derive the other estimates. Denote by %; the
space L;((y;,z;)) endowed with the norm a; =1;(f). The estimates just
obtained show that the mapping II: V +— Ay is continuous when acting between
the spaces

I 1y 2({%5}) = 61 2.00( A (T))
and
L1, ({25}) = € (A (1))

Apply to II the interpolation functor %y, (see, for example, [2]) with
9=2—p ", so that € (0,1) for 3<p<1. We obtain (4.4) taking r =p and
(4.5) taking r = oo.

Finally, the set of all compactly supported weight functions 0 <V € L(T") is
dense in the quasi-Banach space defined by the condition that the right-hand side
of (4.2) is finite. For such V the asymptotic formula (4.3) is clearly valid. The
result extends for all V from the above space by the well-known fact on the
continuity of the asymptotic coefficients, see for example, [4, Lemma 1.18].

4.2. Discussion

REMARK 1. Certainly the estimates (4.4) and (4.5) are meaningful only if the
series on the right-hand side of (4.2) diverges.

REMARK 2. The sequence 5(V, ) depends heavily on the partition, and for an
inappropriate choice of & the estimates (4.2), (4.4) and (4.5) can be rather rough.
Moreover, the quasinorms |[g(V, E)]|, n(V, E)|| ;. for different choices of
& may be non-equivalent.

ExaMPLE 4.2. Let I' =R_ and
fep forre (2,22 +1) with ke N,
V(r) = .
0  otherwise.
Then for the partition Z;: R, = [0, 1]u (UZ,[2/7", 2/]) we find (ignoring zero

terms) that

7V, E)) = {22k+1ck}, where k € N,
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and for the partition 5,: R, =[0,2] U (U;‘;l[Zz]‘il, 22j]),
n(V, E,) = {22k+lck}, where k € N.

—

It is clear that 9(V, Z,) cannot be estimated through n(V, =) either in [, or in
l, o for any p > 0.

ExAaMPLE 4.3. Again let I' =R, and

0 ifre(0,1),
V(t)= . k=1 Aky .
cp ifre(287°,2%) with ke N.

For the partition &, from Example 4.2,
a(V,E)) ={2"""¢;}, wherejeN, (4.6)
and for the partition Z,: R, = J;2[j — 1, /],
(V. E,) = {jer}, where ke N, 257! <j <2k (4.7)

It is easy to see that for any O<p<1, 9(V,E;) can be estimated through
n(V, E,) in both [, and [, ., and the converse is wrong.

We see from these examples that taking ‘too long’ or ‘too short’ segments
makes the estimates (4.2), (4.4), (4.5) rough. It is always reasonable to take
partitions which satisfy the condition

ms<I|zl/lyil < pan 1<p <po (4.8)

In particular, suppose that for a given tree I' each edge (y;, z;) € 6(T') except for
ey satisfies (4.8). Then it makes sense to include these edges in the partition.
Additional division points can be put on ¢, to satisfy (4.8) as well.

Actually, for any ¢ > 1 it is possible to choose Z in such a way that |z;| = g|y;],
for j € Z. Indeed, order the vertices of I' by their distance from the root:

0=o| <|yi| <|ya| < |y3] =

In this construction, we mean by ‘path’ an infinite path starting at 0. Such a path
J can be viewed as a copy of R, with the t-coordinate corresponding to the
distance along J, the notation like [t, gt] € J becoming clear.

Take first any path J; and introduce the first set of segments by

Ji = U [Cii—1|Y1|7qi|)’1|]-
ieZ
Next, take the vertex y; and choose the paths Js,...,Jp,,) so that
JynJ;={o,y;) for any 1 <k <I=<Db(y;). The segment (o, y) is already taken
into account; the new set of segments is obtained by dividing

[o0]

T\ (0, 1) U il gl fork=2,....b(y).

Now, proceed by induction. Assume that the paths corresponding to the vertices
up to y,_, are already taken into account. Take the next vertex y,; note that at the
moment only one path (call it J1) passes through it. Choose paths J,, .. Jb(,,,)
that J, N J, = (o, y,) for any 1 <k << b(y,). Now get the new set 0f segments
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by dividing
TN(o, vy = la" " 1yul- @'Iyal], for k=2,...,b(y,).
i=1

Clearly, as a result of this inductive procedure, we get a required partition. We call
such & a g-partition; we have for it u; = p, = q. However, for different g-partitions
(with the same q) ||9(V, E)||, and [|9(V, E)|,  still can be non-equivalent.

EXAMPLE 4.4. Let I' be binary tree (that is, b(z) = 2 for any z € ¥ (T'), z # o),
with all edges having the same length 1. Choose any infinite path starting at o;
denote it by J. Let V be a weight function on I' such that supp(V)cJ, and on J
take V to be the same as in Example 4.3. We now describe two 2-partitions, =
and H,, of the tree I'. Following our construction, we note that segments which
do not intersect J give zero terms in 5, which we ignore.

First partition. 'This way is natural: choose the first path J; in our construction
to be exactly J, and write J = [0, 1] U (U;en[2' 7", 27]). Then

n(V,Ey) = {277 l¢;}, forjeN,
which coincides with (4.6).

Second partition. Again, we describe only the segments which intersect J.
Take paths J, such that J,NJ =[0,n+ 1], and which are represented as
J,=[0,n]U (U2 1[2" 'n, 2'n]). Contribution of J, comes from only one of its
segments, namely, [n, n+ 1] < [n, 2n] < J,. So,

n(V,E,) = {2nc,}, where ke N, 25 ' <n <2k
which is equivalent to (4.7).
We come now to the same conclusions as in Example 4.3.

REMARK 3. For the semiaxis R, the results of Theorem 4.1 are well known;
see [3] where further references can be found. In [3], the 2-partition of R, was
taken. Estimates (4.4) and (4.5) in the case of R, hold for all p € (% c0) and are
in a sense invertible.

Invertibility here means that the finiteness of the right-hand side of (4.4), (4.5)
is not only sufficient but also necessary for the finiteness of the corresponding
left-hand side. The estimate (4.2) is ‘weakly invertible’: the finiteness of its left-
hand side implies that 9(V) €, /5 . The lack of such invertibility for general
trees is clear from Remark 2; in §4.3 we give the corresponding inverse results
for a special class of trees.

