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Introduction

If one studies the transfer of information along the dendrites
of a neuron, one reduces the problem to an equivalent cylinder which
can be represented by a "linear" network (i.e. a half-line, with an
infinite number of ramification nodes with variable coefficients of
connection Yi i=1,2, ...; Yy > o).

On this network, the equation governing the spread of potential

are
aV;/3t = 9° V, /325 - V.
(0.1) v;(8Vy /02,5 (1) - (aVi+1/aZi+1)(0) =0
Vi (1) = vy, (0)
Vi(O) =0
where ¢ represents the time, Zi the coordinates on the branch number i,
Vi the potential on i, Y; ® r§/2/2 rgii 3ory is the radius of each

dendrite of the ith generation. Here we suppose that each branch
has the same length one.

Many authors have studied this equation in the simple case
vy =1 (Rall's condition) see Eceles [E }J, Rall-Rinzel [R-R ] and
also Peskin [P ]. Orthogonal polynomials permit to give explicit
solutions of (0.1) in the general case.

We finish this talk by the formulation of a generalization of
(0.1) and we characterize the spectrum of the Laplacian on a finite
network (sometimes we call this more general model, the "multilinear"

model because it corresponds to non symmetrical dendrites or to
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"contacts" between dendrites of different cells). In this case,
orthogonal polynomials are replaced by the "adjacency" matrix of the
networks. (In the linear model, the adjacency matrix of R, is the
Jacobi matrix of order n-1),.

1. The Dirichlet problem on a network

Let R be a connected topological network without loop, that is, no
line joining a point to itself, composed by

¢ A branches identified to a real interval of length one (A must
be finite or countable)

. Nr ramification nodes
L] Ne external nodes

A, N,

cation nodes and external nodes; more details about topological

Ne denote, respectively the collection of branches, ramifi-
network are given by G. Lumer in [L 1).
We define a weighted L2 space adapted to our problem as follows

Definition 1.1 : Let there be given a sequence of positive real

numbers a = (ai)ieA 5 then
L (R a) = {u = (u,). T us € LZ((O 1)) and
? i‘ieA * Yi 3
fl 2
 a, J fug (x)]7 dx <+eo}
i€A 1,
which is an Hilbert space with inner produtt

1

(1.1) (u,v) 5

= 3 ay J ui(x) vi(xi dx
L°(R,a) i€A o

Remark 1.2 : By ldentification, u; is considered as a function on
[0,11.

Using an appropriate variational method, we obtain a negative
(€0), selfadjoint operator A such that

e 4 : D(a) € LP(R,a) ~ LZ(R,a)

. (A-—l)_1 is a bounded operator on LQ(R,a)
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¢ Every u € D(A) satisfies

(1.23 (éu)i = azui/ax2 {in the distributional sense), ¥ i € A
(1.3) u(N) = 0 ,¥N € N, (boundary condition)
(1.4%) b a.(3u,/9n.)Y(N) = 0, YN € N_ (Kirshoff's law)

. i i i r

1€IN

where Iy is the collection of adjacent branches of N and (aui/ani)(N)
represents the external derivative of u; on the line i at N.

(1.5) u € C(R) (that is, u is continuous through the ramification
nodes).

The problem (0.1) is equivalent to the evolution problem

du/dt = au
(1.6)
u(0)

f (initial condition)

It is well known that the soclution of (1.6) is given by the
semigroup generated by &4

u{t,f) = exp(ta)f

2. The linear model

We can represent this network as a half-line with nodes on NN

1 2 3 4 n
o1 0 1 0 1 0 1 - 01

Y u € D(A), the boundary condition (1.3) is
(2.1) ul(o) = 0
and the transmission condition {(1.4) can be written

(2.2) ay uy' (1) - 1(0) = 0,vie€E WN*.

®i41 P41
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By continuity, we have

(2.3) uﬁl):u (0),vie WN*®.

i+l
In fact, we will approach R by a sequence of graphs Rn which
"gends" to R when n tends to infinity. We obtain R, by cutting R

at the nth branch, its model is

If we consider 4, the operator A defined on the network Rn then

vu € D(An), the boundary conditions are
(2.4) ul(O) = 0 = un(l)
The ftransmission conditions are

(2.5) oy uy'(1) - @ "(0) = 0, vie€e {1,...,n-1}

i+1 %41

(2.6) ui(l) {(0),vie€e {1,...,n-1}.

