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We present a direct solver for the Poisson and Laplace equations in a 3D rectan-
gular box. The method is based on the application of the discrete Fourier transform
accompanied by a subtraction technique which allows reducing the errors associated
with the Gibbs phenomenon and achieving any prescribed rate of convergence. The
algorithm requireO(N3log N) operations, wherd\ is the number of grid points
in each direction. We show that our approach allows accurate treatment of singular
cases which arise when the boundary function is discontinuous or incompatible with
the differential equation. © 1998 Academic Press
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edge singularities.

1. INTRODUCTION

Fast and accurate solution of elliptic equations is an important step towards resoluti
problems which appear in computational physics or fluid dynamics (CFD). These equa
arise in the determination of the pressure field for incompressible CFD, in the imp
solution of viscous and heat transfer problems, in the solution of the Maxwell equat
for lithographic exposure, in the solution of reaction-diffusion equations for baking
dissolution processes in semiconductor manufacture and in many other applications.

We solve the Poisson equation in a 3D domain. Most Poisson and Laplace solvers
initially developed for the 2D case, such as the iterative multigrid techniques [15], dor
decomposition [9] and other preconditioning strategies, the boundary integral method
and the adaptive [11] fast multipole method [12].

Application of high-order (pseudo) spectral methods, which are based on global ex
sions into orthogonal polynomials (Chebyshev or Legendre polynomials), to the solutic
elliptic equations, results in full matrix problems. The cost of invertingRult P matrices

109

0021-9991/98 $25.00
Copyright(© 1998 by Academic Press
All rights of reproduction in any form reserved.



110 BRAVERMAN ET AL.

without using special properties@®( P3) operations [8]. Besides, the accuracy may decrea:
considerably as the dimensidir of the system grows due to accumulation of round-of
errors. These remarks are related to the 2D case, where in 3D the cost increases drast
Sparse representations which can be derived by the application of the wavelet transfot
elliptic operators can reduce the number of operations as it is described in [2, 3].

The Fourier method has the following advantages when it is used to solve the Lap!
(Poisson) equation:

1. Differential operators are represented in the Fourier basis by diagonal matrices w
reduce the integration to division of the Fourier coefficients by the corresponding wx
numbers.

2. Ifthe function is infinitely differentiable and periodic then the approximatioh by
Fourier series converges fomore rapidly than any finite power of N, whereN is the
number of Fourier harmonics.

Multidimensional FFT can be immediately applied to a regular domain (rectangle in :
and parallelepiped in 3D). Besides, rapid convergence assumes periodicity of the func
and its derivatives up to a certain order. If the function is nonperiodic, the Fourier sel
converges as/N, whereN is the number of points in each direction, which is not bette
than a first-order finite-difference scheme. In [4, 5] a fast 2D algorithm was develoy
which incorporates the application of the FFT with a preliminary subtraction technique. T
method require®©(N?log N) operations forN? discretization points in the 2D case and
can achieve any prescribed rate of convergence. In this paper we generalize the algoritt
a 3D case. The efficiency of the algorithm is especially vital for 3D problems which usuz
require heavy computations. The method which is presented here enjoys the prope
of the 2D algorithm: fast convergence (i.e., smidlinecessary to achieve the prescribec
accuracy) and comparatively small number of operations per poitibg N)).

We consider the Poisson equation

Au=f (1.1)

with Dirichlet boundary conditions.

First, a particular solution of (1.1) is obtained; then an auxiliary problem for the Lapla
equation is solved. The boundary conditions for the auxiliary problem are obtained as
difference between the original boundary conditions and those obtained from the partic
solution. If the particular solution corresponds to zero boundary values, then we solve
Laplace equation with the original boundary conditions.

Thus, the algorithm consists of two steps:

Stepl. solving a Poisson equation (1.1) with some boundary conditions;
Step2. solving a Laplace equation with specified boundary conditions.

Below we describe two steps of the algorithm and characterize the methods which
used to avoid the Gibbs phenomenon.

