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The paper presents a fast subtractional spectral algorithm for the solution of the
Poisson equation and the Helmholtz equation which does not require an exten-
sion of the original domain. It takes O(N2 log N) operations, where N is the
number of collocation points in each direction. The method is based on the
eigenfunction expansion of the right hand side with integration and the succes-
sive solution of the corresponding homogeneous equation using Modified
Fourier Method. Both the right hand side and the boundary conditions are not
assumed to have any periodicity properties. This algorithm is used as a precon-
ditioner for the iterative solution of elliptic equations with non-constant coeffi-
cients. The procedure enjoys the following properties: fast convergence and high
accuracy even when the computation employs a small number of collocation
points. We also apply the basic solver to the solution of the Poisson equation in
complex geometries.

KEY WORDS: Fast spectral direct solver; the Poisson equation; the modified
Helmholtz equation; preconditioned iterative algorithm for elliptic equations;
equations in complex geometries.

1. INTRODUCTION

A variety of problems in computational physics require the solution of the
Poisson equation and the modified Helmholtz equation, for example, these
equations arise in the determination of the pressure field for incompressible
Navier–Stokes equations after the semi-implicit discretization in time [21].



Application of high-order (pseudo) spectral methods, which are
based on global expansions into orthogonal polynomials (Chebyshev or
Legendre polynomials), to the solution of elliptic equations, results in
full (dense) matrix problems. The cost of inverting a full N × N matrix
without using special properties is O(N3) operations [8]. Besides, the
accuracy decreases considerably with the growth of N due to accumula-
tion of round-off errors. The computation becomes more efficient if the
domain is decomposed into smaller subdomains where partial solutions
are found and subsequently patched by the Fast Multipole Method
[17, 19].

It is well known that a Fourier method for the solution of the
Poisson or the Helmholtz equation in principle has an exponential con-
vergence but faces the Gibbs phenomenon for non-periodic boundary
conditions [15]. The methods to resolve the Gibbs phenomenon are
described in [16] (see also references to this review article). They can be
classified as Fourier space filters and methods concerned with an adjust-
ment in a physical space. For the solution of the Poisson equation or the
modified Helmholtz equation with Fourier series we have to restore a
solution rather than the original right hand side (RHS) which is presented
in the Fourier space. Since the accuracy of the solution degrades due to
the Gibbs phenomenon in the RHS representations, then the algorithm
can benefit if the RHS is presented as a sum of a smooth periodic func-
tion and another function which can be integrated analytically. Rather
simple for 1D problems, the implementation of this idea becomes more
complicated for higher dimensions. This procedure is called sometimes the
subtraction technique (a function which is later integrated analytically is
subtracted from the RHS). It is to be emphasized that the subtraction
methods can resolve the problem of poor convergence in cases of corner
singularities when the boundary conditions are discontinuous in a corner
or do not match the right hand side [1, 6]. These methods can be incor-
porated with any numerical scheme, when boundary conditions degrade
the accuracy, as far as appropriate subtraction functions can be found.
From this point of view, the present paper is an illustration how the sub-
tractional technique can be successfully involved in the Fourier 2-D algo-
rithm for the solution of the Poisson, Helmholtz and modified Helmholtz
equations.

To the best of our knowledge the application of the subtraction tech-
nique in the resolution of the Gibbs phenomenon for the Fourier series
solution goes back to Sköllermo [25], where a modification of the Fourier
method was developed for the Poisson equation

Du=f (1.1)
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in the rectangle [0, 1] × [0, 1] with periodic boundary conditions. The
solution involved the following steps:

1. The right hand side was presented as a sum of two functions
f(x, y)=f1(x, y)+p1(x, y), where f1 is a smooth function in the
rectangle while p1(x, y) is a polynomial function having the same
values at the corners as f(x, y).

2. The solution P1(x, y) which corresponds to the right hand side
p1(x, y) can be computed analytically; the ‘‘smoothed’’ function
f1(x, y) is expanded into sine series

f1(x, y) ’ C C sin kpx sin lpy, denote

u1(x, y) ’ − C C
1

p2(k2+l2)
sin kpx sin lpy.

3. Finally, the sum u(x, y)=u1(x, y)+P1(x, y) is an approximate
solution of the problem.

We solve the Poisson equation or the modified Helmholtz equation in
the rectangular domain with an equispaced grid. Then the subtraction
technique (in the physical space) should be used for the resolution of the
Gibbs phenomenon rather than other methods due to the following
reasons.

(a) After subtraction, Fast Fourier Transform can be applied to the
remaining part of RHS with high convergence.

(b) The algorithm keeps the diagonal representation of the Laplace
operator, so, unlike Chebyshev and Legendre expansions, it is
not necessary to find an inverse of a full matrix.

(c) Generally, the computation of the subtraction functions is even
less time consuming than FFT implementation.

It is to be noted that the subtraction algorithm in [25] was developed
for some specific boundary conditions only.

For arbitrary boundary conditions and arbitrary RHS the Gibbs
phenomenon in spectral Fourier method can be essentially reduced by the
following procedure. The function f in the right hand side is extended to
a larger domain and replaced by a new function which coincides with f in
the original domain and it is periodic together with a certain number of
its derivatives in the larger domain. A considerable effort was concerned
with a construction of a smooth extension of the right hand side (see, for
example, [1, 2, 11] and references therein). The accuracy of the solution
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strongly depends on the number of extension points [12]. At the next step
the extended function is multiplied by a bell function, so that the resulting
function coincides with the right hand side in the original domain and
vanishes together with some of its first derivatives in the extended domain.
This procedure is called folding and is described in the Appendix. The
method is fast (O((N+e)2 log N) operations, where N is the number of
points in each direction and e is the number of extension points) and gives
any prescribed polynomial rate of convergence [1, 2, 6, 7]. However, if we
use the Poisson solver or the Helmholtz solver as a part of an iterative
procedure or as a part of a time-dependent problem then we have to con-
struct an extension of the right hand side at each time or iteration step.

The purpose of the present paper is to develop a direct robust and fast
(O(N2 log N), where N is a number of points in each direction) spectral
solver which can be employed for iterative solution of equations with non-
constant coefficients and does not assume the extension of the original
domain. This algorithm is based on the following previously developed
methods:

1. Since we solve a boundary value problem for the Poisson
(Helmholtz) equation then a final part of our scheme is the solu-
tion of the corresponding homogeneous equation. The boundary
conditions is the difference of the original boundary conditions
and ones obtained when the nonhomogeneous equation is solved.
Such spectral solver was developed in [1, 2]. We apply the algo-
rithm of [1] without any modifications. It is also based on the
subtraction technique incorporated with the Fourier method.

2. Polynomial type subtraction functions (of a degree higher than 2)
[25, 2] are not optimal due to possible oscillations, high amplitu-
des or rates of change which can also degrade the accuracy of the
Fourier expansion of the remaining part. Exponential-type func-
tions [1] appeared to be more efficient in subtractional algorithms
for the solution of the Poisson equation and Helmholtz equations.
This idea was also employed for 3D problems in [6, 7, 20].

Here we present a fast (O(N2 log N)) direct spectral solver for the
solution of the Poisson equation, the modified Helmholtz equation and the
Helmholtz equation. The advantage (compared to the solvers of [1, 2])
is that it does not require an extension of the right hand side to a wider
domain. In addition, we present an iterative spectral algorithm for a high
order solution of elliptic equations with non-constant coefficients

Lu=f (1.2)
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in rectangular subdomains. The method is based on preconditioning and
employs a fast direct Poisson solver as a preconditioner.