T E!

In view of (0.1), it suffices to choose @y such that

as/a

LTIV Taking @y = 1, we get

- -1
a; = (Yl Yo ve- Yi—l) , Yiz2
Now, we are able to state the
. - 2 2 #*
Theorem 2.1 : Sp(&n) = {-k" = k € W*}
u{-r: P _,(cos ¥i) = 0}

where each eigenvalue is simple.

Proof : The eigenvector of Ay corresponding to the value -x,x > 0,
has the form

ui{x) = Cl,i cos Vv x + CE,i sin v x, x € [0,1 13 1 =1, ..., n

The constants Cq 3 and P will be determined by the conditions
3 b
(2.4), (2.5) and (2.6), that is
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(2.7) ¢y q ¢ 0 = 4 n cos Vi 4+ 5 n sin Vv
(2.8) Yi(_cl,i sin Vv + ¢, 3 cos Vi) "o 541 =0, i=1,...,n-1
(2.9) cy,y cos Vi o+ ¢y 3 sin Vi - 1,541 20, i =1, ...,n-1

i) For sin VX # 0, we have by (2.9) and (2.7) with the convention

Ci,ne1 - 0
Ca »
(2.10) 02i=_1.;_1-:i_01i99..8_£ i=1, ...,n
> sin VX > sin A
Replace P and 02,i+1 in (2.8) for i = 1, , n-1, we find
{(2.11) Cl,i+2 - (1 + Yi)COS Vﬁ‘cl,i+1 vy q.4 =0, i=1,...,n~1.
In order to get C1 140 from (2.11), we proceed by iteration,
3
obtaining :
¢y 3 = (1 + yy)cos V& ¢y o 7 P, (cos vi}cl,z
- 2 - -
eq,y = ({1 + v+ yp)e08” W = yp)ey 5 =Py(cos Yh)ey ,
e = » 4 =
(2.12) q3 Pi_z(cos \/"X)cl’2 - 1, «.., n+l

where (Pi(x})iem is an orthogonal polynomial sequence which satis~
fies

Pi(x) - (1 + yi) X Pi*i(x) * vy Pi_2(x) = 0
(2.13)
P_l(x) = 0 3 Po(x) =1 ;4i=1, 2,

The boundary condition ¢ = 0 gives

1,n+1

(2.11) P _q(cos ¥X) = 0

Since each eigenvalue of Pn— is simple ( {C ] theorem 5.2, p. 27),

1
the first part of the theorem 1is proved.

ii) For sin vA = 0, i.e. A = k% %%, k € N*; (2.7), (2.8) and (2.9)

can be written



_ _ PRY:
(2.15) €y,q = 0 = C1,n (-1)
(2.16) . c (—1)k e 0 i=1 n-1
: Y 2,1 2,1+1 ? 2 2
(2.17) ¢, (1% - ¢ =0 ;1i-=1 n-1
: 1,1 1,i+1 3 s >
We deduce very easily that
(2.18) ¢y 3 =0 i=1, ..., n
(2.19) c = (-1 c i=1 n-1
: 2,i+1 Yi C2,i 2 ot

iii) We finish the proof by showing that 0 is never an eigenvalue of
An.
Suppose ui(x) s a;x 4 bi ; 1i=1, ..., n: x €[0,1],is an eigenvector
of &, corresponding to 0. The conditions (2.4), (2.5) and (2.6) can
be formulated

(2.20) b

n
<
]
V)
+
o

1 n n
(2.21) Yi 8§ T 8544 0 ;4i=1, ..., n-1
(2.22) ag + by = by, s i=1, ..., n-t

Iterating (2.21), (2.22); we get

(2.23) a5 T Yq Yp ove- Yioq B4 3 i=2, 3%, ..., n
(2.24) by = (1 + yq # Yq¥p Foeee FoYg e Yi—2)a1 31=2,3,...,n0
The condition a, + bn = 0 becomes

(1 + Yq + Y4Yo + ...t Yq e Yp-o + Yq v Yn—l)ai =0

This equation implies that a; = 0 because vy > 0 for every i.
By (2.23), (2.24), we conclude the nullity of uy for every 1i.
Q.E.D.
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Since the zeros of Pn— form the spectrum of the step function

1

wn-i defined by the Gauss quadrature (see T.S. Chihara [C 1), we

can see that the relation between the spectrum of A and the spectrum

of the distribution function ¢ associated to the 0.P.S. {Pi}ieﬂq
(i.e. ¢ satisfying f+1 Pi(x)Pj(x)dw(x) = 5ij) is the following

Theorem 2.2 : Sp(a) N (-(k+1)%8?, ~Kk°x°)

= {=(JX + kn)° : cos VX € Sp(y) N (-1,1)}, Y k € TN.