1. The functionf in the right-hand side of Eq. (1.1) is extended to a larger doma
and it is replaced by a new function which coincides witln the original domain and it
is periodic together with a certain number of its derivatives in the larger domain [4, 1
This procedure is based on the local Fourier basis method [14, 19] and it uses the fol
operation as it is described in [1, 13].
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2. The auxiliary boundary value problem for the Laplace equation is solved to sat
the original boundary conditions. Here we restrict ourselves to a Dirichlet problem.
reduce the effect of the Gibbs phenomenon by employing the subtraction technique
in [5], which is extended to the 3D case. The boundary conditions are represented as ¢
of periodic functions with functions which are considered as a restriction of the kno
harmonic functions to the boundaries. In particular, combinations of the functions

f1(X, Y, 2) = sinA1x sinizy sinhasz, A2 412 =22, (1.2)
f2(X, Y, 2) = sinA1x sinhiy sinhizz, A3 = A3 + A3, (1.3)

enjoy the propertyf; (1, 1, 1) # Oandf;i(x, y, z) = Oinallthe other corners. By subtracting
one of the weighted functions (1.2) or (1.3) we achieve the zero value in the corner (1, .
without affecting the values on the other corners. Eight functions are subtracted to act
zero values on the corners; then the second derivatives in the corners are eliminatec
A similar procedure is applied to the edges. Finally, the solution is derived by the applica
of the discrete sine transform (DST) to each of the six faces, where the boundary condi
are eventually periodic.

The present paper employs the following ideas of [4, 5]. First, the Gibbs phenomer
reduced by subtraction of some harmonic functions. Second, these subtraction functior
chosen as products of trigonometric (i.e., cos, sin, cosh, sinh) functions. However, for th
case the algorithm is more complicated because in 2D the subtraction step was conc
onlywith the corners, while inthe 3D case we have to treat both corners and edges. Thert
different subtraction functions have to be derived. In addition, in [17] and [5] singular ca
were treated when the boundary function is discontinuous or nonharmonic on the cc
of the 2D rectangular. The spectral accuracy was restored by subtracting the singul
The singularity treatment of the 3D case is much more difficult by the following reaso
First, we may have discontinuity not only at one point but along the whole edge. Sec
we cannot use the methods from complex analysis which were useful in removing the
singularities. Therefore, the whole mechanism to remove singularities in the 3D case is

The method which is presented here can be modified and extended to handle Neur
mixed boundary conditions and for an elliptic equation of a more general type as in [6

The paper has the following structure. In Section 2 we solve the boundary value prot
for the Laplace equation. We describe the procedure that leads to the boundary fun
which vanishes on the corners. The same technique is applied to eliminate the deriva
Section 2.3 describes the algorithm which transforms the boundary function to a peri
one (together with its derivatives up to the third one) to avoid the Gibbs phenomenon.
outline of the algorithm with operations count and convergence rate estimates are giv
the next section. Numerical results are presented in Section 2.6. Finally, certain sin
cases are considered when the boundary function is discontinuous or does not satis
Laplace equation on a certain edge. Section 3 describes the application of the Fourierm
for the solution of (1.1) in the 3D case.

2. LAPLACE EQUATION IN A BOX

2.1. Mathematical Preliminaries

Consider the Laplace equation in a cube.stand for the open culd®, ) x (0, ) x
O, 71)={(X,¥,2:0<x<m0<y<m 0< z< x}andletdC stand for the boundary
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V= fs

FIG. 1. Dirichlet problem for the cub€. The continuous functiorf on aC is specified by six functions
fi,oen, fs, one on each of the six faces@t.

surface of that cube. To solve the Dirichlet problemddiFig. 1), we solve first a simpler
problem:

AV = Wy + Wy + U,, =0
v0+,y,2) =¥ (r—,Y¥,2 =0, V(X,04+,20=¥(X,7—,2) =0 (2.1)
V(X,y,04+) =0, WX, y,7—)= fi(x,y).

Substituting? (x, v, 2) = X(X)Y(y)Z(2) into Laplace’s equation we obtain, upon divi-
ding by X(x)Y (y)Z(2),

X'(x) Y'(y) Z”(Z)=
X(X) Y(y) Z(2)

and the homogeneous (zero) conditions in (2.1) yield
X(©0)=X(x)=0, YO =Y(r)=0, Z(0) =0.
These last two results lead us to

X'(X) = AX (), Y'(y) = uY(Y). Z'(2) = =+ wZ() 2.2)
X@©0)=X(@)=0, YO0 =Y(x)=0, Z(0) =0, '
where) andp are constants. The first two problems in (2.2) yield the same eigenvalt
and eigenfunctions as the wave equation €et b = 7). Substituting those eigenvalues
Am = —m? andu, = —n? into the third problem in (2.2), we find the solution
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wheresm, = (m? 4+ n?)Y/2. Any finite superposition of these separable solutions,

