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1 INTRODUCTION

Already in 1892, in a book about spectrocospy, A. Sinister raised the
question "... how to find a shape of a bell by means of the sounds
which it is capable of sending out." [15] The inverse spectral problem
hidden behind the physical context was first formulated in a mathe-
matical setting by H. Weyl indirectly in 1911 and by S. Bochner in
1950, cf. [15]. Finally, in 1966, M. Kac published the famous paper
[16] intitled "Can one hear the shape of a drum?" After a separation
ansatz of the wave equation, the problem reads in mathematical terms
as follows. Suppose that two bounded domains QI and f^ in Rn are
isospectral i.e. the spectra of their Laplacian under the homogeneous
Dirichlet boundary condition (D) or under the Neumann boundary
condition (N) coincide counting multiplicities. Does this imply that
Oi and 1^2 are isometric, i.e. do they coincide up to rotations, reflec-
tions or translations?

= a

Evidently, for n = 1 the answer is affirmative, as well as the inverse im-
plication is true. In fact, a negative answer to the question has been
given earlier on compact riemannian manifolds. In 1964 J. Milnor
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[19] already gave examples of isospectral nonisometric 16-dimensional
tori, while in 1971 M. Berger, P. Gauduchon and E. Mazet [9] showed
that two-dimensional isospectral tori are isometric. Finally, for any
n > 2, M.-F. Vigneras [26] (1980) constructed rz-dimensional com-
pact isospectral nonisometric manifolds. For euclidian domains, H.
Urakawa [25] (1982) gave a counterexample in E4. But for plane do-
mains the problem remained unsolved until 1992, when C. Gordon,
D. Webb and S. Wolpert [13], [14] and P. Berard [8] showed that one
cannot determine the shape of a domain by the spectrum of its Lapla-
cian, cf. also [11]. A distinctive feature of their counterexamples is
that the domains involved are all polygonal. As it stands, the problem
seems not yet to be solved for smooth domains.

For ramified spaces of dimension greater than 1, as treated e.g.
in [2], [7], [18], [22], [23], the inverse spectral problem is settled by the
negative answer for higher dimensional domains. But, it still remains
to solve the problem on ramified networks with one-dimensional bran-
ches. As basic multistructures, these networks enjoyed an increasing
interest during the last twenty years, see e.g. [1], [3]-[6], [17], [18],
[21], [22] and [24]. In the present paper, we show that, in contrast
to the one-dimensional domain case, one cannot recover the shape
of a network from the spectrum of its Laplacian under the continu-
ity condition at ramification nodes and the Kirchhoff condition at all
vertices. Thus, in that regard, networks behave like higher dimen-
sional objects. Moreover, we shall discuss the eigenvalue asymptotics
as well as the distinction of network immanent eigenvalues from those
stemming from single branches.

2 NETWORKS AND VERTEX TRANSITION

All networks in this paper are supposed to be finite C2-networks in
the sense of [3] Chapter 2. By definition, a finite C2-network G is
the union of the edges kj of a topological graph F in Rm with finite
sets of vertices V = {ui|l < i < n} and edges K = {kj\l < j < N}.
Moreover, the arc length parametrizations TTJ are supposed to belong
to C2([0,/j],M.m). The arc length parameter of an edge kj is denoted
by Xj. The topological graph F belonging to G is assumed to be
simple and connected, i.e. F = (V,K) consists in a collection of
the supports of N Jordan curves kj with the following properties:
Each kj has its endpoints in the set V, any two vertices in V can be
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connected by a path with arcs in JC, and any two edges kj ^ kh satisfy
kj n kh C V and \kj fl kh < 1. Endowed with the induced topology G
is a connected and compact space in ]Rm. The valency of each vertex
is denoted by 7; = 7(i>j) = \{k G K\Vi G fc}|. We distinguish the
ramification nodes Vr = {vi G V\^i > 1} from the boundary vertices
Vb = {vi G V|7i = 1}. The orientation of F and G is given by the
incidence matrix D = ( d i j ) n X N with

0 otherwise.

