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Introduction 

If one studies the transfer of information along the dendrites 

of a neuron, one reduces the problem to an equivalent cylinder which 

can be represented by a "linear" network (i.e. a half-line, with an 

infinite number of ramification nodes with variable coefficients of 

connection ?i ' i : I, 2, "''; Yi > 0). 

On this network, the equation governing the spread of potential 

are : 

~Vi/~t = 2 2 V i /~Z~ - V i 

(0.I) ~i(~Vi/~Zi)(1) - (~Vi+i/~Zi+1)(0) = 0 

Vi(1) : Vi+l(O) 

v1(0) : 0 

where t represents the time, Z i the coordinates on the branch number i, 

V i the potential on i Yi = r~/2/2 r3/2 ' i+1 ; r i is the radius of each 

dendrite of the i th generation. Here we suppose that each branch 

has the same length one. 

Many authors have studied this equation in the simple case 

~i ~ i (Rail's condition) see Eccles [E ] , Rall-Rinzel [R-R ] and 

also Peskin [P I . Orthogonal polynomials permit to give explicit 

solutions of (0.1) in the general case. 

We finish this talk by the formulation of a generalization of 

(0.i) and we characterize the spectrum of the Laplacian on a finite 

network (sometimes we call this more general model, the "multilinear" 

model because it corresponds to non symmetrical dendrites or to 
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"contacts" between dendrites of different cells)~ In this case, 

orthogonal polynomials are replaced by the "adjacency" matrix of the 

networkS. (In the linear model, the adjacency matrix of R n is the 

Jacobi matrix of order n-l). 

1. The Dirichlet problem on a network 

Let R be a connected topological network without loop, that is, no 

line joining a point to itself, composed by : 

• A branches identified to a real interval of length one (A must 

be finite or countable) 

• N ramification nodes 
r 

• N e external nodes 

(A, Nr, N e denote, respectively the collection of branches, ramifi- 

cation nodes and external nodes; more details about topological 

network are given by G. Lumer in [L ]). 

We define a weighted L 2 space adapted to our problem as follows : 

Definition I.I : Let there be given a sequence of positive real 

numbers ~ : (~i)ie A ; then 

L2(R,~) = {u : (ui)ie A : u i • L2((0,1)) and 

t I 

~i ] lui(x)l 2 dx<+-} 
i•A o 

which is an Hilbert space with inner product 

1 

(1.1) (u'v)L2(R : ~ ai I ui(x) ~ dx 
,~) ieA o 

Remark 1.2 : By identification, u i is considered as a function on 

[0,i ]. 

Using an appropriate variational method, we obtain a negative 

(~ 0), selfadjoint operator A such that : 

• a : D(A) c L2(R,~) ~ L2(R,~) 

• (A-I) -I is a bounded operator on L2(R,~) 



• Every u • D(A) satisfies : 

(1.2) 

(1.3) 

(1.4) 
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(Au) i : ~2ui/~x2 (in the distributional sense),V i e A 

u(N) : 0 ,v N E N e (boundary condition) 

~i(~ui/~ni)(N) : 0, VN • N (Kirshoff's law) 
i•iN r 

where I N is the collection of adjacent branches of N and (~ui/~ni)(N) 

represents the external derivative of u i on the line i at N. 

(1.5) u • C(R) (that is, u is continuous through the ramification 

nodes). 

The problem (0.1) is equivalent to the evolution problem : 

d~/dt = AU 

(1.6) 

U(0) : f (initial condition) 

It is well known that the solution of (1.6) is given by the 

semigroup generated by A : 

u(t,f) : exp(tA)f 

2. The linear model 

We can represent this network as a half-line with nodes on ~ : 

1 2 3 4 n 
0 I 0 1 0 1 0 1 . . . . . .  0 i "'" 

V u e D(A), the boundary condition (1.3) is 

(2.1) ui(0) : 0 

and the transmission condition (1.4) can be written 

(2.2) ~i ui'(1) - ~i+1 Ui+l'(0) : 0 , Vi • IN*. 
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By continuity, we have : 

(2.3) ui(1) : Ui+l(0), vi e m ~ 

In fact, we will approach R by a sequence of graphs R n which 

"tends" to R when n tends to infinity. We obtain R n by cutting R 

at the n th branch, its model is : 

1 2 3 n 
0 1 0 1 0 1 ......... 0 1 

If we consider A n the operator A defined on the network R n then 

Yu • D(an) , the boundary conditions are : 

(2.4) Ul(0) : 0 : Un(1) 

The transmission conditions are : 

(2.5) ~i ui'(1) - ~i+l Ui+l'(0) : 0, vi • {l,...,n-1] 

(2.6) ui(1) = Ui+l(0), ¥i • {1,...,n-1}. 