M,N
Z Dmnsinmxsinny(sinhdmnz/sinhémnr), (2.3)

m,n=1

is harmonic. IfM, N — oo we obtain

V(X,Y,2) = Z Dmnsinmxsinny(sinhdmnz/sinhémnr),

m,n=1

where the coefficient®,, are yetto be determined. Fo& 7 to satisfyd = f; itisrequired
that

o0
f1 ~ Z DmnSiNMxsinny.
m,n=1

Therefore, the solution to (2.1) can be written as

W(X,y,2z) = Z Dmnsinmxsinny(sinhdmnz/sinhémnr), (2.4)

m,n=1

wheresm, = (M?+n?)Y? is a solution of (2.1) (the detailed discussion is given in Ap
pendix 1) and

4 T T
Dmn:;/o/o f1(x, y) sihnmxsinny dx dy (2.5)

By adding such solutions we obtain the solutirio the general Dirichlet problem as a
sum of six series like the one of (2.4). Similarly, the problem
AV =0
vO0+,y,2)=V¥(r—,Y,2=0
V(X,0+,2) = f4(x,2, Y(X,7—,2) =0
W(X,y,0+H) =V, y,r—) =0

has the series solution

sinhémn(r — )

Y(X,Y,2) = DmnSinmxsinnz -
(*.y.2) Z mn sinhdmnr

m,n=1
where
4 T T
Dmn = —2/ / f4(u, v) sinmusinnv du dv.
7= Jo Jo
The other four series solution needed for the solution can be obtained by permuting

variablesx, y, andz in the two series above.
The validity of (2.4) as a solution to (2.1) is discussed in Appendix 1.
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FIG. 2. Dirichlet's problem for cube&. Here the solutionV (x, vy, z) is specified on the twelve edges©f

2.2. Subtraction Procedure for Edges

A sum of six series like the one in Eq. (2.4) is a solution of the Laplace equation with 1
given boundary function on the surfag€. However, if¥ # 0 on the edges of the cube,
the convergence of the series will be very slow because of the Gibbs phenomenon. Co
gence can be improved if the face functions vanish together with their even derivative
some order. For example, zeroing out the functioon theedgey = 0,z= 7,0 < X < 7,
can be achieved by subtraction of the function (Fig. 2):

o0 . .
. sinh Ayn(r — y) sinh Aoz
Uui(X,v,2) = dn sinnx - - , 2.6
1%y, 2) ; " sinhi;r  sinh o (2.6)
wherer2, + A%, = n?, or alternatively,
o0 . .
. sinh Ain(r — y) Sin Axnz
Ui(X. Y. 2) = ) dnsinnx— in(7 = Y) SN Azn (2.7)
ol sinhAqnr  sinApm

with A2, — A2, = n?, where we must require the “nonresonance condition’Asitr # 0.
Here

2 T
dn = —/ (X, 0, )sinnx dx
T Jo

u; anduj are obviously harmonic and vanish on all the edges except the one under co
deration.
Similarly,

—[2 [ . . sinh A1,y sinh
uz(X,y,2) = E {;/ W(x, 0, ) sinnx dx} sinnx o Ay SINA AznZ
0

— sinh Aqnr sinh Aonm

(2.8)
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is appropriate fod(x, 7, 7) = 0,0 < X < 7,

o0

2 T
us(X, Y, 2) = Z LT / W(x, 0, ) sinnx dx} sinnx
JO

n=1

sinh Aqn(r — y) sinh A (r — 2)
sinh A sinh Aon
(2.9

is appropriate fol(x,0,0) = 0,0 < X < =, and

12 (7 ) __sinhigyy sinhion(r — 2)
Us(X,V,2) = — | W(x,0,7)sinnx dx| sinnx— -
4%, Y. 2) ; [n/o ( ) ] sinhAinr  sinhionm

(2.10)

is appropriate fo (x, 7, 0) =0, 0 < X < 7. The analogs of the functions (2.7) are obtaine
in a similar way.

Eight other subtraction functions can be obtained from (2.6)—(2.10) by permuting
variablesx, y, andz.

After subtractinguy, uo, ..., ui2 we will have a solution that vanishes on edges (exce
perhaps corners).

We observe that approximation of this solution by a series of type (2.4) will conve
faster if the function vanishes on the edges, together with its even derivatives.