The idea of preconditioning is to solve the equation

L−1
0 Lu=L−1

0 f (1.3)

rather than (1.2). The preconditioned iterations have the form

L0un+1=f − (L−L0) un. (1.4)

Equations (1.2) and (1.3) have the same solution but the iterative method
for the solution of Eq. (1.3) may converge much faster if the condition
number of the operator L−1

0 L is bounded. In practical implementations,
the rate of convergence depends on the ‘‘closeness’’ of the operator L0

to L. Low order approximations (finite-difference or finite-element) to L

are usually applied as L0 [23]. The use of high order finite-difference
preconditioners improves the rate of convergence but requires to invert a
dense matrix at each iteration step which makes these preconditioners inef-
ficient. We use L0 which is an elliptic operator with constant coefficients.
The operator L0 is efficiently inverted by a fast Poisson solver which is
described in Sec. 2. Two other factors that can speed the rate of conver-
gence: choice of constants in the Poisson operator and the use of local
relaxation parameter are discussed in Sec. 4. Similar approach for problems
with periodic boundary conditions was developed in [26].

This method is also applicable for the solution of the Poisson equation
in complex geometries. Numerical methods for the Poisson equation in
irregular domains and simulations of CFD problems in complex geometries
were considered in [3, 10, 22, 26, 13, 14], see also references therein.
Generally [15], spectral solution of equations in complex geometries
employs either transformation or patching. The present algorithm can be
incorporated in the solution of the Poisson equations in complex geome-
tries in the following ways:

1. By applying some transformation, the equation with constant
coefficients in an irregular domain can be transformed into an
equation with non-constant coefficients in a rectangular domain.
The latter equation can be solved by the preconditioned iterations.
This scheme is described and implemented in Sec. 5.

2. An irregular domain can be decomposed into subdomains, most of
them of rectangular geometry. Then by applying the present solver
in regular domains and some other solver (for example, [22])
in irregular subdomains with successive derivatives patching (for
the appropriate spectral algorithm, see [20]) we obtain a smooth
solution in complex geometries.
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3. The present algorithm can be a part of methods using the exten-
sion of the original complex domain to an involving regular
domain [13, 14]. For example, if a part of the original boundary
coincides with a certain rectangle, then the present algorithm
should be used rather than the extension of the original domain to
a larger rectangle.

The paper is organized as follows. A direct method for the solution of
the Poisson equation, the Helmholtz equation and the modified Helmholtz
equation is presented in Sec. 2. This method does not require the extension
of the right hand side beyond the computational domain. Section 3 con-
tains relevant numerical examples. The direct Poisson solver is used as the
basic kernel for the solution of elliptic equation with variable coefficients as
described in Sec. 4. In Sec. 5 the above scheme is applied to the solution of
the Poisson equation in domains with complex geometry.

2. SUBTRACTIONAL SPECTRAL SOLVERS

2.1. General Description and a One-Dimensional Example

As we will see in Sec. 4, the proposed solution of the elliptic equation
with non-constant coefficients will be based on a fast solver for the Poisson
equation with constant coefficients. This efficient solver is employed as a
preconditioner for the solution of the equation with non-constant coeffi-
cients. A 2-D and 3-D fast solvers for the Poisson equations were proposed
in [1, 2, 6]. They can be used as the basic kernel for the proposed algo-
rithm. However they are based on extension of the right hand side to a
wider domain on each iterative step. In this section we propose a new
modified algorithm where we do not need to extend the domain while
retaining the spectral accuracy as in the original method. In addition, as
before, the algorithm has a good performance even on a domain with a
small number of grid points.

The idea of the algorithm is the following. The right hand side of the
Poisson equation is presented as a sum of functions and series. Each term
of the sum is either an eigenfunction of the Laplace operator or a Laplacian
of some known function. The series are Fourier type series. As a result we
obtain an efficient direct spectral algorithm for the solution of the Poisson
equation based on the Fast Fourier Transform and the subtraction technique.

The methods to accelerate the convergence of the Fourier series
(including 2-D case) were discussed in [4, 5]. Here we illustrate our idea on
a simple 1-D example.
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We solve a 1-D equation u'=f on the segment [0, 1]. The expansion
of RHS in the sine series is not accurate as far as f(0), f(1) do not vanish
with some of its first even derivatives. If we define

f0(x)=f(0)
sinh(1 − x)

sinh 1
+f(1)

sinh x
sinh 1

,

then g(x)=f(x) − f0(x) vanishes at the endpoints. Further, if “
2g

“x2 (0)=A,
“

2g

“x2 (1)=B, then

f2(x)=
A

l2
1 − l2

2

5sinh(l1(1 − x))
sinh(l1)

−
sinh(l2(1 − x))

sinh(l2)
6

+
B

l2
1 − l2

2

5sinh(l1x)
sinh(l1)

−
sinh(l2x)
sinh(l2)

6

subtracts the second derivatives at the endpoints. Similarly f4(x) can be
constructed. Functions f0, f2, f4 can be easily integrated analytically.
Table I illustrates the convergence of the subtractional Poisson method for
1D equation u'=f with RHS

f(x)=exp{a(x − x0)2 [2a2(x − x0)2 − a]}

on the segment [0, 1]. Here three subtractional steps were applied, i.e.,
f was presented as a sum f(x)=j(x)+f0(x)+f2(x)+f4(x). Here j(x)
can be expanded into sine series with O(1/N6) accuracy.

Table I. MAX, MSQ, and L2 Errors for the Exact Solution u(x)=exp{a(x − x0)2} of the
1D Poisson Equation in the Domain [0, 1]

a, x0 Nx × Ny eMAX eMSQ eL2

a=4, x0=0.8 16 × 16 4.1e-6 2.0e-6 2.6e-6
32 × 32 4.1e-8 1.9e-8 2.5e-8
64 × 64 3.5e-10 1.6e-10 2.1e-10

128 × 128 3.1e-12 1.7e-12 1.7e-12

a=200, x0=0.5 16 × 16 1.5e-2 4.0e-3 5.4e-3
32 × 32 9.3e-8 4.6e-8 6.1e-8
64 × 64 3.5e-10 1.7e-10 2.3e-10

128 × 128 2.8e-12 1.4e-12 1.8e-12
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Assume that u is the exact solution of Eq. (2.1) and uŒ is the computed
solution. Here and later on we will use the following measures to estimate
the errors:

eMAX=max |u −

i − u i |

eMSQ==;N
i=1 (u −

i − u i)2

N

eL2==;N
i=1 (u −

i − u i)2

;N
i=1 u2

i

It is to be noted that as a subtraction part an exponential like func-
tions are used rather than polynomial; the latter can expose an oscillatory
behavior.

2.2. Outline of the Algorithm

Consider the Poisson equation in a rectangular domain:

Du(x, y)=f(x, y), 0 [ x [ a, 0 [ y [ b, (2.1)

with the Dirichlet or Neumann boundary conditions. The solution incor-
porates two steps:

1. An arbitrary solution u1 of the nonhomogeneous equation (2.1) is
found.

2. A solution u2 of the boundary problem for the homogeneous
equation is derived, such that u1+u2 satisfies the original bound-
ary conditions.

The Modified Fourier algorithm for Step 2 developed in [1, 2] was used
without any changes, so we will concentrate on Step 1 of the algorithm.