Technically, the validity of (4.4), (4.5) for all p € (%,00) in the case I' = R, is
due to the fact that (V') € I, ensures the boundedness of AR, v, and it is possible
to interpolate between the results for p :% and p = oo. This boundedness result
does not extend to general trees, and for 1 <p <o we gave estimates of a
different sort in Theorem 3.4.

ExampLE 4.5. Let I" be a binary tree such that |ey| = 1 and |z| = 2|y| for any
edge (y, z) # ey. Take
0 if x € e,
Vo = { °

|x|7?  otherwise.
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Then V & L,(T'\¢y) and for this reason cannot be a Hardy weight. At the same
time, take the natural partition of I' into the union of its edges. The initial edge e
does not contribute to ||9(V, &)||. All the other edges satisfy (4.8) and contribute
term 1 to 9(V, E); thus 9(V, E) € L.

REMARK 4. The estimate (4.4) for p =1 is implied by (3.11), and, in general,
is weaker than (3.11). However, if (4.8) is satisfied, then 75; is equivalent to
f<y/_’z/_> |x|Vdx, and (4.4) for p =1 becomes invertible. For p # 1, the results of

Theorem 4.1 can be inverted only under additional assumptions on I'.

4.3. The lower estimates

Here we prove the result converse to Theorem 4.1 for a specific class of trees.
The reasonings are basically the same as for R, (see [3]), with some technical
complications arising.

Let all the edges (y;, z;) € &(I'), except for e,, meet the condition (4.8). Denote
eg = (0,y1.1) and choose y, | €ey so that (yi1,yis1.1), for k=0,—1,-2,...,
satisfy (4.8). Define the extended set of vertices by ¥"'(T') = ¥ "(I') U {yk’l}gz_w,
and let &'(T") be the corresponding extended set of edges.

THEOREM 4.6. Let T satisfy two assumptions:
(a) there exists B=1 such that b(z) < B for all z€ 7°(T');
(b) any edge ey # (y;, z;) € §(T') meets the condition (4.8).

Let & be defined by T' = . c s/(r) e, where & '(T") is as above. Then there exists a
constant C >0, depending only on p;, u, and B, such that

n(\, Ary) = (3B)_1n(C)\,n(V, E)). (4.9)
In particular, for some C,, C, >0,
[Arvll, = (V. B, for 3<p<co,

1AL, vllpe = Colla (V. E)llpoor  for 3<p <oo.

Proof. First, let us introduce convenient notation for the vertices and edges of
I'. We say that y € #"(T') is of generation k if the closed segment (o, y) contains
exactly k + 1 vertices from 7" (I"). Denote all the vertices of generation k by y;
where 1 <m<n(k) and n(k) <B*! is the number of such vertices. This is
consistent with the notation y, ;, and if for k =0,—1,-2,... we put n(k) =1,
then ¥"'(T') = {yin} for k€Z and 1 <m<n(k). The edge from &'(I") whose
endpoint is y; ,, is denoted by ¢, ,, and its length by |e; ,,|.

Now, for each pair (k, m) let the function v, ,, € # (') be linear on each edge
ec&'(T) and such that v, equals 1 at y., and at all of its adjacent
descendants, and equals O at all other vertices from ¥"'(T'). It is not difficult to
see that |p | ) m|>dx < C|ey.u|"; here C depends only on u, u, and B.

Fix [ € {0,1,2}; then the functions v, , for different k and m are disjointly
supported. Denote % = Span{vs;.,,}, for [=0,1,2.

Consider the operator A, corresponding to the restriction ap y [ ;. By the
variational principle, n(N, Ap.y) = n(\, Ay).

Denote by %, , the union of edges emanating from y, ,. For u € #,, with



706 K. NAIMARK AND M. SOLOMYAK

U= C3}.mV3r.m» WE have

ap,v[u1>Z|c3k,m|2/ Vdx, /|u’|2dx<c2|c3k,m|2|ek,m|1.
Lz r kom

k,m

n(\ Ar.y) 2n<C)\, {|€3k,m|/ de} )
D3,m k,m

Similar relations hold for %, and %,, so we get

3n(\Apy) = n(C)\, {ek,m| de} ) (4.10)
‘@k,l1l k,m

Therefore,

By the assumption (a), &y ,, consists of at most B edges. Let e be one of them;
then |e| <c|e |, where ¢ = py(py — 1)(py — 1)~". Thus,

o(Mieod [ vad Yepr(enie [vad )@
Dom k,m e ec&'(T)

For e = (y;, z;) € &'(T"), we have

0 (V) =3 [ Vax

and
el =zl = [yl = |zl = w1 |zl = (1= w1 )z,
SO
0 (V.E) < = 1) el [ vax
Therefore,

n<)\, {|e|/de} > = n((1 = ;")\ m). (4.12)
e ecs!(T)
Finally, (4.9) follows from (4.10)—(4.12).

Combining the results of Theorems 4.1 and 4.6, we arrive at the following conclusion.

COROLLARY 4.7. Under the assumptions of Theorem 4.6, one has

clla(V, E)lli /2,00 < [ Arvlli /2,0 < Clln(V, E)l1 /25
cilla(V, BN, <lArvl, < Cilln(V, BE)|,, for <p=<1,

alln(V. E)llpoo < [[Ar,vllpoo < Calln(V. E)ll oo for 3<p<1.

REMARK. If V is integrable at o, it is convenient to deal with the ‘natural’

-

sequence 7(V, &) rather than with 9(V, E):

A=7(V.E) = {|zj|/ de} , ET= U e. (4.13)
(j>2) (j,2;)€6(T) ec &)

Exactly as in the case of R, (see [3]), this sequence can replace 7 in the upper

an
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estimates (Theorem 4.1), but not in the lower ones (Theorem 4.6). However,
Corollary 4.7 implies qualitative results for V € L(T'):

n€liyy = AryvE€bi/n0 = MEL1/20s
and

Aryv€¥, <= nel, forl<p=<]l,
e o 2 (4.14)
Arv €%, w0 < NE€l,0 fori<p<l.