Let

92w > ,
8—y2(x’ 0, ) ~ an sinnx, (2.11)
n=1
where
2 [T %W )
b, = —/ —Z(X,O,n)smnx dx (2.12)
7w Jo 0y

The following function is subtracted for the elimination of the second derivative,

i 2 b s [sinh)\ln(n—y) SiAznz _ SiNkan(r — ) SihAnZ | =5 159
)‘1n )‘2n

~ sinhAinr SinAonm SinAsym  SinhAqnm

whereby, is defined in (2.12)4.1n > Azn, SiNA1n # 0, SiNAzn # 0, andAZ, — A3, = n2. This
function enjoys the following properties: it is harmonic, vanishes on all the edges toge
with its first derivatives, its second derivative ynvanishes on all the edges except th
chosen one. It also has the same second derivatizeagithe boundary conditions since
here the boundary function is assumed to be harmonic.

Similarly, the annihilation of the fourth derivatives is achieved by subtracting a line
combination of the two functions (2.13) with different coefficients and frequencies.

Under certain conditions the subtraction of the edge values and the second derive
can be achieved simultaneously as shown in Appendix 2.

We recall that a boundary function on the segment can be approximated by the sine ¢
(4.4) if it vanishes on the ends. We proceed to describe the procedure for obtaining ze
on the corners.
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FIG. 3. Dirichlet’'s problem for cube&. Here the solutionV (x, vy, z) is specified on the eight corners©f

2.3. Subtraction Procedure for Corners

Let W (0, 0,0) = A. A zero value at the origin is achieved by subtracting the so-calle
“corner functions” given by (Fig. 3):

sinhA1(zr — X) sinhix(r — y) SinAz(T — 2)

, 2.14
sinhAymw sinhAom sinism ( )

Coo00(X y,2)=A

where the arguments can be changed to fit the other corneig ant2 = 13. The subtrac-
tion of such a function does not influence the values in the seven other corners; thus
corner can be treated separately.

Denote

9*w 9*w 9*w
BX = W(Ov O’ 0)7 By: 8—y2(07 Oa 0)7 BZ= ﬁ(()’ 07 0)'

The second derivative vanishes after subtracting a linear combination of the above f
tions. For example, in the case @, — By)(2Bx + By) > 0 the function

sinhAy(r — X) sinhio(r — y) SinAz(r — 2)
sinhiim sinhiom SinAzm

sinhAy(r — X) sinAz(r — y) sinhA(r — 2)
sinhiom SinAzm sinhiim

is subtracted, where s = sgn(By — By), and

_2B+B ,_ BB

2 2 2

For(By — Byx)(2Bx+ By) < 0and|2B, + By| > | By — By| the subtraction function is chosen
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as

sinhA1(mr — X) SinAx(r — y) siniz(mr — 2)
sinhAqm SinA,m sinAzm

Siniz(r — X) SinAg(r — y) sinhi1(wr — 2)
sinAom sinizm sinhAym

wherea is of the same sign &8, — By):

Bx — By
3a

32— 2Bx+ By

2 2 _ 42
3a s A3=A1— A%

2 _
5=
For (By — Bx)(2Bx + By) <0 and|2By + By| < |By — By| we subtract

sinhi1(r — X) siniz(r — y) sinhiz(r — 2)
sinhiqm SinAom sinhizm

SinAy(r — X) sinhiz(r — y) sinhii(r — 2)
SinAom sinhizm sinhiqm

with @, A1, A as in the previous cask3 = A3 — A%.
In caseB, = B, we choose the subtraction function as

sinha(r — x) sinha( — y) sinv2r(r — 2)
sinhar sinhar sinv/2im

_sinA(r — x) sini(w —y) sinhv2xr(r — 2)
sinAr sinAr sinhv2a7

wherex anda are such thaar? = B, /2.

For the caseBy = —2B, we subtract the same function as above, wheend z are
permuted. The choice afand allA; should be such that the denominators do not vanist

Similar functions are subtracted for the other corners. For instance, in the “corner fi
tion” of (x, 0, ) in (2.14), (4.8);r — x is changed by andzr — z—hy z etc.

If the boundary function does not vanish in the corner, the subtraction of the corner va
and the second derivatives can be achieved simultaneously as shown in Appendix 2.