The Poisson solver is based on the eigenfunction method. If the right
hand side of Eq. (2.1) is smooth and vanishes together with some first even
derivatives at the boundaries, then it can be presented as a fast converging
sine series:

f(x, y)= C
.

m=1
C
.

n=1
amn sin 1npx

a
2 sin 1mpy

b
2 . (2.2)

Then, a solution of Eq. (2.1) can be written as

u(x, y)=− C
.

m=1
C
.

n=1

amn

p2 1 n2

a2+m2

b2
2

sin 1npx
a
2 sin 1mpy

b
2 . (2.3)
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Assume that f(x, y) does not vanish at the boundaries

f(x, 0)=j1(x), f(x, b)=j2(x), f(0, y)=j3(y), f(b, y)=j4(y),
(2.4)

while the functions ji, i=1,..., 4, can be expanded into sine series

j1(x)= C
.

k=1
b1k sin(l1kx), j2(x)= C

.

k=1
b2k sin(l2kx),

j3(y)= C
.

k=1
b3k sin(l3k y), j4(y)= C

.

k=1
b4k sin(l4k y),

(2.5)

where

l1k=l2k=
pk
a

, l3k=l4k=
pk
b

. (2.6)

Let us determine the function fedge which coincides with f at the bound-
aries and such that the solution of the Poisson equation

Du=fedge

can be immediately solved. If we define the following function (see Fig. 1
for edge x=0)

fedge(x, y)= C
.

k=1

1b1k sin(l1kx)
sinh(l̃1k(b − y))

sinh(l̃1kb)
+b2k sin(l2kx)

sinh(l̃2k y)

sinh(l̃2kb)

+b3k sin(l3k y)
sinh(l̃3k(a − x))

sinh(l̃3ka)
+b4k sin(l4k y)

sinh(l̃4kx)

sinh(l̃4ka)
2

(2.7)

where l̃2
ik − l2

ik=1, then f1=f − fedge vanishes at the boundaries of the
rectangle and uedge=fedge.

If u1 is a solution of Eq. (2.1) with the right hand side f1, then
u1+fedge is a solution of (2.1) with the same original right hand side f.

The convergence of series (2.5) can be slow due to the Gibbs pheno-
menon if the boundary functions fedge do not vanish in the corners together
with some of its even derivatives. However the boundary functions can also
be presented as a sum of some corner function and a function which
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edge function
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0.8

1

Fig. 1. The form of the edge function at edge x=0.

vanishes at the corners together with some first even derivatives. If in the
original boundary conditions (2.4)

j1(0)=j3(0)=A1, j1(a)=j4(0)=A2,

j2(0)=j3(b)=A3, j2(a)=j4((b)=A4,

then, for instance, after the subtraction of the function

fcorner(x, y)=A1
sinh(a − x)

sinh(a)
sinh(b − y)

sinh(b)
+A2

sinh(x)
sinh(a)

sinh(b − y)
sinh(b)

+A3
sinh(a − x)

sinh(a)
sinh(y)
sinh(b)

+A4
sinh(x)
sinh(a)

sinh(y)
sinh(b)

(2.8)
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corner function
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Fig. 2. The form of the corner function in the corner (1, 1).

(see the function of type fcorner in Fig. 2 for corner (1, 1)) the right hand
side vanishes at the corners. Function 0.5 · fcorner should be added to the
solution.

Similarly, the second derivatives at the corners are subtracted. Let

“
2j1

“x2 (0)=B1.

For example, the function

f2nd corner=B1
1 sinh(l1(a − x))

sinh(l1a)
sinh(l1(b − y))

sinh(l1b)

−
sinh(l2(a − x))

sinh(l2a)
sinh(l2(b − y))

sinh(l2b)
2 , (2.9)
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with l2
1 − l2

2=1, has the same second derivative at the left bottom corner
as the original function. Then the partial solution is

u2nd corner=
B1

l2
1+l2

2

1 sinh(l1(a − x))
2l2

1 sinh(l1a)
sinh(l1(b − y))

sinh(l1b)

−
sinh(l2(a − x))
2l2

2 sinh(l2a)
sinh(l2(b − y))

sinh(l2b)
2 . (2.10)

The combination of four similar functions f2nd corner produces the appropri-
ate values at all the corners. This algorithm has an O( 1

N4 ) accuracy if it is
combined with an appropriate method for the solution of the Laplace
equation with specified boundary conditions which agrees with [15].

We can continue this procedure. Fourth derivatives can be subtracted
in the corners which is a linear combination of f2nd corner function and a
corresponding partial solution can be subtracted from the solution. We
can also subtract a function from the right hand side (and, respectively, the
solution), such that the remaining part vanishes together with its second
derivatives at the corners. Specifically, if

“
2f1

“y2 (x, 0)= C
.

k=1
c1k sin(l1kx),

“
2f2

“y2 (x, b)= C
.

k=1
c2k sin(l2kx) (2.11)

and

“
2f3

“x2 (0, y)= C
.

k=1
c3k sin(l3k y),

“
2f4

“x2 (a, y)= C
.

k=1
c4k sin(l4k y) (2.12)

then the following function subtracts the second derivatives at the edges
(which is the difference of two functions of the form depicted in Fig. 1)

f2nd edge(x, y)= C
.

k=1

c1k

m2
1k − n2

1k

sin(l1kx) 1 sinh(m1k(b − y))
sinh(m1kb)

−
sinh(n1k(b − y))

sinh(n1kb)
2

+ C
.

k=1

c2k

m2
2k − n2

2k

sin(l2kx) 1 sinh(m2k y)
sinh(m2kb)

−
sinh(n2k y)
sinh(n2kb)

2

+ C
.

k=1

c3k

m2
3k − n2

3k

sin(l3k y) 1 sinh(m3k(a − x))
sinh(m3ka)

−
sinh(n3k(a − x))

sinh(n3ka)
2

+ C
.

k=1

c4k

m2
4k − n2

4k

sin(l4k y) 1 sinh(m4kx)
sinh(m4ka)

−
sinh(n4kx)
sinh(n4ka)

2 (2.13)
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where

m2
ik − n2

ik − l2
ik=1.

The corresponding partial solution u2nd edge of Eq. (2.1) with f − fedge − f2nd edge

as the right hand side has the following form

u2nd edge(x, y)

= C
.

k=1

c1k

m2
1k − n2

1k

sin(l1kx) 1 sinh(m1k(b − y))
(m2

1k − l2
1k) sinh(m1kb)

−
sinh(n1k(b − y))

(n2
1k − l2

1k) sinh(n1kb)
2

+ C
.

k=1

c2k

m2
2k − n2

2k

sin(l2kx) 1 sinh(m2k y)
(m2

2k − l2
2k) sinh(m2kb)

−
sinh(n2k y)

(n2
2k − l2

2k) sinh(n2kb)
2

+ C
.

k=1

c3k

m2
3k − n2

3k

sin(l3k y) 1 sinh(m3k(a − x))
(m2

3k − l2
3k) sinh(m3ka)

−
sinh(n3k(a − x))

(n2
3k − l2

3k) sinh(n3ka)
2

+ C
.

k=1

c4k

m2
4k − n2

4k

sin(l4k y) 1 sinh(m4kx)
(m2

4k − l2
4k) sinh(m4ka)

−
sinh(n4kx)

(n2
4k − l2

4k) sinh(n4ka)
2 .

(2.14)

However each ‘‘edge’’ step takes O(N2 log N) operations compared to
O(N2) for each corner subtraction. In the iterative procedure and all
numerical examples we apply one edge subtractional step and one (values
of RHS in the corners are subtracted only) or two (values and the second
derivatives in the corners of RHS) subtractional steps in the corners.

Finally, the fourth order algorithm can be summarized as follows:

1. The function fcorner (2.8) is computed and subtracted from RHS; at
the same time the function 1

2 fcorner is added to the solution.

2. For the remaining part of RHS the function f2nd corner (2.11) is sub-
tracted from RHS and u2nd corner is added to the solution.

3. The egdes of RHS (2.4) are expanded into sine series (2.5), the
function fedge (2.7) is subtracted from the right hand side and
added to the solution.

4. The rest of RHS is expanded into the sine series (2.2) and u in
(2.3) is added to the solution, which completes the algorithm.

It is to be emphasized that here we assume smooth boundary condi-
tions (the values at the corners are matched and the Laplacian in the
corners coincides with the right hand side). The removal of singularities in
singular cases by the subtraction technique was discussed in [1, 2, 24] for
2-D and in [6] for 3-D problems.
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2.3. Helmholtz Equation and Modified Helmholtz Equation

A similar algorithm is applicable to the Helmholtz equations. The
same expansion for the right hand side is valid, the only difference is the
integration results.