In view of (0.1), it suffices to choose ~i such that 

~i/ei+l : Yi" Taking ~1 = 1, we get 

~i = (Y1 Y2 ¥i_1 )-1 v i ~ 2 • . .  ~ • 

Now, we are able to state the 

Theorem 2.1 : Sp(a n) = {-k 2 7 2 : k • ~} 

u {-I : Pn_l(COS "v~) : 0 } 

where each eigenvalue is simple. 

Proof : The eigenvector of A n corresponding to the value -l,l > 0, 

has the form 

ui(x) = Cl, i cos ~ x + c2,i sin x~ x, x • [0,i ] ; i : i, ..., n . 

The constants Cl, i and c2, i will be determined by the conditions 

(2.4), (2.5) and (2.6), that is : 
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(2.7) Cl, 1 = 0 = Cl, n cos V~ + c2, n sin ~ 

(2.8) yi(-Cl,i sin V~ + c2, i cos ~) - c2,i+ 1 : O, i : 1,...,n-1 

(2.9) Cl, i cos ~ + c2, i sin ~rf _ Cl,i+1 ~ O, i : 1, ..., n-1 

i) For sin ~/~ i 0, we have by (2.9) and (2.7) with the convention 

Cl,n+ 1 : 0 : 

c1~i+1 cos ~/~ 
= ...... ; i = 1, ..., n 

(2.10) c2'i sink - cl'i sin ~/~ 

Replace c2, i and c2,i+ 1 in (2.8) for i = 1, ..., n-l, we find : 

(2.11) Cl,i+ 2 - (1 + Yi)cos ~ Cl,i+ 1 + Yi Cl,i : O, i = 1,...,n-1. 

In order to get Cl,i+ 2 from (2.11), we proceed by iteration, 

obtaining : 

(2.12) 

Cl, 3 : (1 + Y1)COS ~ Cl, 2 : PI(COS ~)Cl, 2 

Cl, 4 = ((1 + yl)(1 + Y2)COS 2 ~ - Y2)Cl,2 = P2(cos ~)Cl, 2 

Cl, i = Pi_2(cos ~)Cl, 2 ; i = 1, ..., n+l 

where (Pi(x))i~ is an orthogonal polynomial sequence which satis- 

fies : 

(2.13) 

Pi(x) (1 + yi ) x Pi_l(X) + Yi Pi-2 (x) = 0 

P l(X) = 0 ; Po(X) = 1 ; i = 1, 2, ... 

The boundary condition Cl,n+ 1 = 0 gives : 

(.2.14) Pn_l(COS ~) = 0 

Since each eigenva~ue of Pn-1 is simple ( [C ] theorem 5.2, p. 27), 

me first part of the theorem is proved. 

ii) For sin ~ : 0, i.e. I = k 2 ~2 k ~ ~; (2 7) (2.8) and (2 9) 

can be written : 
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(2.15) 

(2.16) 

(2.17) 

Cl, 1 = 0 : Cl, n (-i) k 

Yi c2,i (-1)k - c2,i+1 = 0 ; i : 1, ..., n-1 

Cl,i(-1)k - Cl,i+ 1 : 0 ; i : 1, ..., n-1 

We deduce very easily that : 

(2.18) Cl, i : 0 i : 1, ..., n 

(2.19) c2,i+1 : (-1)k Yi c2,i i : 1, ..., n-1 

iii) We finish the proof by showing that 0 is never an eigenvalue of 

A n • 

Suppose ui(x) = a i x + b i ; i = i, ..., n : x e [0,1],is an ei~envector 

of A n corresponding to 0. The conditions (2.4), (2.5) and (2.6) can 

be formulated : 

(2.20) b I : 0 = a n + b n 

(2.21) Yi ai - ai+l : 0 

(2.22) a i + b i : bi+ 1 

; i = i, ..., n-1 

; i = I, ..., n-1 

Iterating (2.21), (2.22); we get 

(2.23) 

(2.24) 

The condition a n + b n = 0 becomes 

ai : Y1 Y2 "'" Yi-i a1 ; i = 2, 3, ..., n 

b i = (i + Y1 + 71Y2 + "'" + ~I "'" Yi-2)al ; i =2,3,...,n 

(I + Y1 + YIT2 + "'" + 71 "'" Tn-2 + T1 "'" Tn-1)al = 0 

This equation implies that a I = 0 because Yi > 0 for every i. 

By (2.23), (2.24), we conclude the ~Lullity of u i for every i. 

Q.E.D. 
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Since the zeros of Pn-i form the spectrum of the step function 

¢n-1 defined by the Gauss quadrature (see T.S. Chihara [C ]), we 

can see that the relation between the spectrum of A and the spectrum 

of the distribution function ~ associated to the O.P.S. {Pi) ie~ 

(i.e. ~ satisfying I~ I Pi(x)Pj(x)d~(x) = c i ~ij) is the following : 
1 

Theorem 2.2 : Sp(A) n (-(k+l)2j 2, -k2w 2) 

: { - ( d Y  + k ~ )  2 : cos  vTe S p ( ¢ )  n ( - 1 , 1 ) } ,  v k e IN. 