(One should take into account the fact that according to Proposition 2.3 the
contribution of e, into n(\, Ap y) is of the order O(\"'/?).)

5. Estimates in 6, and 6, « for p <1: second approach
5.1. An orthogonal decomposition of # (T')

The approach we develop here is based upon a special decomposition of the
space A (T).

In order to avoid some technical complications, we restrict ourselves to the
trees meeting the following additional condition. Denote

L(T) := sup{|y|: y €T} < 0.
Then we require
#{ye 7 (T): |y| <1} <oo foranyl<L(T). (5.1)

A path in T is called maximal if it is not a part of another path. It follows from
(5.1) and from the assumed absence of leaves that all the maximal paths in T’
have the same length L(T").

With any subtree T € #(I') we associate a subspace %, of #(I'). Namely, a
function u € #(T") belongs to #; if and only if

u =0 outside T (5.2)
and
u(x) = u(y) provided x,y € T and |x| = |y|. (5.3)
Clearly, for disjoint W-subtrees these subspaces are mutually orthogonal.

Recall that given a vertex z€ 7" (I"), we set T, = {x €I x =z} € #(I'), and
denote by T/, for j=1,...,b(z), the daughter subtrees of T.. Set

b(z)9
I, = Z fT!‘
=t

The reader should not mix the notations 7, and 7. Evidently 7 c 7, and
we define

Y. =507, (5.4)
Note that 7, =T' coincides with its only daughter subtree; thus %, = {0}.

THEOREM 5.1.  For an arbitrary tree T' satisfying (5.1), all the subspaces 9,
(zev(T)) and Fr are mutually orthogonal; in fact, if u and v belong to
different such subspaces, then

Z u'(x)o'(x) =0 for almost all t = 0. (5.5)

|x[=1
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Moreover,

HAT)=Fp0 Y 9. (5.6)

In order to prove this theorem, note that the mapping
Su(x) = f(x) = u'(x)

defines the natural isometry between the spaces #(I') and L,(T'), so it is enough
to prove a similar statement for L,(I'). Namely, for any 7 € #°(I') and any
z€¥°(T) define the respective subspaces of L,(T): #; = 9(F;), 9 = I(%.).
Clearly, a function f € L,(T") belongs to %7 if and only if it satisfies (5.2) and
(5.3). Also, analogously to (5.4),

Y. =T T, (5.7)
Again, %, = {0}. A function f € Z belongs to %, if and only if
> fx)=0 ae. (5.8)
x>zi|x|=t

It is easy to describe explicitly the orthogonal projections 27, II. onto the
subspaces f% %’ On the interval

It = (lo(T)
consider the piecewise-constant function
gr(t) =#{xeT: x| =1};

it may be called ‘the branching function of the subtree 7. It is always finite, in
view of condition (5.1). Then clearly

I
for x€ T,

20 F)(x) = 4 &r((x]) yeT%‘Txf(y) ores (5.10)
0 forx&T.

Let us analyse the formula (5.10) for a particular case when T = TZ is one of
the daughter subtrees of a given subtree 7,. Let (z,Z) be the initial edge of 7.
Then, according to (5.10),

N P )
'@if_{,%’zf on T\ (z.7). G11)

, L(T)) (5.9)

In particular, let T, = T, = I'; denote ey = (0, z). Then

P f on e, 5
rf = Q’T/Zof on I'\¢. (5.12)

In view of some general formulas from the geometry of Hilbert space, we
derive, from (5.7),

b(z)
ngfzz.@;z,f—%f. (5.13)
j=1

Now we see that Theorem 5.1 is an immediate consequence of the following result.
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LEMMA 5.2. For an arbitrary tree T satisfying (5.1), all the subspaces 4.
(z€ v (T)) and Fy are mutually orthogonal; in fact, if f and g belong to
different such subspaces, then

D fgx) =0 ae. (5.14)
[x|=1
Moreowver,
s Z 9!, (5.15)
zey ()

Proof. First, for the subspaces Z1 and any %., (5.14) is implied by (5.3) with
T =T and (5.8). Further, let y,z€ 7'(T'). If y * z and z * y, then the subtrees 7,
and 7, are dls_]omt which 1mphes (5.14) for g and %.. Now, assume that z >y
and let f eg and g€ %.. The function f satlsﬁes (5 3) on all the daughter
subtrees of 7). The function g vanishes outside 7, (which is completely contained
in some daughter subtree of 7)) and satisfies (5. 8) So, (5.14) also follows for fﬁ
and 4. with z>y.

In order to verify (5.15), fix an edge e. Let z stand for its endpoint. Let
0,72¢,---,2, be all the vertices lying on the path (o,z), so z,=2z and
e=1{2,_1,2,)- We suppose first that e #e,. Fix a function f € L,(I') and
consider its projections 2pf,II] f,II. f,.... I,  f, restricted to the edge e. To
simplify notation, we drop the sign of this restriction. According to (5.13), (5.11),
and (5.12) we get:

Prf =21 f.
I, f =2 f -2 f.

U, f=2 -2 [
I, f=f-2

1

It follows that if f is orthogonal to each component of the sum on the right-hand
side of (5.15), then f =0 on each edge e # ¢y. The same is true for e,, which
follows directly from (5.12). So f =0 on I'.

5.2. Realization of F7 as a weighted Sobolev space

Let T be a W-subtree and I; be the interval (5.9). Introduce the Hilbert space
H (Ir, gr) (cf. (2.13)) consisting of functions v such that

101 % y.r) 1—[ |0/ (1)|*gr(1) di < 00, v(log]) =0, (5.16)
T
For a given u € #7, let v be the function on I such that u(x) = v(|x|) for x € T;
it is well defined in view of (5.3). Then the operator
Ur: ur— v

is an isometry (identification operator) between the spaces Z; and # (I, g7).
The definition of ¥, and the above realization of % imply that %, can be
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identified with an appropriate subspace of the orthogonal sum

b(z) o
Z c}f(IYW gsz)'

j=1
More precisely, let {v;,...,v,,)} be an element of this orthogonal sum. In view
of (5.8), it belongs to the subspace in question if and only if

b(z)

—~

Vj(1)grs(1) =0 ae. on (2|, L(T)). (5.17)

J

Let us discuss the structure of # (I, gr). Denote by #° (I, g7) the closure of
Cy (I7) in the metric of # (I, g7), and by H(I;, g7) its orthogonal complement.
Clearly, #°° (I, gr) = Ur(Fr A ° (1)) and H(Iy, g7) = U (Fr " H(T)).