Consider the Helmholtz equation (HE)

Du(x, y)+k2u(x, y)=f(x, y) (2.15)

and the modified Helmholtz equation (MHE)

Du(x, y) − l2u(x, y)=f(x, y). (2.16)

If the right hand side is expanded into Fourier series then the solution
is

u(x, y)= C
.

m=1
C
.

n=1

amn

− p2 1 n2

a2+m2

b2
2+k2

sin 1npx
a
2 sin 1mpy

b
2 (2.17)

for the HE (here we assume k2 ] p2(n2/a2+m2/b2) for all n, k=1, 2,...)
and

u(x, y)=− C
.

m=1
C
.

n=1

amn

p2 1 n2

a2+m2

b2
2+l2

sin 1npx
a
2 sin 1mpy

b
2 (2.18)

for the MHE.
The same subtraction steps, as were used for the Poisson equation, can

be implemented for the Helmholtz equations. If fedge is defined by (2.7) and
l̃ ij are chosen such that

l̃2
ij − l2

ij − l2=1

for the MHE then the same edge function fedge defined by (2.7), is the cor-
responding part of the solution. For HE we choose some r > k and let

l̃2
ij=`l2

ij+r2 − k2 r > k,

then

uedge=
1
r2 fedge.

104 Braverman et al.



Corner functions are the same for the HE as in (2.8). The correspond-
ing part of the solution is

ucorner=
1

2+k2 fcorner.

For the MHE we can choose, for instance,

fcorner(x, y)=A1
sinh(l(a − x))

sinh(la)
sinh(b − y)

sinh(b)
+A2

sinh(lx)
sinh(la)

sinh(b − y)
sinh(b)

+A3
sinh(l(a − x))

sinh(la)
sinh(y)
sinh(b)

+A4
sinh(lx)
sinh(la)

sinh(y)
sinh(b)

=ucorner(x, y). (2.19)

Similarly, the subtraction function (2.9), for the second derivatives in
the corners, is appropriate for the Helmholtz equation. The corresponding
parts of the solution for the HE are

B1
1 1

2(l2
1+k2)

sinh(l1(a − x))
sinh(l1a)

sinh(l1(b − y))
sinh(l1b)

−
1

2(l2
2+k2)

sinh(l2(a − x))
sinh(l2a)

sinh(l2(b − y))
sinh(l2b)

2 , (2.20)

and for the MHE are

B1
1 1

2(l2
1 − l2)

sinh(l1(a − x))
sinh(l1a)

sinh(l1(b − y))
sinh(l1b)

−
1

2(l2
2 − l2)

sinh(l2(a − x))
sinh(l2a)

sinh(l2(b − y))
sinh(l2b)

2 . (2.21)

In the latter case, l1 and l2 are chosen to exceed l.

3. NUMERICAL RESULTS

3.1. Subtractional Poisson Solver

In Examples 1–6 we test our algorithm for various number of sub-
traction steps. If only corner functions fcorner and edge function fedge are
subtracted (one subtraction step), then the expected convergence of eMAX is
O(1/N2) [15], where N is the number of collocation points in each direction.
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Table II. MAX, MSQ, and L2 Errors for the Solution of
Eq. (2.1). The RHS Is (3.1) with x0=y0=0.5, a=1

Nx × Ny eMAX eMSQ eL2

8 × 8 1.8e-5 1.2e-5 1.4e-5
16 × 16 1.2e-6 8.0e-6 9.5e-7
32 × 32 7.9e-8 5.2e-8 6.1e-8
64 × 64 5.0e-9 3.3e-9 3.9e-9

128 × 128 3.2e-10 2.1e-10 2.5e-10

If functions f2nd corner are subtracted as well (two subtraction steps), then the
expected convergence is O(1/N4).

Example 1. We solve the Poisson equation with boundary conditions
corresponding to the RHS

f(x, y)=4a[a((x − x0)2+(y − y0)2) − 1] exp{ − a((x − x0)2+(y − y0)2)},
(3.1)

where x0=0.5, y0=0.5, a=1 in the domain [0, 1] × [0, 1] (see Table II).
Figure 3 demonstrates the form of the right hand side after the sub-

traction of the ‘‘corner functions’’ which corresponds to f − fcorner − f2nd corner

for the RHS defined in (3.1) and centered in the middle of the square

’After corner subtraction’

0

5

10

15

20

25

Fig. 3. The form of the right hand side after subtraction of the corner functions
f − fcorner − f2nd corner for the RHS defined in (3.1) with x0=y0=0.5, a=1.
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’After side subtraction’

-5

0

5

10

15

20

25

Fig. 4. The form of the right hand side after the subtraction of the corner and the side func-
tions f − fcorner − f2nd corner − fedge for the RHS defined in (3.1) with x0=y0=0.5, a=1.

domain. Figure 4 illustrates the right hand side after all the subtraction
steps f − fcorner − f2nd corner − fedge for the RHS defined in (3.1), with x0=0.5,
y0=0.5, a=1.

We observe that in Fig. 3 the remaining part of the right hand side
vanishes in the corners only, while in Fig. 4 it vanishes at all the boundary
of the solution domain.

Example 2. Consider the Poisson equation with the RHS

f(x, y)=−5 cos x cos(2y). (3.2)

Table III presents the maximal error without subtraction, in the case when
only fcorner is subtracted, for f − fcorner − fedge and, finally, for all subtrac-
tion steps f − fcorner − fedge − f2nd corner.

Table III. Maximal Errors for the Solution of the Poisson Equation (2.1) and the RHS (3.2)

Description of subtraction steps

Nx × Ny none f − fcorner f − fcorner − fedge all steps

16 × 16 1.5e-3 5.2e-4 1.4e-5 2.8e-6
32 × 32 4.4e-4 1.4e-4 3.0e-6 1.8e-7
64 × 64 1.2e-4 3.8e-5 7.3e-7 1.1e-8

128 × 128 3.1e-5 9.8e-6 1.8e-7 7.2e-10

A Fast Spectral Subtractional Solver for Elliptic Equations 107



Table IV. Maximal Errors for the Solution of the Poisson
Equation (2.1) and the RHS (3.3)

Description of subtraction steps

Nx × Ny none f − fcorner − fedge all steps

16 × 16 1.0e-4 6.4e-6 6.1e-7
32 × 32 2.7e-5 1.5e-6 4.4e-8
64 × 64 6.9e-6 3.6e-7 2.9e-9

128 × 128 1.7e-6 9.0e-8 1.8e-10

Example 3. Consider the Poisson equation with an exact solution
u(x, y)= 1

x2+y2+2
which corresponds to the RHS

f(x, y)=−
8 − 4x2 − 4y2

(x2+y2+2)3 . (3.3)

Table IV presents the maximal error without subtraction, for the sub-
tractional scheme f − fcorner − fedge and, finally, for all subtraction steps
f − fcorner − fedge − f2nd corner.

Example 4. For our next example we consider the Poisson equation
with the RHS including a steep Gaussian function (3.1), where x0=0.5,
y0=0.5, a=200, 400 in the domain [0, 1] × [0, 1] (such examples were
considered in [2, 17]). Table V presents a comparison of the present
method and the adaptive Poisson solver presented in [17]. The relative
errors are compared to the eighth order method (K=8) and the sixteen
order method. Certainly Table V does not demonstrate the superiority of

Table V. Relative Errors for the Solution of Eq. (2.1), with the RHS Including a Steep
Gaussian Function (3.1), with a=400: Comparison of the Present Method and the Method
Presented in [17], the Eigth Order Method (K=8), and the Sixteen Order Method (K=16)

relative error eL2

number of grid points present method [17] with K=8 [17] with K=16

256 1.0 1.2e-1 2.31
1024 2.5e-4 5.4e-3 5.1e-4
4096 2.6e-13 4.9e-5 7.9e-7

16384 7.4e-16 1.8e-7 4.7e-11
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Table VI. Maximal Errors for the Solution of Eq. (2.1), with the RHS
Including a Steep Gaussian Function (3.1), a=200: Comparison of the
Present Method and the Method Presented in [2]. The Number of Grid

Points in [2] Is Given without Taking into Account Extension Points

maximal error eMAX

number of grid points present method method of [2]

162=256 2.1e-2 2.1e-2
322=1024 1.8e-7 1.7e-7
642=4096 4.4e-16 6.0e-15

the present forth order method method when compared to high order
FMM method incorporated with Chebyshev polynomial expansions in
subdomains, but only demonstrates an extremely high performance of the
eigenfunction (Fourier) method in the case when the RHS nearly vanishes
at the boundaries. The RHS is a function (3.1) with a=400.