The adjacency matrix 2t(F) = (&ih)nxn of the graph F is defined by

_ ( 1 if Vi and Vh are adjacent in F,
10 else.

Note that 2l(F) is indecomposable since F is connected. Moreover, we
set

f a if Ic Pi T7 — /•?)• <)!i 1/ • 7 \ _ J * ^ H f i s I l K — 1 c / 2 , c / / j j ,

I 1 otherwise.
For further graph theoretical terminology we refer to [10] and [27].
For a function u : G —> R we set Uj := u o TTJ : [0, lj] —t E and use the
abbreviations

d
t):=Uj(^(v^ d]Uj(v>):= —— etc.

As special subspaces of C(G) we introduce for 1 < k G N the Banach
spaces Ck(G) endowed with the norm \u\k G = X^7=i l ^ j l c ^ f f o ri) ̂

Ck(G] = {u£ C(G] | Vj G {1, ..., JV} : Uj- G C f e([0, /,])},

where the Banach space C f e([0, / j ] ) is endowed with the usual Ck~-
norm. For the Hilbert spaces Hk := Y[j=i Hk[0, lj] endowed with the
usual H k product norm, the Sobolev embedding theorem permits to
evaluate the components at vertices for k > 1. Thus,

nk(G) := {(Wj)Nxl G Uk\ Bu G C(G)Vj G {1, ...,N} :Wj=uo T

is a closed subspace of "Hk for k > 1.
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As the basic geometric transition condition at ramification nodes we
impose the following continuity condition

Mvi e Vr : kj n ks = {vi} =>• Uj(vi) = us(vi), (1)

that clearly is contained in the condition u G C(G). Moreover, at
each vertex Vi G V we impose the classical Kirchhoff condition

N
Mi G {!,..., n} : d i j d j U j ( v i ) = Q. (K)

In fact, the Kirchhoff condition (K) generalizes the Neumann bound-
ary condition on an interval to a vertex transition condition in net-
works. For operators and function spaces on G, let the super- or
subscript K indicate the validity of condition (K). Accordingly, the
spaces C]f(G), C2

K(G) and U2
K(G) are well defined.

3 THE LAPLACIAN ON A NETWORK

The canonical Laplacian on a C2-network G is defined as the operator

A* = (u H. (5|^)NX1) : C*K(G) -» f [ C ( ( Q t l j ] )

or as an operator A^ : H2
K(G) — > H. Owing to the results in [4],

<T(AQ) is real and infinitely countable without finite accumulation
point, and H. possesses an orthonormal basis of eigensolutions of AG
in C"jf(G}. Moreover, we note that there are no positive eigenvalues:

< 0,

since due to (1) and (K):

N ,\. n N
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Of course, one can also consider the Laplacian AG under other tran-
sition conditions, especially under replacing the Kirchhoff condition
by the homogeneous Dirichlet condition at some vertices. But, as it
stands, in view of the results in [3]-[5], the present case is the essential
model case that can also help in treating other ones.

Let us precise the inverse spectral problem in question. By defi-
nition, two networks G\ and G^ are isometric (Gi = G^) if there is an
homeomorphism H : G\ — y GI such that for each edge k C GI , H k

is an isometric diffeomorphism onto some edge of G^. In particular,
H is length preserving. Moreover, the underlying abstract graphs FI
and F2 are called isomorphic as graphs (Fi — F2 ) if there is a bijec-
tion V(Fi) — } V(F2) that preserves the adjacency relation between
vertices. If GI and GI are isometric networks, then the underlying
abstract graphs FI and F2 are isomorphic as graphs.

PROBLEM Suppose that for two networks G\ and G2 in Rm the
spectra of A^ and A^ coincide counting multiplicities. Does this
imply that GI and G% are isometric?