Any function v € H(I, g7) is harmonic with respect to the metric form (5.16),
that is, is continuous on I, linear on each interval where g;(¢) is constant and
satisfies the boundary condition o(Joy|) =0 and the standard transmission
condition at the points where gy has jumps. The only possible solutions are
¢ - vr where

tods
or(t) = / . (5.18)
! lor| &7(s)
This function belongs to # (I, gr) if and only if
ds
LT :—/ < 00, 5.19
) 1 8r(s) (319)

We arrive at the following result.

LEMMA 5.3. Let (5.1) be satisfied. Then for a given Wy-subtree T the subspace
Fr "H(T) is non-trivial if and only if the condition (5.19) is fulfilled. In thls
case Fr "H(T') has dimension 1 and is generated by the function uy := %T Uy

5.3. A preliminary estimate

We start with a statement of a rather general nature, which is implied by
decomposition (5.6) and Lemma 2.2. Then in the next subsection we derive from
it somewhat more detailed information.

In what follows the notation A(Z7, V) stands for the operator in the subspace
FrcH(T), generated by the quadratic functional (3.1) (more exactly, by its
restriction to this subspace). Similar notation will also be used in other cases.

LEMMA 5.4. Let T be a tree satisfying (5.1). Then

Ayl 0 <Caa(d) Y AFL VI3 (5.20)
T € #y(T)

lArvllb=<Csai(p) Y. AT VI e for b<p<1,  (521)
T #y(T)

HAI‘,VHp o = Csxn(p) SUP ()\p#{T e Wo): |A(Fr, V) 1/2,00 > )\})

or L<p<1. 5.22
2
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Proof. 1t follows immediately from (5.6) and (2.7) for p :% that
1/2 1 2
i = Coab (1A VIRt X IAG VAL ).
ze /(I

Note also that A(Z,, V) is the orthogonal sum of the operators A(Z. T V). By the
variational principle

b(z)
nN G, V)sn(NFL, V)= n(N T, V), (5.23)
j=1
which implies that
b
1A V11300 < D AT VIS (5.24)

j=1

Summing up the inequalities (5.24) over all z € ¥ (T"), we arrive at (5.20).
The same reasoning but based on (2.6) for p =1 rather than on (2.7) gives
(5.21) for p=1:

[Arvii = Z [A(Zr, V)1 <C Z A7, V)1 /2,0 (5.25)
Tewy(T) T eWy(T)

The last inequality is just a coarsening of the first one.

Now we can interpolate between (5.20) and (5.25). This is done exactly as in
the proof of Theorem 4.1, the only difference being that instead of Z; we take
'%‘T = (gl/Z,OO(T)v for T € %(F)

5.4. The basic estimate of the second approach

Let T be a Wy-subtree of I'. Realize Z as the space # (I, gr); see (5.16).
Then, using a standard change of variables (cf. Corollary 2.4), we see that the
operator A(Z7, V) corresponds to the Rayleigh quotient (2.10) on the (finite or
infinite) interval I = (0, €(7)). The case €(7) = oo will be touched upon in
§§ 7-8. Here we restrict ourselves to a simpler situation when €(7) < oo for
any 7 € #y(T).

From now on, we always assume V € L(T"). Set

ds .
op(V) = €(T) /T V(x) dx — X o /T V(x)dx, with Te#y(T).  (5.26)

Here these numbers play the same role as the numbers 7;(V) in the first
approach. We denote o(V) = {o7(V): T € #,(I')}. The following result is
parallel to Theorem 4.1.

THEOREM 5.5. Suppose that a tree T' satisfies (5.1), and, in addition,

or) = % | gj(ss) <oo, for any T € #y(T). (5.27)
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(l) IfO'(V) 6[1/2, then

14rvl %goo =sup (\?n(N Apy)) < Csag Z a1/ (V)
A0 T € Wo(I)
0

= Csaslla(V )” 1/2» (5.28)
and the asymptotic formula (4.3) is valid.

(i) For%<p$]
|Arvip = Z Ni(Ar,y) < Csa(p) Z a7 (V)
T e,(T)
= Cs.zo(P)H"(V)”ﬁ- (5.29)
(iii) For % <p<l,

||AI‘,V||§,oo = )S\UI(’)()\[’”(NAF,V» < Cs30(p) iuf(’) (Nr(\, 0(V)))

= Cs30(P)|o(V)[[}.00- (5.30)

Proof. Fix a subtree T € #(T") and realize Z as the space H#(Ir, g7); see
(5.16). The operator A(Z7, V) can be identified with A(A# (I7, g7), Vy) where the
weight function V; on I is defined as

Vi)=Y V().

xeT,|x|=t

Under the assumption (5.27), Corollary 2.4 applies and we obtain

1/2
sup (N 2n (N (I, g1), V) = cm(%)(m) / vr<s>ds)

A>0

=Cy1(3)or AWV

The inequalities (5.28)—(5.30) follow from here and Lemma 5.4. The asymptotic
formula (4.3) is justified in exactly the same way as in Theorem 4.1.