Table VI presents a comparison of maximal errors for the present method
and the Poisson solver which used extension and folding of the original
domain (see [2]). The RHS is (3.1) with a=200. It is to be emphasized that
the present method uses a smaller number of points than the previous algo-
rithm [2] which employed the Fourier transform in the extended domain.

Example 5. Consider the case (see examples with the same right
hand side in [17, 2]) when the RHS is a sum

f(x, y)= C
14

i=1
4a i(a ir

2
i − 1) e−ar2

i , (3.4)

where r2
i =(x − xi)2+(y − yi)2, the centers (xi, yi) are randomly located

in the box [0.1, 0.9]2 and a i ¥ [1024, 16384]. The results are presented in
Table VII. It is to be noted that (3.4) and (3.1) as in the previous example
were chosen as benchmark problems in [17].

Table VII. MAX, MSQ, and L2 Errors for the Solution of
Eq. (2.1). The RHS Is a Sum (3.4), where 1024 [ a i [ 16384

Nx × Ny eMAX eMSQ eL2

64 × 64 2.6 3.6e-1 5.2
128 × 128 5.1e-2 1.7e-3 2.4e-2
256 × 256 3.0e-6 4.2e-8 6.0e-7
512 × 512 1.1e-15 1.5e-16 2.2e-15
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Table VIII. MAX, MSQ, and L2 Errors for the Solution of
Eq. (2.1). The RHS Is (3.5)

Nx × Ny eMAX eMSQ eL2

16 × 16 1.3e-4 2.0e-5 1.3e-4
32 × 32 3.2e-6 7.3e-7 4.7e-6
64 × 64 1.8e-7 2.3e-8 1.4e-7

128 × 128 1.4e-8 1.6e-9 9.7e-9
256 × 256 9.1e-10 1.0e-10 6.2e-10
512 × 512 5.9e-11 6.3e-12 3.9e-11

Example 6. Finally, consider the case when the exact solution of
Eq. (2.1) is both steep and oscillating

u=e−a ir
2
cos(c(x+y − 1)), x, y ¥ [0, 1] × [0, 1]

where r2=(x − 0.5)2+(y − 0.5)2, a=30, c=20. This corresponds to the
RHS

f(x, y)=[4a(ar2 − 1) cos(c(x+y − 1)) − 2c2 cos(c(x+y − 1))

+4ca(x+y − 1) sin(c(x+y − 1))] e−ar2
. (3.5)

Similar examples for the Helmholtz equation and the Poisson equation in a
disc were considered in [12, 9]. The results are presented in Table VIII.

As can be observed in Examples 1–6, the error decays at least as 1/N4

for two subtraction steps algorithm (fcorner, f2nd corner, and fedge are sub-
tracted).

3.2. Subtractional Solver for the Modified Helmholtz Equation

The examples below illustrate the convergence of the subtractional
solver for the modified Helmholtz equation.

Example 7. Consider the case when the RHS is

− 4a[a((x − 0.5)2+(y − 0.5)2) − 1 − l2] exp{ − a((x − 0.5)2+(y − 0.5)2)},
(3.6)

x, y ¥ [0, 1], with a=1. The results are presented in Table IX.
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Table IX. MAX, MSQ, and L2 Errors for the Solution of
Modified Helmholtz Equation (2.16) and the RHS (3.6) with

a=l=1

Nx × Ny eMAX eMSQ eL2

16 × 16 1.2e-6 7.6e-7 9.0e-7
32 × 32 8.0e-8 4.9e-8 5.8e-8
64 × 64 5.1e-9 3.1e-9 3.7e-9

128 × 128 3.2e-10 2.0e-10 2.3e-10

Table X. MAX, MSQ, and L2 Errors for the Solution of
Eq. (2.16) with Various l and 64 × 64 Grid Points and the

RHS (3.6) with a=l=1

l2 eMAX eMSQ eL2

1 5.1e-9 3.1e-9 3.7e-9
4 1.2e-8 6.6e-9 7.7e-9

16 8.5e-8 3.8e-8 4.4e-8
64 9.8e-7 3.6e-7 4.2e-7

100 3.4e-6 7.7e-7 9.0e-7
400 2.5e-5 1.4e-5 1.6e-5

Table XI. MAX, MSQ, and L2 Errors for the Solution of Eq. (2.16)
with the RHS (3.6), where a=200, 400, l=1

Nx × Ny a eMAX eMSQ eL2

200 16 × 16 2.1e–2e-4 1.4e-3 1.7e-2
32 × 32 1.8e-7 1.7e-8 1.9e-7
64 × 64 4.4e-16 3.6e-17 4.1e-16

400 16 × 16 4.7e-1 6.2e-2 9.6e-1
32 × 32 2.7e-4 1.5e-5 2.5e-4
64 × 64 2.1e-13 1.6e-14 2.6e-13

128 × 128 5.6e-16 3.5e-17 5.6e-16
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Table X presents the dependence of the errors on l2 in (2.16) for
64 × 64 collocation points and the RHS defined in (3.6).

Example 8. Consider the case when the exact solution of modified
Helmholtz equation (2.16) involves a steep Gaussian function (3.6), where
a=200, 400, l=1. The results are presented in Table XI.

Example 9. Consider the case when the exact solution of Eq. (2.16)
is both steep and oscillating

u=e−a ir
2
cos(c(x+y − 1)), x, y ¥ [0, 1] × [0, 1]

where r2=(x − 0.5)2+(y − 0.5)2, a=200, c=100. This corresponds to the
RHS

f(x, y)=[4a(ar2 − 1) cos(c(x+y − 1)) − 2c2 cos(c(x+y − 1))

+4ca(x+y − 1) sin(c(x+y − 1)) − l2 cos(c(x+y − 1))] e−ar2
.

(3.7)

The results are presented in Table XII.

4. SOLUTION OF ELLIPTIC EQUATIONS WITH VARIABLE
COEFFICIENTS

4.1. Statement of the Problem

We solve the Dirichlet problem for elliptic equation with variable
coefficients

Lu=f, (x, y) ¥ W (4.1)

u(x, y)=f(x, y), (x, y) ¥ “W (4.2)

Table XII. MAX, MSQ, and L2 Errors for the Solution of
Eq. (2.16) with the RHS (3.7), a=200, c=100, l=1

Nx × Ny eMAX eMSQ eL2

32 × 32 5.0e-1e-6 3.2e-2 3.7e-1
64 × 64 3.0e-8 2.6e-9 4.2e-8

128 × 128 2.1e-15 5.2e-16 8.3e-15
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in a rectangular domain, where

(Lu)(x, y)=
“

“x
1a1(x, y)

“u
“x

(x, y)2+
“

“y
1a2(x, y)

“u
“y

(x, y)2 (4.3)

with the satisfied ellipticity condition

0 < amin
i [ a i(x, y) [ amax

i . (4.4)

After an appropriate transformation any elliptic operator can be presented
as (4.3).

In addition, we solve the Poisson equation

“
2u

“x2+
“

2u
“y2=f(x, y) (x, y) ¥ W, (4.5)

in a curvilinear domain W (see Fig. 5). If this domain is mapped into a
square region w={0 [ t [ 1, 0 [ g [ 1} with an appropriate orthogonal
transformation then Eq. (4.5) is transformed into an elliptic equation with
variable coefficients.