3. The multilinear model 

Let R be a finite network as defined in section 1, then we have 

Theorem 3.1 : Sp(A) = S 1 u S 2 where 

• S 1 = {-k2~ 2 with multiplicity r k ; k e ~}, the multiplicity r k 

being given by : 

(a) If R has at least one external node, 

r k = A - N r , V k e ~* 

r ° = 0 (X = 0 is not an eigenvalue) 

(b) If R has no external node, r : 1 and 
o 

( i )  r k = A - N r + 2 ,  g k e N *  , w h e n  a l l  c y c l e s  a r e  e v e n  

(ii) r2k : A - N r + 2 

r 2 k _ l  = A - N r ,  V k e N * ,  w h e n  t h e r e  e x i s t s  o n e  o d d  c y c l e .  

• S 2 = {-~ : cos ~eSp(C) n (-1,1)) , where C is the "adjacency" 

matrix of the network, which is a N r X N r matrix defined by : 

j,k~ N r : 

i~ljnl k 
(3.1) (C)jk = - ~j 

112 )112 k 
( ~ ~i) ( Z ~i 
ielj ieI k 

The idea is to Obtain a recurrence formula of type (2.11) and 

write these relations in matrix form. For example (2.11) can be 

written : 
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( 3 . 2 )  

(i) 

(ii) 

By symmetrization, we obtain : 

(3.3) 

(i) 

B C = 0 where 

(b ~n-1 
B = , jk,j,k=l and 

bjj .... (1 + yj)cos V7 ; j = 1, ..., n-1 

bjj+l = 1 ; bj+l, j = Yj+I ; j = 1 .... , n-2 

b j k  = 0 i f  t j - k  I > 2 

n 

C : ( C l , i ) i =  2 

(C - cos V~)D = 0 where 

n-1 
C = (Cjk)j,k= 1 and 

cjj = 0 -- Cjk if lj-kl > 2; j,k = 1 .... , n-1 

= cj+ i j = (yj/(l+yj)(l+yj+l)) 1/2 ; j = 1,...,n-2 c j j+l 

(ii) D : ((~i(1 + yi_1)) 1/2 Cl,i )n 
i=2 

which means that D is an eigenvector of C (the Jacobi matrix of order 

n-l) with eigenvalue cos V~f. 

From theorem 3.1, we deduce the 

o o  

Theorem 3.2 : Let {In}n=obe the spectrum of A on R, then for every 

t > 0 : 

~ t n A ( 3 . 4 )  Z e = 
n=o 2 VTY 

2 
m 

1 Z {e t (tr T2m(C) +A-N r) 
m e ~  ~ 

N r - A 
+ + 

2 

( 2 m - 1 )  2 
Tt  

+ e (tr T2m_I(C))} , 

where {Tm(X)}m: ° denotes the Tchebychev nolymomials of the fiPst kind 

and tr B the trace of the matrix B. 
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Proof : We give the proof when R has an external node (it is very 

similar in the other cases). 

By theorem 3.i, we know that -k2w 2 is an eigenvalue of a with multi- 

plicity A-N r , k E~*. Nr 

When R has an external node, the eigenvalues {~k)k=l of the matrix C 

are in the open interval (-1,+1), so 

~n t ~ e_k22 
e = Z (A_Nr) t 

n:0 k:l 
N r -(arc cos Pk + 2m ~)2 t 

+ ~ ~ e 
meZ k=l 

By the Poisson summation formula, we prove that 

-k2~2t 1 1 i 
e : - 5 + - -  +~-- 

2 V~ ~ kelN ~ 
k=l Nr -(arc cos Pk + 2 mw)2t 

~ e = 
meZ k = 1 

-k2/t 
e 

N 
Nr 1 r _m2/4t 

- - + - -  ~ ~ e cos m arc cos Pk 
2 ~ ~ k:l me~ ~ 

The spectral mapping theorem implies : 

So, we get : 

N N 
r r 

cos m arc cos ~. = 
k=l a k:l 

X t A - N 
n r 

2 
n:o 

A - N r -k2/t Nr 1 -m2/4t 
+ Z e + ~ + ~ Z e tr Tm(C) 

ke]N ~ 2~/~ ~ me]N* 

Tm(P k) = tr Tm(C) 

A - N 
r + 

2~Y 

Simplifying , we can obtain very easily the relation (3.4). 

Remark 3.3 : The series (3.4) was given by J.P. Roth in [R ] , where 

the second member depends on the geometry of the graph. So we can 

give a geometric interpretation of tr Tn(C) for every n. 
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