^ G^G2 (2)

For the underlying abstract graphs FI and F2; we are led to the reduced
problem

±> F^F2 (3)

In Section 4, we shall show that the implication (3) is wrong, which
in turn shows the same for (2). We can restrict ourselves to the case
where all edge lengths are equal:

Vj €{!,..., #}:/,- = ! (4)

In fact, under condition (4), the definition of a C2 -network implies
that GI = GZ -4=r- FI ~ F2. The eigenvalue problem for A§ reads

0 ^ u G C2
K(G] and d]uj = -\Uj for 1 < j < N. (5)

Following the transformations in [3], we formulate Problem (5) as an
equivalent matrix differential boundary eigenvalue problem incorpo-
rating the adjacency structure of the network. For that purpose we
recall that the Hadamard matrix product is defined as

>nXn '
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For a function u : G —> R we set for x E [0,1]

and

Thus,

/ r a x l '

U(0) =

U = (uih) nXn ' e = en = (1)rexl •

(5) (6)

and (5) becomes equivalent to the following differential boundary
eigenvalue problem (6) for the matrix U:

f uih e C2([0,1]) forl<i,h<n (6.1)

g — Q - ^ ^ — Q £or ]_ < j h < n (6.2)

U" = -AU in [0,1] (6.3)

U(0) = <^e* *2l (continuity in K) (6.4)

U*(x) = U( l -x ) for a r e [0,1] (6.5)

I U'(0)e = 0 (K) (6.6)

We set
$ := U(0) = (pe* * 21 Vt := U'(0)

and recall the following elementary rules for a n x n-matrix M:

(Af * G</?*) e = Mif> (M * 9?e*) e = Diag(Af e)y (7)

For A = 0, any solution U of (6) satisfies U(x) = $ + x ($* — $) and
($* — $) e = 0, which implies Diagj (7"1) 2l(F) </? = y>. Since 21 is
indecomposable, the Perron-Frobenius Theorem [20] yields that 0 is
a simple eigenvalue of A^ with eigenfunctions U = const.21
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For A > 0, a fundamental solution of (6.3) is given by

T T / x / ATx ^ sin(xA/A)UYo^ — cosfrv Al$ 4- —————-\& f8l*-" V-tv — IAJ&^J, V ^ J ^ T ^ ,— * l^o;

In the case sin A/A 7^ 0, (6.5) and (6.6) yield

—— /— I
sin A/A ^

and using (7)

A/A

(e<p* — cos A/A </?e* * 21,

(21 *e<p*)e- cos's/A (Sl*<^e*)e = 0.

Thus we are led to the following characteristic equation

= cos \/A Diagi (7,-) (p. (9)

This is part of the following theorem that we recall from Section 5 of
[3] in the special case (4) here.

THEOREM 1 Under condition (4) and using the above definitions,
A G cr(— AQ) iff either (p = 0, \& 7^ 0 and sin vA = 0 or (p is an
eigenvector belonging to the eigenvalue cos A/A o/ the row-stochastic
matrix

Moreover, the multiplicities m(A) are

m(0) = 1,

m(A) = dimker ( Z — cos A/A~In j , z/ sin A/A ^ 0,

m (7r24fc2) =N-n + 2,

m (7T2(2k + I)2) = N - n + 2, ifTis bipartite,

m (ir2(2k + I)2) = N — n, i f T is not bipartite.
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Note that the multiplicities depend only on n, N, 71,... , 7^ and the
adjacency matrix 21. Thus, the spectrum of the Laplacian A^ is en-
tirely determined by combinatorial quantities of the underlying graph
F. As an immediate consequence of Theorem 1, we note the following
result contained in the results [3] by von Below 1985 and indepen-
dently shown by Ali Mehmeti [1] 1986 and by Nicaise [21] 1987. Let
b(z) denote the number of eigenvalues of — A^ in [0,z]. Using the
above multiplicity formulae, we find 6((2yrA;)2) = 2Nk + I and