We will refer to the fast solver for the Poisson equation with constant
coefficients l i, i=1, 2 (see Sec. 2):

L0u —
“

“x
1l1

“u
“x

(x, y)2+
“

“y
1l2

“u
“y

(x, y)2 (4.6)

as the ‘‘basic (kernel) solver.’’

Fig. 5. The Poisson equation is solved in a curvilinear domain.
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4.2. Solution by the Iterative Method

In order to solve Eq. (4.1) we will perform the Richardson precondi-
tioned iterations

L0un+1=L0un+f −Lun (4.7)

which will be referred as the Defect Correction (DC) iterations. If we
denote by u the exact solution of (4.1) and rn=un − u then (4.7) can be
rewritten as

L0rn+1=(L0 −L) rn. (4.8)

The following claim justifies the choice of l i in Eq. (4.6).

Proposition. Let amin
i and amax

i in (4.4) be the minimal and the
maximal values of a i ¥ W, respectively. If we choose

l i=0.5(amin
i +amax

i ) (4.9)

then (4.7) converges in the energetic norm

||g||2
aF — F

W

(a1 g2
x+a2 g2

y) dx dy

defined for g=0 on the boundary of W, with the rate of convergence

q=max 3amax
1 − amin

1

amax
1 +amin

1

,
amax

2 − amin
2

amax
2 +amin

2

4 .

Proof. Multiplying (4.8) by rn+1 and integrating over W we have:

F
W

(l1(rn+1)x2+l2(rn+1)y2) rn+1 dx dy

=F
W

[(l1rn)x2 − (a1rn
x)x rn+1+(l2rn)y2 − (a2rn

y)y rn+1] dx dy.

When rn=0 on the boundary of W for all n, the integration by parts gives:

C
2

i=1
F

W

l i(rn+1
xi

)2 [ C
2

i=1
F

W

|l i − a i | |rn
xi

| |rn+1
xi

|. (4.10)

The latter inequality (together with the Cauchy–Schwartz inequality) yields

||rn+1||2
l [ ||rn||l − a ||rn+1||l − a.
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If |l i − a i |=|0.5 · amax
i +0.5 · amin

i − a i | [ qil i, then

||rn+1||l [ q ||rn+1||l.

Thus, the solution of an elliptic equation with variable coefficients is
reduced to an iterative procedure which uses the fast Poisson solver (which
is described in Sec. 2) with constant coefficients as the base (kernel) solver.

i

We will now slightly change the iterative procedure (Eq. (4.7)) by
introducing a local relaxation parameter y:

L0un+1=L0un+y(f −Lun). (4.11)

It is clear that if the iterations defined in (4.11), which we refer as the
Defect Correction Weighted (DCW) iterations, converge then the itera-
tions in (4.11) converge to the solution of Eq. (4.7). Now we will discuss a
subclass of solutions where a simple choice of y can essentially increase the
rate of convergence. To this end let us consider the case a1(x, y)=a2(x, y)
— a(x, y) and consequently l1=l2=l. In fact we only need a1(x1, x2) ’

a2(x1, x2).
In order to illustrate how to choose the parameter y we first assume

that

y=˛2, l/a(x1, x2) \ 2

0.5, l/a(x1, x2) < 3
4

1, otherwise.

(4.12)

Then, following the above proof, we observe that the ‘‘local’’ rate of con-
vergence is essentially improved in the regions where y=0.5 or y=2.
A penalty is paid in regions where there is a transition from one value of y

to another (this penalty obviously remains if y is smoothed by multiplying
it by an appropriate smooth function).

Alternatively, y can be chosen as y= l

a(x, y) . In this case, the method will
be referred as DCWA and inequality (4.10) becomes

F
W

l[(rn+1
x )2+(rn+1

y )2] dx dy [ F
W

a(x, y)(|rn
x | |yx |+|rn

y | |yy |) |rn+1|

=F
W

a(x, y)−1 (|rn
x | |ax |+|rn

y | |ay |) |rn+1|.
(4.13)
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As rn+1 vanishes on the boundary of W then by the Poincaré inequality we
obtain that the right hand side of the estimate in Eq. (4.13) is bounded by
C ||rn||l ||rn+1||l, where the constant C depends on the size of W and the
function a. We are interested in cases where C is small. It takes place when
|N(a) a−1rn+1| is small in comparison to the gradient |N(rn+1)|. Thus, the
iteration process (4.11) converges if an upper bound of |Naa−1| is efficiently
bounded at least in regions which are non-adjacent to the boundary “W.
Near the boundary |rn+1| can be estimated by a distance from the boundary
multiplied by the mean value of |rn+1

x | or |rn+1
y | along the path leading to a

nearby boundary point. If this condition is only partially satisfied then it is
possible to combine two choices of y by taking the bounded value of y for
‘‘small’’ a: when a(x, y) < 0.5 · l then y=2. This approach is referred as the
DCWB method.

Case 1A and 1B and Example 2 in Sec. 4.3 employ the DCWA and
DCWB methods, respectively. The other illustrative applications use the
original DC process.

4.3. Numerical Results for Elliptic Equations with Non-Constant Coefficients

The following considerations will be useful for the application of the
above Poisson solver (Sec. 2) to the solution of elliptic equations (with non-
constant coefficients).

Remarks.

1. An additional transformation of variables is required in order to
reduce the Poisson equation with constant coefficients to the
standard one:

xi=x −

i `l i.

It transforms Eq. (4.1) in the rectangle [0, 1] × [0, 1] into a rec-
tangle of the form [0, 1/(l1)0.5] × [0, 1/(l2)0.5]. If the ratio of l1

and l2 (or l2 :l1 ) is small, then the accuracy of the basic solver
(and thus of the whole method) may deteriorate. We will discuss
this with more details in Sec. 4.3 (Examples 4 and 6).

2. For a converging iterative process, the accuracy of the solution is
determined only by the approximation of the variable coefficients
operator L with L0, which is employed as a fast kernel (see
Eq. (4.6)). This means that the spectral accuracy can be achieved if
there is a spectral approximation for the differential operator L.
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3. In principle, it is possible to use other constants than ones in the
relation (4.9) for the operator L0. As far as the corresponding
iterative process converges, it converges to the solution of
Eq. (4.1). This can be used in order to improve the ratio between
l1 and l2 (see Remark 1 above). For example, it is possible to
augment l1 and l2 by constant values C1 and C2 thus improving
the robustness of the basic solver. The use of this technique is
demonstrated in Examples 4 and 6.

4. In order to evaluate Lu we have to compute derivatives. This is
also implemented using a combination of the FFT and the sub-
traction technique. If g(x) is defined in [0, p], then h(x), which is
derived as explained above, is subtracted from g such that g − h
vanishes at 0 and p with some of its first even derivatives. Then
g − h is expanded (using FFT in practical implementations) into a
sine series

g(x) − h(x)= C
.

i=1
b i sin(ix),

then the derivative g − is computed as

g −(x)=h −(x)+ C
.

i=1
ib i cos(ix).

It is to be noted that the analytic expression for h − is known.
5. In all the following applications the initial solution is attained by

simply applying the basic solver (4.6) with the given boundary
conditions.

In the following we present a number of applications. Examples 1 and 2
demonstrate the ability of the method to provide spectral accuracy solu-
tions for elliptic equations in a rectangle. Example 3 deals with variable
coefficients which are step functions. Solution of such an equation can
be considered as a preconditioner to a more complicated case when these
constants approximate the values of non-constant coefficients. In Example 4
we solve the Poisson equation with constant coefficients a and b for the
ill-posed case a ± b. Examples 5 and 6 in Sec. 5 indicate that the proposed
solution has the potential to solve the Poisson equation in irregular
domains.