3. The multilinear model

Let R be a finite network as defined in section 1, then we have

Theorem 3.1 : Sp(a) = S, U S

1 > where

* 5, = {"k2ﬂ2 k € W}, the multiplicity »

being given by

with multiplicity r

k3 k

(a) If R has at least one external node,
r = A-N_, ¥Yke N*
r

r =0 {(x = 0 is not an eigenvalue)

(b) If R has no external node, r, = 1 and

(1) r,. = A-N, +2,VkE€ WN* , when all cycles are even

(11) vy = A - N, + 2
Toypq = AN, YKE WN*, when there exists one odd cycle.
® S, = {-12 : cos VaeSp(C) N (-1,1)}, where C is the "adjacency"

2
matrix of the network, which is a N, X N, matrix defined by
j.k €N

3 r 5 o

_ J -
(3.1 (C)jk = 85
(z as)

1€Ij 1€Ik

The i1dea 1s to bbtain a recurrence formula of type (2.11) and
write these relations in matrix form. For example (2.11) can be
written
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(3.2) BC=0 where
. . n-1
(i) B = (bjk)j,k=1 and
bjj = -(1 + yj)oos VA o33 =1, ..., n-1
bjj+1 =13 bj+1,j = Y541 3 =4, ..., n=2
by =0 if 1i-x| = 2
. . n
(11) ¢ = (eq,5)520

By symmetrization, we obtain :

(3.3) {C - cos VX)D = 0 where
(1) €= (e )3 4oy and

55 50 = o5y if 13-k} » 25 j,k =1, ..., n-1

Cien T Cyen g = Crg/ ey NP5 g = 1,02
(i) D = ((ay (1 + Yi-i))1/2 01,1)2:2

which means that D is an eigenvector of C (the Jacobi matrix of order
n-1) with eigenvalue cos VX.

From theorem 3.1, we deduce the

Theorem 3.2 : Let {An}::obe the spectrum of A on R, then for every
>0

oo At N. - A
(%.4) z e B = A + E 5 +
nso 2 vrt
n _ (em-1)°
1 t T
z {e (tr T, (CY+A-N_) + e (tr T (C))}
V7t memW® 2m r 2m-1 s

o0

where {Tm(x)}m:o denotes the Techebychev polynomials of the first kind
and tr B the trace of the matrix B.
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Proof : We give the proof when R has an external node (it is very
similar in the other cases).

By thecrem 3.1, we know that -k2n2 is an eigenvalue of A with multi-
plicity A-N, ,k € ¥, N

When R has an external node, the eigenvalues {”k}k=1 of the matrix C
are in the open interval (-1,+1)}, so

%0 At 00 2 2
: e = 3 (A—Nr)e_k mt
n=0 k=1 5
Np -{arc cos My # 2m 7Y~ ot
+ Z z e
meZ k=1

By the Poisson summation formula, we prove that

3 Kt RN S 5 oK/t
k=1 N 2 vt vnt kEW*
r ~(arc cos v * 2mm)2 &
z z e =
mEZ k=1
N
N 2
r 1 }:r s o~ /4t

——ee cos m arc cos u
2 vrt vt k=1 meN*

The spectral mapping theorem implies

N, Ny,

X cos marc cos y, = Z T {u,) = tr T_{(C)

k=1 Koy MK m
o0 r t A - N A - N

So, we get z e - - ; ro, r

n=o 27t

A - N 2 N 2

y — T b} ek ty ks + 1 z e M /httr Tm(C)
Vvt keIN* 2t Vrt mEMW*

Simplifying , we can obtain very easily the relation (3.4).

Remark 3.3 : The series (3.4) was given by J.P. Roth in [R 1, where
the second member depends on the geometry of the graph. So we can
give a geometric interpretation of tr Tn(C> for every n.
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