,. b(x) Nhm —
37-K30 ^Jx 7T

This yields the

COROLLARY 1 Let {\k\ k G N} denote the monotonically increas-
ing sequence of eigenvalues of — A^ under condition (4). Then

fc->oo k2 ~ N2 '

In view of the results of the next section it will be of interest to de-
termine common invariants of isospectral networks. Here we mention
only the following

COROLLARY 2 Under condition (4), isospectral networks have the
same number of vertices and the same number of edges. Moreover,
networks that are isospectral with a bipartite network are also bipartite,

Proof: By the Lemma in Section 5 of [3], the eigenvalues of Z are real,
Rn possesses a basis formed by eigenvectors of Z, and the underlying
graph F is bipartite iff —1 6 er(Z). By the Perron-Frobenius Theorem
[20], all eigenvalues of Z of modulus 1 are simple. Let G\ and GI
be two C2-networks in ]Rm and indicate all corresponding entities
by 1 and 2 respectively. Now suppose that a (A^ ) and a (A^ )
coincide counting multiplicities. Then apply Theorem 1 in order to
conclude cr(Zi) = cr(Z2). This shows the last assertion. Furthermore,
the multiplicities formulae in Theorem 1 imply

n\ y dimker (Zi — /^In) = 2_. dimker (Z? — /J,In] =
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and, finally, NI = N2. D

Thus, under condition (4), for subclasses of networks that are char-
acterized only by the number of vertices n or only by the number of
edges JV, the implications (2) and (3) are true within the subclass.
For instance, isospectral paths are isometric, isospectral circuits are
isometric, or isospectral star shaped networks, i.e. \Vr\ = 1, are iso-
metric.

4 COUNTEREXAMPLES

Recall that a graph F is called 7~regular if all vertex valencies 7; are
equal to 7. In this case the characteristic equation (9) reads

(10)

Combining (10) with the Lemma in Section 5 of [3], we obtain the

COROLLARY 3 Suppose that F is a regular. Then the following
conditions are equivalent:

(a) F is bipartite.

(b) - l e < r ( Z )

(c)

(d)

COROLLARY 4 Suppose, that F is a regular. If F is bipartite or a
circuit of odd length, then

// F is neither bipartite nor a circuit of odd length, then

7cosJ (7(-A£)=<7(2t(r))U{-7}.
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Proof: The regular nonbipartite connected graphs fulfilling N = n are
exactly the circuits of odd length. Now apply Theorem 1, (10) and
Corollary 3. D

In the regular case, the multiplicities are m(0) = 1 and for A > 0

m(A) = dim ker 2l(T) - 7 cos \/A In , if sin V\ ^ 0,

fN-n + 2, ., . rr .
= ^ AT j " smv A = 0,[_ JV — n,

and do only depend on n, N and the adjacency matrix 21. This can be
applied in order to find two isospectral networks GI and G? with un-
derlying topological graphs FI and ̂ , respectively, such that the cor-
responding problems (5) have the same eigenvalues counted according
to their multiplicities, while FI and F2 are not isomorphic as abstract
graphs. We only have to find graphs FI and F2 that are regular,
nonisomorphic, and isospectral as graphs, i.e. cr(2t(Fi)) = <j(2l(F2))
with identical multiplicities. A large variety of such examples can be
obtained with the aid of a result of A. J. Hoffman, see e.g. Theorem
6.1 in [12], which states that for any natural number M there is an
integer no such that for any n > no there exist M nonisomorphic
isospectral regular connected graphs with n vertices. Obviously, all
these must have the same valency. As a concrete example, we display
the following two 4-regular graphs FI and F2 with n = 12 and N = 24

Fig.l Two isospectral networks that are not isometric.