Example 1. Poisson equation with variable coefficients. We solve the
Dirichlet problem for the Poisson equation with the coefficients a1(x, y)=
a2(x, y)=d+x+y in the square [0, 1] × [0, 1].
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Table XIII. L2 Error after 10 Iterations. RHS is 6x+6y+4d and the Exact Solution Is
u=x2+y2

DCWA iterations DC iterations

N1 × N2 d 10 iter. Full convergence 10 iter. Full convergence

8 × 8 1.0 3.1e-7 3.8e-8 1.1e-6 3.9e-8
16 × 16 1.0e-7 4.6e-10 1.0e-6 4.5e-10
32 × 32 2.6e-8 6.0e-12 1.1e-6 6.0e-12
64 × 64 6.6e-9 8.0e-13 1.1e-6 4.1e-13

128 × 128 1.6e-9 1.5e-12 1.1e-6 1.3e-12

8 × 8 0.1 5.5e-7 2.7e-8 2.5e-4 5.3e-8
32 × 32 5.5e-8 6.0e-12 4.2e-4 7.0e-12

128 × 128 7.7e-9 3.0e-12 4.3e-4 5.0e-12

Case 1A. The RHS is 6x+6y+4d and the Dirichlet boundary con-
dition corresponds to the exact solution u=x2+y2. The results achieved by
the DCWA method are compared with those from the DC method. The
comparison is displayed in Table XIII when d=1.0, 0.1. We observe that
the DCWA method has a faster convergence than the DC method. It is
to be emphasized that the DCWA method achieved high accuracy after a
small number of iterations (see Fig. 6). In order to get full convergence up
to several tens of iterations are needed.

Case 1B. Table XIV displays the results when the RHS is

f(x, y)=2p sin 2p(x+y) − 8p2(d+x+y) sin 2px sin 2py,

the exact solution is u=sin 2px sin 2py and d=1. The results demonstrate
faster convergence from the DCWA iterations when compared to the DC
method. In the near-degenerated case, d=.01, more iterations are required
(at a given number of collocation points) in order to recover the full
accuracy when d=1. The results from the DCWA method, given in
Table XV, show that a spectral accuracy is achieved after a small number
of iterations even for grids with a large number of collocation points.

Example 2. An oscillatory case. In this example

a1(x, y)=a2(x, y)=(1+d+sin(4px) sin(4py))2.

The domain is [0, 1] × [0, 1] and f(x, y)=2h(hxux+hyuy) − 8p2h2u, where
h=a1(x, y) and u=sin 2px sin 2py is the exact solution. This case is par-
ticularly difficult to solve since a1(x, y) and a2(x, y) are oscillatory which
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Fig. 6. L2 error for DC and DCWA type iterations.

deteriorates the accuracy of the basic solver and the overall rate of conver-
gence with DC iterations. To improve the convergence we employed the
DCWB iterations since simple DCWA iterations are predictably unstable
here. Similar to Example 1, it was found that the DCWB iterations possess
much better rate of convergence than with the DC iterations. They reduce

Table XIV. L2 Errors from the DC and the DCWA Methods. d=1. RHS Is
2p sin 2p(x+y) − 8p2(1+x+y) sin 2px sin 2py and the Exact Solution Is u=sin 2px sin 2py

DC iterations DCWA iterations

10 iter. Full convergence Full convergence

N1 × N2 L2 error L2 error iter. L2 error iter.

8 × 8 2.4e-4 2.2e-4 6 2.4e-4 4
16 × 16 9.6e-6 5.6e-6 13 5.6e-6 6
32 × 32 5.7e-6 9.0e-8 16 8.2e-8 7
64 × 64 5.7e-6 7.5e-10 23 7.5e-10 9

128 × 128 5.7e-6 6.6e-12 27 6.6e-12 11
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Table XV. L2 Errors for the DCWA Method. RHS Is
2p sin 2p(x+y) − 8p2(0.01+x+y) sin 2px sin 2py

and the Exact Solution Is u=sin 2px sin 2py

Full convergence

N1 × N2 10 iter. 15 iter. 20 iter. L2 error No of iter.

8 × 8 2.1e-4 2.1e-4 2.1e-4 2.1e-4 6
16 × 16 5.6e-6 5.6e-6 5.6e-6 5.6e-6 8
32 × 32 2.2e-7 8.5e-8 8.5e-8 8.5e-8 13
64 × 64 1.8e-7 2.7e-9 8.7e-10 8.0e-10 21

128 × 128 1.8e-7 3.4e-10 8.2e-11 6.5e-12 35

the computational error by additional of 2–3 orders after first 10 iterations.
The overall number of iterations required to get the final accuracy is more
than twice less with DCWB than with DC. Table XVI presents the numer-
ical results from using DCWB.

Example 3. Discontinuous coefficients. We solve the equation when
we have discontinuous coefficients a1(x, y) ] a2(x, y) which are step func-
tions in the square [0, 1] × [0, 1]:

a1(x, y)=˛1 − d, if x2+y2 [ 0.42,

1+d, if x \ 0.6,

1, otherwise,

a2(x, y)=˛1+2d, if x2+y2 [ 0.42,

1 − 2d, if x \ 0.6,

1, otherwise.

Table XVI. Full Convergence: L2 Error with DCWB where Oscillatory Coefficients were
Chosen and the Exact Solution Is u=sin 2px sin 2py

d=3 d=1

N1 × N2 L2 error iter. 10 iter. L2 error iter.

16 × 16 6.6e-5 6 7.7e-4 7.7e-4 7
32 × 32 5.6e-7 8 2.8e-5 4.0e-6 16
64 × 64 5.0e-9 10 8.3e-6 3.0e-8 28

128 × 128 3.6e-11 12 8.4e-6 1.0e-10 33
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Table XVII. L2 Errors for the DC Method after k Iterations and Full Convergence. Here
the Coefficients Are Step Functions and the Exact Solution Is u=sin px sin py

d=0.1 d=0.25

N1 × N2 L2 error k full convergence L2 error k full convergence

8 × 8 4.8e-5 3 9.8e-6 7.0e-5 4 1.6e-4
16 × 16 9.8e-6 4 1.5e-7 2.7e-5 4 1.5e-7
32 × 32 2.1e-6 4 1.4e-9 3.3e-6 5 1.5e-9
64 × 64 3.9e-7 4 1.2e-11 6.0e-7 6 1.1e-11

128 × 128 5.8e-8 6 5.0e-13 8.1e-8 8 5.3e-13

Table XVII presents the results for the RHS which corresponds to the
exact solution u=sin px sin py.

Figure 7 describes the convergence of the iterative process with
d=0.1.
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Fig. 7. L2 error for 16 × 16 and 64 × 64 grid points, d=0.1.
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Table XVIII. L2 Errors for the DC Method. The Exact Solution Is u=e−1x2+ey2

N1 × N2 e C1 C2 10 iter. 20 iter. Full conv., L2 error number of iter.

16 × 16 15 0.0 0.20 7.5e-6 7.8e-7 5.9e-7 23
32 × 32 0.0 0.25 1.6e-5 8.5e-7 2.8e-9 78
16 × 16 1000 0.0 12.0 8.6e-4 9.5e-5 8.3e-5 25
32 × 32 0.0 25.0 1.8e-2 5.7e-3 3.0e-7 200

Example 4. Poisson equation with a1 ± a2. Here we solve the
following Poisson equation with a small parameter:

euxx+
1
e

uyy=f (4.14)

where e=const. If either e or e−1 are small positive numbers, then the basic
solver fails to produce an accurate numerical solution. In order to prevent
loss of accuracy it is common to increase the ratio N2/N1. However,
for e \ 15 the basic solver is unable to produce an accurate solution even
for 16 × 256 collocation points. To overcome this difficulty, we apply the
technique mentioned in the beginning of Sec. 4.3, Remark 3. Instead of a
direct application of the basic solver, we perform DC iterations with l1=e,
l2=e−1+C2, where C2 is a nonnegative constant. In this example, the RHS
in Eq. (4.14) corresponds to the exact solution u=e−1x2+ey2. We can see
from Table XVIII that when e=15 accurate solutions are achieved after
a relatively small number of iterations. The same technique was applied
(using the same RHS) to e=1000 when the solution is highly decoupled
in the x direction. When e=1000 then C2 has to be greater than when we
have e=15. In addition, in order to get a full convergence we need to have
more iterations. The results for this case are given in Table XVIII.