The estimates given by Theorem 5.5 may turn out to be rather rough. First,
the passage from the subspace ¥, to the subspace %, in (5.23) increases the
corresponding function n(N\). However, a coarsening of another origin is more
important: the sequence o(V) poorly reflects behaviour of V when V is ‘strongly
non-symmetric’. To show this, let us return to Example 4.3. It is clear that o7(V) # 0
only for subtrees T € #(I") with o € J. In what follows T},, with n € N, stands for
the single such subtree with |oy | = n. We have g7 (t) =2*"" on (k, k + 1), with
k= n, so all the integrals (5.27) are equal to 1. Thus for n € [2*7 ", 2%),

aT"(V):/ Vdr= (2" —n)e, + Y 277 ¢
n ik

We leave it to the reader to check that the quasinorms of this sequence in [,
and in [, are equivalent to those of the sequence 5(V, E,) from Example 4. 3
and hence the estimates (5.28)—(5.30) are coarse.
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This shows that Theorem 4.1 can give better estimates than Theorem 5.5,
provided that the partition & is chosen in an appropriate way, co-ordinated with
the behaviour of V.

However, under additional assumptions on I' and V the usage of the
decomposition (5.6) gives much more information than the results of §4. This

will be shown in the next three sections.

6. Regular trees

6.1. We call a tree T' regular if all the vertices of the same generation k£ have
equal branching numbers b;, and all the edges of the same generation have equal
lengths. More precisely, with any regular tree a monotone number sequence
{te} r—0 is associated, so that for any edge e = (y, z) there is an index k such that
|v| =t |z| =t; . and b(y) = b;; we say that e is an edge of generation k, and
y is a vertex of generation k. We also say that a Wj-subtree T is of generation k if
|or| = t;; sometimes we write simply T = T;. Condition (5.1) is clearly satisfied
for any regular tree.

Note that in order to be consistent with previous notation we should have
to = 0. However, it is not always convenient, so we slightly modify our notation
to allow f, # 0. We believe that such a modification is clear; one may view it as a
shift of the initial sequence {7} by f,.

Many objects introduced earlier for a general tree are considerably simplified if
I' is regular. In particular, for the subspaces #°(T') and H(I') a decomposition
similar to (5.6) holds. This enables us to analyse the operators Ay y and A@,V,
defined in (3.7); see Theorem 6.3 and also §§7-8.

Later, we consider only regular trees. Let us introduce some convenient
notation; we present it for increasing {#,}, though in general the opposite case is
not excluded. Denote

L=L(T) = sup 13
k

this agrees with the notation from §5. Further, we denote
I = (. L) (=Ig,).
For any subtree T,
gk(t) :==gr (t) =byyy...b; on (t,14,), wherej=k. (6.1)

The family of requirements (5.27) reduces to the single assumption

[e e}

|t i1 — 1l
M« oo, 6.2
2 b h, (62)

The subspaces Z, 4, of #(I'), which were defined in (5.2), (5.3) and (5.4),
can be described in more detail when I' is regular. Namely, denote by % and II,
the orthogonal projections onto these subspaces. Then an explicit formula similar
to (5.10) may be written for Zy:

1
u(y) —u(oy) ifxeT,
(Pru)(x) = gr<'x|>m§|x| ’ (6.3)

0 if x¢ T.
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Indeed, it is easy to see that the right-hand side of (6.3) is a continuous function
whose derivative coincides with 2y u’.
For II, one may write an analogue of (5.13):

b(z)
Mu=> Pru—Pru (6.4)
j=1

J

(this is true in general and not only for regular trees). What is specific for regular
trees is the analogue of (5.8). Namely, a function u € %, belongs to %, if and
only if

u(x)=0. (6.5)

x>z |x| =t

Indeed, let z be of generation k. As it was done in §5.2, identify u with the
element {v,...,v, } of the space (#(Ir, gu)). Since in (5.17), g7 = g for any
Jj=1,...,b;, u belongs to ¥, if and only if N

by

D vi(t)=0 ae. (6.6)

j=1
Further,

by

by t
>l =Y wa) =0 Y- [ e
x>z|x|[=1 j=1 j=1 Jk
t by
— o) [ (o) ar

j=1
and so (6.6) is equivalent to (6.5).
In addition to Theorem 5.1, the following analogue of (5.14) holds.

LeEmMmA 6.1. Under the assumptions of Theorem 5.1, let T' also be regular.
Then along with (5.5) one has

> ux)o(x) =0, fort=0. (6.7)

The proof of (6.7) completely imitates the proof of (5.14) in Lemma 5.2; one
uses (6.5) instead of (5.8).

6.2. Decomposition of the subspaces #° and H

Since u(0) = 0, it follows immediately from (6.3) that if a function u € #(T")
is compactly supported, then its projection Zru is also compactly supported. The
same formula shows that this is no longer true for #; with T #TI'. However,
substituting (6.3) into (6.4), one sees that the constant terms u(or) cancel. So, if
u € #(T') is compactly supported, then this is true for I, u.

Thus the subspaces #°(T") and H(T') are invariant with respect to Zp and II,
for any z € 7"(T).

Introduce the notation

Fr =Frnx°T), Fi =FraH(T), forTew(T),
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and
G =4, nx°T), 90 =% AHI), forzer (T).

In view of Lemma 5.3, (6.2) is the criterion of non- triviality of all the
subspaces 77, with T € # (). If (6.2) is fulﬁlled then dimZ{ =1 and if
z€ 7 (I') is of generation k, then dlm@ = by, — 1. Indeed, any harmomc
function u € %, is a linear combination u = ]I.”‘: 1 Ujs where u; c Z1 and it
belongs to %H if and only if (6.5) is satisfied.

The next proposition is an immediate consequence of Theorem 5.1.

T/s

LEMMA 6.2. Let T be a regular tree. Then there are orthogonal decompositions

%o _ /-o @ Z g
e (T
and
H(T 2o Z gl (6.8)
e (

If (6.2) is fulfilled, then (6.8) is an orthogonal sum of finite-dimensional
subspaces; namely, dim 9}” =1 and if ze V(L) is of generation k, then
dim %, = b, — 1. If (6.2) is violated, then #°(T') = #(T') and H(T') is trivial.

6.3. The operator Altﬂ,v

The subspace H(T') ¢ #(T") is comparatively poor. Indeed, according to Lemma
5.3 its component in each Z, with T € #(T"), is not more than 1-dimensional. It
follows from (5.18) that the single non-zero eigenvalue of the operator A(ﬁTH, V) is

(T, V) = (ﬁ %)I/TV()C)(/': g;%)zdx. (6.9)

Replacing the inner integral in the second factor by its majorant f,T gr 1(s) ds, we
obtain the inequality

NUT, V)< op(V), for T e wy(T).
Now we are in a position to prove the following.