as depicted in Fig.l. The corresponding networks GI and GI can be
easily realized under condition (4). We readily compute

a (2t(ri)) = a (2l(F2)) = (4,2,2, 2,0,0, 0, -2, -2, -2, -2, -2).
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But, both graphs are not isomorphic, since the left one FI is planar
while the right one F2 is not realizable in R2, see Fig.2, where in each
graph the two half-moon like vertices have to be identified. On the

Fig.2 The nonisomorphic under lying graphs.

other hand, by Theorem 1, (10) and (11) we conclude that the spectra
a (A|j ) and a (A^ ) coincide counting multiplicities. Thus, we can
resume:

THEOREM 2 In general, the shape of a C2-network G cannot be
reconstructed from the spectrum of its Laplacian A.@. There exist
pairs of regular isospectral networks that are not isometric.

The same phenomenon can occur when the underlying abstract
graphs are isomorphic, but different edge lengths are admitted. Roth
[24] has already given an example of a nonisometric pair of networks
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with the same multiple underlying graph and with the same eigen-
values of the Laplacian. For the simple graphs considered here, we
consider the case of a weighted Laplacian on a network where the dif-
fusion rates on all edges are given by the squares of the edge lengths.
The corresponding eigenvalue problem including a consistent Kirch-
hoff condition reads

f « € C2(G),

(12)
N

in [0,1] for 1 < j < N,

= 0 for all Vi e V.

Note that the consistency of the Kirchhoff condition is indispensable
in order to ensure the symmetry of the Laplacian, see [3] Section 7
and [4], except for a very special class of networks containing one
inconsistent ramification node, see [5]. Using the transformations of
Section 3 with the modifications

1 + cL

and
L = nxn '

the equivalent matrix differential boundary eigenvalue problem incor-
porating the adjacency structure of the network becomes:

f uih € C2([0,1]) forl<i,h<n

&ih = 0 =^ u^ — 0 for 1 < z, h < n

U" = -AU in [0,1]

U(0) = (^e**2t

U * ( x ) = U ( l - x ) for s € [0,1]

I [L*U'(0)]e = 0

(13)
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By the results of Section 5 of [3], all the assertions of Theorem 1 remain
valid for the eigenvalues of (12) and (13) with the row-stochastic
matrix

Z = Diag(Le)~1L.

Thus, in order to find the desired example, we only have to ensure
that for some nonisometric networks the corresponding matrices Z all
have the same eigenvalues with multiplicities counted and the same
zero pattern. Take for instance F = K-z to be the circuit of length 3
and Gas indicated in Fig.3 with (/i+/2) ( / i+/3)(/2+/3) = 8/1/2^3. Then
the set of eigenvalues of (12) with multiplicities counted coincides with
the one in the special case li = 12 = 13 = I given by (14), (15) and (17)
in Section 5 for n = 3, since the common characteristic polynomial
for all matrices Z reads — A3 + |A + |.

Fig.3 A family of nonisometric isospectral networks with isomorphic underlying graph.

5 NETWORK IMMANENT EIGENVALUES

To what extent can one hear a network, i.e. which frequencies are im-
manent to the network system and cannot be derived from the spec-
trum of the Laplacian on a single edge under 0-Dirichlet or Neumann
boundary conditions? Let us discuss this problem for the complete
graph on n vertices K,n. Its adjacency matrix 21 = eree* — In has the
simple eigenvalue n — 1 and the (n — l)-fold eigenvalue —1 leading to
the following eigenvalue sequences of (5) by Theorem 1:

A = 0, m(0) = 1, (f> = en (14)

A = 47T2fc2, k ^ 0, m(A) = 2 + -n(n - 3), </? = en (15)
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A = 7T2(2k + I)2, k ^ 0, m(A) = -n(n -3), y> = 0, (16)

cos v/A = -(n- I)"1, m(A) = r a - l , ^ekeree* (17)

The results apply for instance to the wave equation on a tetrahedron
network /C4. Using the relation U'(l) = — Vl>*, all eigenvalues (fre-
quencies) and corresponding eigensolutions are given in terms of the
transformations of Section 3 by (8) and Theorem 1 as follows:

A = 0 , m(0) = 1, U = r(e4e* -I4), r e K (18)

A=47T 2 A: 2 , 1 < f c e N , m(A) =4, (19)
^Jl T") f IT s IT n I

U(a;) = rcos(z27rA;)(e4e4 - I4) + — ;— : — -**2l,
ZTT/C

r € R,** = -#,*e4 = 0

A = TT2(2k + I)2, k € N, m(A) = 2, y> = 0, (20)

, fc G N, (21)

i.e. cosvA = — -, m(A) ~ 3, 64^ = 0,
o

U(x) = cos(x
in v Asn

On the one hand, solutions U with \I/ = 0 in (19) correspond just
to single edge solutions with Neumann boundary conditions glued
together such that they form a continuous function on G. On the
other hand, any U ^ 0 with (f> = 0 leads to an eigensolution on
some edge with 0-Dirichlet conditions. Conversely, UQ(X] := sin(Trfcx)
on [0, 1] can be extended to an eigensolution of /C4 of the type (19)
for 0 < k = 0 mod 2 and of the type (20) for k = 1 mod 2 as
displayed in Fig. 4 and Fig. 5. The bold edges indicate the circuits
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along which it s(j &) = UQ on the edges in the circuit orientation, while
on the remaining ones w s ( j M = 0. In this way, a basis of the eigenspace
in the case (19) is given by the matrix 21 = 6464 — 14, corresponding
to the Neumann boundary condition on each edge \I/ = 0 and <£> =
$*, and the following matrices that correspond to the 0-Dirichlet
condition on each edge $ = 0 and \I>* = — \&, see Fig.4.

0 + 1 -1 0'
- 1 0 + 1 0
+ 1 - 1 0 0
0 0 0 0 ,

0 + 1 0 -1
- 1 0 0 + 1
0 0 0 0

,+1 - 1 0 0

0 0 + 1 -1
0 0 0 0
- 1 0 0 + 1

.+1 0 - 1 0

Fig. 4

Fig. 5

A basis of the eigenspace in the case (20) is given by the matrices

0o + i o -r
+ 1 0 - 1 0
0 - 1 0 + 1

.-i o + i o

o +1 -i
+ 1 0 o - i
- 1 0 0 + 1
0 - 1 + 1 0
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that correspond again to the 0-Dirichlet condition on each edge <& = 0
and ty* = \I>, see Fig.5. Thus, the eigenvalues (21) are the only ones
emanating from the network system and neither from a single clamped
branch, nor a single branch with Neumann boundary condition. As
for the acoustic interpretation, we observe that (arccos (-y1)) is not
compatible with the basic tone of a single edge, while for the triangle
network JCz the corresponding network eigenvalue satisfying cos vA =
— | is compatible to the basic tone of a single edge: A = |7r2. That
is why tetrahedra sound so bad while triangles sound much better ...

Mutatis mutandis, the same distinction between single edge ei-
genvalues and network immanent ones holds for general networks.
The eigenvalues of (5) belonging to the eigenvalues fj, of the matrix
Z = Diagj (7" ) 2l(r) with |//| < 1 are always immanent to the whole
network system and cannot emanate from a single branch. In the
bipartite case, there is an additional non zero node vector that be-
longs to the simple matrix eigenvalue n = cos \/A = — 1 and that
can only occur in the whole system. Note that 0 7^ $ = —<&* is
impossible in nonbipartite networks. Note further that a single edge
spectrum with zero boundary conditions can only be embedded if
and only if F contains circuits. On a tree these embeddings are im-
possible. This also becomes clear by the multiplicity formulae in
Theorem 1 that read for a tree m (7r2/c2) = 1 with <f> G Ren and

m(A) = dimker (2l(F) — cos-\/AIn) for s invA ^ 0 with 9? ^ 0 as in
(9).
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