5. SOLUTION OF THE POISSON EQUATION IN IRREGULAR
DOMAINS

Examples 5 and 6 will use the iterative Poisson solver to solve Poisson
equations in irregular domains. We transform the domain {(x, y) ¥ W} to a
rectangle in (t, g)-domain by the orthogonal transformation

x=x(t, g), y=y(t, g)

In the new coordinates t, g the original Poisson equation becomes:

5h2

h1
ut
6

t

+5h1

h2
ug
6

g

=h1h2 f (5.1)
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Fig. 8. The curvilinear domain is transformed into a square.

where the coefficients h1 and h2 are defined by

h1=`x2
t+y2

t, h2=`x2
g+y2

g.

The transformed Eq. (5.1) is solved in the computational domain by the
above iterative method.

Example 5. Poisson equation in curved rectangles. We apply our
solver to the Poisson equation in the domain bounded by the exponential
curves y=exp(x), y=exp(x)+1, y=exp(−x), y=exp(−x)+1 (see Fig. 8).

In terms of the curvilinear coordinates

t=y − exp(−x), g=y − exp(x)

the domain becomes a rectangle [0, 1] × [0, 1] in the computational plane
{t, g}. In this plane we get, following the notation in the beginning of
Sec. 4.3

h2
1=(1+h2)/((t − g)2+4), h2

2=(1+h2)/h2((t − g)2+4)

where h=0.5[t − g+`(t − g)2+4]. A trivial check confirms the orthog-
onality of the transformation. Thus, we have to solve the elliptic equation
with variable coefficients a1(t, g)=h2/h1, a2(t, g)=h1/h2 and the RHS
multiplied by h1h2 as explained in the beginning of Sec. 4.3. The results are
given in Table XIX for the RHS which corresponds to the exact non-
periodic solution u=x3+y3.
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Table XIX. The Iterations Converge Rapidly Yielding an Accurate Solution after as Much
as 10–20 Iterations. For Full Convergence, more Iterations Are Needed when the Number of

Collocation Points Increases

After 10 iterations After 20 iterations Full convergence

N1 × N2 L2 Error L2 Error L2 Error Iterations

8 × 8 1.2e-6 4.8e-8 4.8e-8 18
16 × 16 3.6e-7 1.9e-8 6.7e-10 33
32 × 32 9.6e-8 7.0e-9 7.1e-12 50
64 × 64 4.2e-8 2.3e-9 8.5e-13 70

Example 6. Poisson equation in irregular domains. Here we solve
the Poisson equation in a irregular domain which lies in the first quadrant
and is bounded by the following two curves:

an ellipse x2+
y2

2
=1 and a hyperbola

x2

e2 −
y2

1 − e2=1,

where 1 > e > 0 is a parameter (see Fig. 9).
A simple check shows that the orthogonal transformation

x=t(1 − e2g2)0.5, y=eg(1+t2)0.5

maps the above defined domain to a rectangle [0, 1] × [0, 1] in the compu-
tational plane (t, g). Similar to Example 5, we find the variable coefficients

Fig. 9. The curvilinear domain between the ellipse and the hyperbola (the first quadrant).
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Table XX. The Convergence for e=0.5

After 10 iterations After 20 iterations Full convergence

N1 × N2 L2 Error L2 Error L2 Error Iterations

8 × 8 1.0e-7 1.0e-7 1.0e-7 6
16 × 16 3.2e-9 9.4e-10 9.4e-10 20
32 × 32 1.6e-9 6.3e-11 9.9e-12 25
64 × 64 5.6e-10 4.3e-11 4.1e-13 30

128 × 128 1.5e-10 1.9e-11 1.3e-13 40

a1(t, g)=h2/h1 and a2(t, g)=h1/h2 by computing the coefficients h1

and h2:

h2
1=(1+t2 − e2g2)/(1+t2), h2

2=e2(1+t2 − e2g2)/(1 − e2g2)

and multiplying the RHS by h1h2. Note that as e goes to one then a2(t, g)
goes to zero at g=1 and thus a1(t, g) tends to infinity at the same point.

Consider the case with the exact solution u=x3
1+x3

2 for two values
of the parameter e: e=0.5 and e=0.99. Results for e=0.5 are shown in
Table XX. The iterations converge rapidly with an accurate solution
available already after 10 iterations.

The case e=0.99 is almost singular as a1(t, g) becomes much bigger
than a2(t, g) (in comparison with Example 4). To overcome this difficulty,
more collocation points are required in the g direction. The results are
given in Table XXI. The closeness of e to 1 also yields a slower rate of
convergence than e=0.5. This results in a greater number of iterations
which are required for obtaining an accurate solution. In order to improve
the accuracy it is necessary to augment the ratio between N2 and N1. It can
be done using the same technique as in Example 4, that is to perform DC

Table XXI. The Convergence for e=0.99

After 10 iter. After 20 iter. Full convergence

N1 × N2 L2 Error L2 Error L2 Error Iterations

C1=C2=0 16 × 64 2.2e-3 4.3e-5 8.2e-6 30
C1=C2=0 16 × 128 2.2e-3 3.6e-5 9.5e-7 35
C1=C2=0 32 × 128 2.2e-3 3.7e-5 2.2e-7 40
C1=C2=0 16 × 256 diverges

C1=0, C2=0.1 16 × 256 2.5e-3 4.9e-5 2.0e-8 50
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iterations by means of a Poisson solver with augmented values of constant
coefficients. Specifically, we add a positive value of C2 to the second coef-
ficient. As can be seen from Table XXI, the resulting iterations converge
and produce better than otherwise accuracy at a given number of colloca-
tion points.

6. SUMMARY

This paper continues the flow of our previous results [1, 2] on fast
direct spectral solvers for the Poisson equation and the Helmholtz equa-
tion. It presents the following novel elements:

1. A fast 2-D spectral algorithm for the solution of the Poisson
equation and the (modified) Helmholtz equation is developed
which does not require an extension of the original domain. This
is a major improvement in comparison to [1, 2, 6, 7]. It takes
O(N2 log N) operations, where N is the number of collocation
points in each direction (compared to O((N+k)2 log N) for the
previous 2D algorithms, where k is a number of extension points).
The method is based on the eigenfunction expansion of the right
hand side with successive integration. Both the right hand side and
the boundary conditions are not assumed to have any periodicity
properties. Compared to the spectral schemes based on Chebyshev
polynomials the method does not need to find the inverse of the
full matrix (which results in O(N3) operations). All the integra-
tions are direct which also reduces the round-off error.

2. Iterative procedure, which is based on this algorithm, was devel-
oped for elliptic equations with non-constant coefficients. The
procedure enjoys the following properties: fast convergence and
high accuracy even when the computation employs a small
number of collocation points. The basic solver was used as a pre-
conditioner. The algorithm was also applied to resolve the Poisson
equation in irregular geometries.

The algorithm can be developed in the following directions:

1. The present solver can be incorporated as a part of Domain
Decomposition algorithm for the resolution of the Poisson equa-
tion or the Helmholtz equation in regular subdomains, similar to
[20].

2. The fast spectral subtractional solver can be extended to the 3-D
case. Once developed, it can be employed as a basic algorithm for
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the iterative solution of the 3-D elliptic equations with non-con-
stant coefficients and to the solution of the Poisson equation in
complex geometries.
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