THEOREM 6.3. Let T' be a regular tree. Under the assumptions of Theorem
5.5(1) one has

ATy €% )a.
In particular, n()\,A@’V) =o(n(N\ Ary)).

Proof. Using Lemma 6.2 (decomposition (6.8)) and (2. 6) with p = %, we find that
H
IARVING = A VIS + Z lA@E V)IL3

ze€Y(

In its turn, by the variational principle and again by (2.6),

b(z) b(z)
H s H _ H
IA@E VI < IAES IR =D WTL V)2 <) (V)2
j=1 j=1

The result follows immediately.
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Theorem 6.3 implies in particular that under the assumptions of Theorem 5.5(i)
the operators Ar y and ATy have the same spectral asymptotics (4.3).

7. Symmetric weights
We call a function V on a tree I' symmetric if
xyel x| =y = V) =V(),

and write unambiguously V = V().

7.1. Symmetric weights on regular trees

For regular trees and symmetric weights the subspaces Z and ¥,, appearing in
the decomposition (5.6), are mutually orthogonal in the norm generated by the
quadratic form Qr y; this follows from (6.7). Therefore, Ay decomposes into the
orthogonal sum

@
Ary =A(Fr, V)@ > A9, V). (7.1)
zey (T)
Further, each operator A(F7, V) can be identified with
A=A (I, &), &V )-
In a similar way, we denote
A% = A (I, 81)s &V ), A% = A(H(I. &), &V)-

If (6.2) is satisfied, then the latter is an operator of rank 1; according to (6.9), its
single non-zero eigenvalue is

(V) = ([ gj%>_1[kgk(t)‘/(z‘)<[: gl%)zdz. (72)

Note that if (6.2) is violated, then A‘}< =A,; and A}'j] =0 for all k= 0; hence
ATy =Ar,y and Aﬁv =0 also.

The following simple result on the structure of A(%,, V) is the key observation
for the analysis which follows.

LEMMA 7.1.  LetT be a regular tree, and let V be a symmetric function on I'. Then
for any z€ v (T'), with z# o0 and |z| =t, the operator A(%,, V) is unitarily
equivalent to the orthogonal sum of b, — 1 copies of the operator A,. In particular,

n(NAG., V)= (by — 1)n(\,Ay), where |z| =1y, k> 0.
If (6.2) is satisfied, then similar statements are valid for the operators A(9:, V)
and A(%2, V).

Proof. Indeed, A(Z,, V) is the orthogonal sum of b; copies of the operator
Ay. The passage to the operator A(%,, V) corresponds to the withdrawal of one
of the copies; this is due to (5.5) and (6.7), which mean orthogonality at each
‘level’ |x|=1.

THEOREM 7.2. Let the assumptions of Lemma 7.1 be satisfied.
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(i) The operator Ay y is bounded if and only if all the operators Ay, for
k=0,1,..., are bounded, and

[Arvll = sup Akl (7.3)

The operator Ay y is compact if and only if all the A, are compact and for any
N> 0 the series Y 1 by...by_1(by — 1)n(\, Ay) converges. Moreover,

n(N, Apy) = n(X, Ag) Zbl b1 (b — 1)n(\, Ap). (7.4)

(i) Similar statements are valid for the operator At y.
(iii) The operator Aitﬂ,v is compact if and only if N\, (V) — 0, where N\ (V) are
given by the equality (7.2). Under this assumption, the non-zero spectrum of Ai'j],v

consists of these eigenvalues; the multiplicity of No(V) is 1, and for k=1 the
multiplicity of N (V) is by...by_ (b — 1).

Proof. Under the assumptions of Lemma 7.1 the orthogonal decomposition
(7.1) is valid. To prove (i), it is sufficient to realize A(%,, V) according to the
result of Lemma 7.1, and the operator A(Zp, V) as A. The proof of (ii) and (iii)
is the same.

REMARK. The boundedness of A, is equivalent to the weighted Hardy inequality

/ngv|2dtSC/gk|v'|2dt.
Iy Iy

Such inequalities are well studied, and so (7.3) enables one to obtain a complete
description of symmetric Hardy weights on regular trees.

COROLLARY 7.3. Let T' be a regular tree satisfying (6.2), and let V be
symmetric. Then the estimates (5.29) and (5.30) are valid for all p € (%, 00).

Proof. The expansion (7.4) yields the corresponding expansion of |Ar |}
into a series in HAkH” For any p € (3, ), ||Asll, <||A|l1/2.0. By Corollary
24, A1 /2.0 < C3 1,04, and we get (5.29) for all p € (3, 00). Similar argument
leads to (5.30).

7.2. Trees of type (b, q)

A regular tree I' is called b-regular if by = b for any k € N. We say that a
b-regular tree T is of type (b, q) if 1, = ¢*, for k= 0.

Let I' be a tree of type (b, q) with ¢ >1 and b > ¢; the latter assumption is
equivalent to (6.2). Denote 3 = log, b and v = ¢/b, so that 8> 1 and y < 1. Also
let the weight V on I' be symmetric. Then, in addition to the results from the
previous subsection, we can compare our two approaches which were described in
§4 and §5 respectively.

Let us analyse more carefully the two sequences o = a(V) (see (5.26)) and
n=n(V, E) (see (4.13)) appearing in these approaches.

The sequence 7 consists of the numbers

k+1
q

T,,’k:qk“/ V(t)dt, fork=0,1,...,
q

k
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each of them repeated b* times, and o consists of the numbers

0, = g t)dt, fork=0,1,...,
. / 5 | smove

each of them also repeated b* times.
Now, taking (6.1) into account, rewrite g; as

(Zq 1)b* ’)(ibj_k/?jﬁ\/(t)dt)

=k

=K Z Vk_jﬁj’ (7.5)

where K = (¢ — 1)/ q(1 — ). We see immediately that o, = K7, so for any p > 0,
Klnll, <ol Klnllpew=<Ilolle-
Pass on to the inverse estimates. Set o = 'ybl/ ? and note that
a>1 forO<p<p(B—1)" (7.6)
Consider first the case p < 1. Using (7.5), we get

||o||z—2b“’<1<"zbkzv“ 7/
_ i ijza (J—k)

=0

A

c(p)lmlh, forO<p<l. (7.7)

Here c(p) = K"(1 —a?)™"
Now let p=1. Denote x = {x;}%—o, With x; = b*/P5,; then lmll, =
Using (7.5) again, write

ol =3 tof =k > ( S04 i)
k=0 k=0 =k
— Kpio: <§: ozijj>p.
k=0

Consider the mapping
HO(: {.xk}%o:o — { Z O(ijj}
=k k=0
and show that, for o > 1,

Indeed, for r =1 and r = oo this can be seen immediately, and the rest is just
interpolation; it is also possible to use the result of [10, Problem 275].

(—1), forl=<r=<oo. (7.8)
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Taking into account (7.6) and combining (7.8) and (7.7), we find that for some
constant ¢(p) >0,

loll, <c(p)lall,, foro<p<pB—1)~" (7.9)

Interpolating (7.9) between p :% and p = 6(B — 1)_1 — & for arbitrarily small &,
we also get

10l po=<c'(P)Allpon forO<p<pB(B—1)"

for some ¢’(p) > 0.
So, we have proved the following statement.

LEMMA 7.4. Let T be a (b, q)-tree with 1<q<b, and let V on T be
symmetric. Then there are constants C(p), C'(p) >0 such that

cplal, <llall, <K 'lal, foro<p<pB—1)~",

C' (Pl ollpeo=<llpo <K o], for0<p<B(B—1)~".

We see that in the indicated region of p the usage of sequences 7 and ¢ is
equivalent. Thus, [|Ar y||,. [[Arv], . may be estimated from above using any of
these two sequences, and the results of Theorem 4.1 are actually valid in a wider
range of p. Similarly, the equivalence relations in (4.14) are valid in this wider
region, %<p <B(B— 1)71. Example 4.5 shows that there is no chance of
expecting such results for large values of p.

8. Examples

We shall analyse three examples. In all of them the tree T' is (b, g)-regular and
the function V is symmetric, and we use the notation and formulas from §§ 6—7.
In our examples the self-similarity arguments apply and we obtain not only
estimates for n(\), but also its asymptotics, including the non-Weylian case. We
leave it to the reader to verify that the results of our analysis agree with the
general theorems of §§3-7.

In each example we study three operators: Ay y, ATy and A%ﬂ,v.

ExXAMPLE 8.1. Let ¢ > 1. Take t, = g, for k=0 (so 1, = 1), and V(1) =1 .
Denote 3 =log,b (>0). The condition (6.2) corresponds to (> 1. We have
g(t)=b"%fort,<t<t,., r=k; thus

g(t) = golg "1). (8.1)
Clearly
bR < go(r) <t (8.2)

We start with the study of the operator AT y. Consider the corresponding
operator Aj); its Rayleigh quotient is
P a(0)r %ol dr

I go(t)] 2’ * di

R 7] , forve #°(1y, go)- (8.3)
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It is more convenient to deal with the operator ZB whose Rayleigh quotient is
I IR
[P dr
It follows from (8.2) that the spectral estimates of the operators Ay and Z‘(’) are
equivalent. By the Hardy inequality, Aj is bounded if # 1 and =2, or B =1
and o >2; it is compact for all >0, «a>2. After the substitution
s=s(t) f T P dr, the quotient (8.4) reduces to the quotient which corresponds
to the Dirichlet boundary value problem for the equation —Av” = W(s)v on the

interval Iy = (0, [{"7 #d7), where W(s) = r**~%(s); here (s) is the function
inverse to s(t). So,

Fife] = (8.4)

~ R, if <1,
10:{ -1 .

0,(B—1)"") if B>1,
and

_B))(@=28/01-8)
W(s) = (I+s(1-08)) if B#1,
e~s@=2) if B=1.

If >0 and o > 2, then W is monotone and
WV W(s)ds = / 12 dt < oo,
To 1

This guarantees the standard Weyl type eigenvalue estimate and asymptotics for
the operator Ay and, consequently, for Ay (see [3, Corollary 6.2]):

no(N) := ng(\, A)) < MA"'/2,  where M = M(q, b, &), (8.5)
and
Jim N 200(\) = ¢y (8.6)

Further it follows from (8.1) that the operator Aj is unitarily equivalent to
q k2 - 0‘A Thus, when A is bounded (and thus o = 2), the operators A5 are
uniformly bounded and by Theorem 7.2, ATy is bounded too. For 8>0 and
a>2, A% is compact and

n(\ A% =n(ZNg" 7Y AY), fork=1,2,.... (8.7)
According to (7.4) and (8.7),

nOn A% ) = mo(N) + fj ) (53)

If >2(8+ 1), then replacing each term in the last series by its majorant

quM()\qkm*z))*l/z, we get a convergent series. In this case we obtain
A},V € b1 /2.0, and the asymptotic formula (4.3) is also valid.
If a <2(B+ 1), we derive from (8.8) and (8.5),

n(\ALy)<MNVE N g/, (8.9)
k:ngke-2<m?

If o« <2(B+1), then the sum in (8.9) does not exceed its maximal (last) term
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multiplied by an unimportant constant. This gives

B
a—2

Actually, much more can be sald on the behaviour of n(\, AT y) in this case.
Consider the functions ¢(N\) = Nng(\) and &(N) = Nn(\, AT.y). Multiplying
both sides of (8.8) by A°, we obtain

n(\, ATy) < ONV (AN B /20 (0= — o\ =

>

N[ =

d(\) = o(N) Y e ), for N> 0,
k=1

which implies that
B(N) — ®(Ng* %) = o(N) — b 'o(Ng™?). (8.10)

Here set N=e¢* and denote F(u)=®(N\), f(p) =¢(N) and v = (o —2)Ing.
Then (8.10) reduces to the Renewal Equation,

F(p) — F(p—7) =folw) :=f(r) = b 'f(u—v), for —co<p< oo,

The function f; is zero at —oo and, in view of (8.5), decays exponentially as
u — 0. So, the Renewal Theorem applies; see [12] where the result is given in a
form convenient for our purposes. We find that F(u) behaves asymptotically as a
v-periodic function, say ¥(u), which is bounded and bounded away from zero. So
for 6 >1 we have

n(\, ATy) = N %Y(n(N ")) +o(N?), as N — 0. (8.11)
For a = 2(8 + 1) we derive from (8.9),
n(\ AT y) < MN V28 {k: g"e "< M?y < N2 In(en ).

It is possible to show that the product A'/2(In(1/X))"'n (X, A%.y) tends to a finite
limit as A — 0. There is no need for the Renewal Equation in this case.

The results for the operator Ary are basically the same. For §=<1 the
condition (6.2) is violated and we simply have Ap y = AT y; see §7.1. For 8> 1
the only difference is that the operator A, is well defined and satisfies the
relations (8.5) and (8.6) in a restricted region of the parameters « and (3, namely
for « > 3+ 1; otherwise, the Rayleigh quotient (8.3) is unbounded on the space
H (Iy, 8&o). As a consequence, we find that n(N,Apy) has the Weyl type
behaviour in the same region «>2(8+1) as above, and for 8>1 and
B+ 1<a<?2(B+1) its asymptotic behaviour is described by the formula (8.11);
however, the functions y for the operators Apy and ATy are different because
they are expressed in terms of the functions n(N, Ag) and n (N, Ap) rather than of
their asymptotics.

We pass on to the operator Ap v. Its spectrum can be not only estimated but
explicitly calculated Indeed, let A\ be the single eigenvalue of the 1- d1mens1onal
operator AO ; it can be found by the formula (7.2). The non-zero spectrum of AF v
consists of the eigenvalues \; = ¢ k2-o) Ao, With £ =0, 1,... . The multiplicity of
Ao is 1 and the multiplicity of A, with k=1 is (1 —b l)bk (see Theorem
7. 2(111)) An elementary calculation shows that for o >2(8+1) we have
Ap v 6%/2, this agrees with the result of Theorem 6.3. For a < 2(B+ ) w
get n()\,Ap,V) O(\"®). The asymptotic behaviour of n()\,AF’V) can be
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described by the formula (8.11) with a function ¥ having jumps at the points
—InA. These jumps appear because of the high mu1t1p1101ty of the eigenvalues.

So for o =2(8+1) (that is, 6 =1) we still have n(\, Ap v) =om(N Ary)).
For oo <2(B+ 1) these functions are of equal order at A = 0, which means that
the contribution of the ‘poor’ subspace H(I') into the spectrum of Arp y in this
case is ‘rich enough’.

Other examples are analysed in a similar way and we only outline the calculations.

ExampLE 8.2. Here we take g<1 and ¢ :qk, for k=0,1,..., so again
to = 1. However, this time the tree grows downward. Denote 3 = —log, b, so
F=bp >0

The condition (6.2) is always satisfied. We have g(¢) = b" ¥ for t, 1 <t<t,
and r =k, so again g (1) = go(q “1).

As in Example 8.1, we consider V() =t . The operator Ay is compact if and
only if —o0 <@ <2, and its eigenvalue behaviour is described by the relations
(8.5) and (8.6). Writing down the Rayleigh quotients for A%, we come to the same
equality (8.7). An analogue of (8.8) holds:

n(\ ATy) =no(N) + (1=57") Y g Png(Ng" ).
=1
As a result, we find that if o <2(1—p), then n(\, AT.y) = 0()\71/2) and the
asymptotics formula (4.3) holds. For o >2(1 —f3) one has n(\, AT.y) = O()\_‘S)
with 6 = 3(2 — a) and the asymptotic formula (8.11) with this value of ¢ is
satisfied. For o = 2(1 — ) the function n(\, AT y) has the asymptotic behaviour
of the order ON™'/?In(1/N)).

The same is true for the operator Ay, but in a restricted region < 1 — 3. Namely,
the corresponding function n(\) behaves in a standard way for a < 2(1 — 8); its
behaviour is described by the formula (8.11) (with 6 = 8(2 — &) ") for a > 2(1 — 8);
in the borderline case o = 2(1 — ) one has n(\) = 0()\71/2ln(1/)\)).

The results for the operator Ai':"’ v are parallel to the ones in Example 8.1 and
we do not write them down.

This example includes, in particular, the case o = 0 which corresponds to the
usual (non-weighted) Laplacian on the tree. We see that for this case the function
n(N\,Ar,1) always has the standard Weyl type asymptotics. For the operator AT,
all the three types of the asymptotic behaviour are possible.

ExampLE 8.3. Take t, =k, for k=0,1,..., so all the edges of I' are of
length 1. We have g(r) =b" % on (r, 7+ 1) with r=k; thus g(t) = go(t — k).
We take V(t) = e~ *', with o > 0. The Rayleigh quotient for Aj is

00 - 2
#3v) :fO 8o(t)e O”|'U| dt

I5° go(0)|'|* dt
Denote 8 = Inb; then '~V < g,(t) < ', For any &, 8> 0, the operator A} is
bounded and has standard eigenvalue behaviour.

, forve #°R,, g).
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Further, each operator A is unitarily equivalent to ek “Aj. The formula (7.4)
turns into

n(\, ATy) =no(N) + (1 —b7") i e Png(net®).

k=1

The further analysis required follows the same line as in Examples 8.1 and 8.2.
If > 2B, then the behaviour of n(N, AT y) is standard. For o <28 we find that

n(\, ATy) = ON"%) with & = 8/c; the asymptotics of the type (8.11) with this
value of 6 is valid, and the period of ¥ is a. For a =28, n(\, AT.y) behaves
asymptotically as ¢\~ "21n1/\.

For the operator Ay the results are similar, but, as usual, are valid for the
narrower domain «, 8> 0 with « > (3. The results for Ap v are of the same type
as in Example 8.1.
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