Figure 4 illustrates the values on the face 0 after subtraction of the corner functions
and the edge functions, respectively, for the numerical solution of the Dirichlet problen
the cube [01] x [0, 1] x [0, 1] which corresponds to the exact solution

1

lII ’ ’ = .
ooy V(X —0.5)2+ (y — 0.5)2 + (z — 0.5)2

The second derivatives were computed using the divided differences method w
corresponds to a polynomial of the fourth order (four points in addition to one wh
the derivative is evaluated).

2.4. Steps of the Algorithm

1. Subtraction of corner functions defined by (2.14).
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FIG. 4. The values on one of the faces after subtraction of corner functions and edge functions, respectively.
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2. Computation of the second derivatives in two directions for each corner by the divi
differences method.

3. Elimination of the second derivatives on the corners by using the subtracting funct
which were defined in Section 2.3.

4. Application of the discrete sine transform (DST) on each of the 12 edges and sub
tion of the “edge functions” (2.6) or (2.7).

5. Computation of the second derivatives in the orthogonal direction for the 12 edg

6. Subtraction of 12 functions defined by (2.13).

7. Application of two-dimensional DST on the six faces; the remainder of the solut
isin (2.3) form.

2.5. Rate of Convergence and Operation Count

The numerical error is dominated by the truncation of the Fourier series. We begir
estimating the accuracy of the two-dimensional approximation if we truncate the serie
(2.4) for any of the six faces. Consider the first one. The tail of the truncated series,

M,N

Z DmnsmmxsmnyM Z DmnsmmxsmnyM
ol sinhdmnt ol sinhdmnt
o0 o0 o0 o0
=| Y > Dmnsinmxsinny+Y" " Dpasinmxsinny
m=M+1 n=1 m=1n=N+1
o0 o0 o0 o0
< Z Z|Dmnsinmxsinny|+z Z |DmnSinmxsinnyy|,
m=M+1 n=1 m=1n=N+1

since 0< sinhépnz < sinhdyyr for0 <z < .

Let f; be a periodic function wittk — 1 periodic derivatives ix andl — 1 periodic
derivatives iny, while 9kt f,/3%xd'y is integrable in [07r] x [0, 7]. Applying integration
by parts to (2.5) yields [10]

4 T T
Dm”:P// f1(x, y) sinmxsinny dx dy

k
- // 9 fl(x I hx.y) @m(mx) sinny dx dy

ak+|f X,
= n2mk// 3X1k(y| y)wm(mX)wl(ny)dx dy,

where

() = cost, oddi,
# =1 sint, eveni.

Thus,Dmn < 1/(mkn') and the error estimate
M,N
’ 1 1 1 1

m,n=1
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is valid for both the first face and the corresponding part of the solution in the cube. Th
fore, if the function and its first derivative vanish on the boundaries (one subtraction st
then the maximal error is reduced by the factor &&=24 when the number of points is
doubled in each direction. The maximal error is reduced by the factot-efi® if all the
derivatives up to the third one vanish on the boundaries (two step subtraction). Obviot
all the other steps of the algorithm (namely, one-dimensional sine Fourier transform
edges) have the same rate of convergence.

Operation Count
Let N be the number of grid points in each direction:

1. Subtraction of corner functions (2.14) - B (N3
2. Computation of the second derivatives in two directions 8- O(1)
each corner

. Elimination of the second derivatives in the corners - CBN?®)

4. Application of discrete sine transform for each of the 12 edges O(N3log, N)
and subtraction of the “edge functions” (2.6) or (2.7)

5. Computation of the second derivatives in the orthogodal- O(N)
direction for the 12 edges

6. The same procedure as in 4 for the second derivatives - O1R3log, N)

7. Application of discrete sine transform for the six facess- O(N3log, N)
construction and summation of the 6 solutions.

w

Therefore, the total computational cost of the algorithm is 82N3log, N) + O(N?3),
i.e., O(N2log, N) operations.
2.6. Numerical Results

Assume thatV is the exact solution and’ is the computed solution. In the following
examples we will use the following measures to estimate the errors:

emax = max| ¥ — i |

g — | i (W = )2
Q n
o — | Eima (¥ = W)

N
Zi:l \Ijiz

ExampPLE 1. We solve the Laplace equationin [ x [0, 1] x [0, 1] with the boundary
conditions corresponding to the harmonic solution (Table 1)

\I/(X, ’ Z) =
Y E= kY

where

P, Y, 2) = /(X = X0)2 + (Y — Yo)2 + (2 — 20)%, Xo=Yo=20=—05.

One can observe thapax decreases a little bit less than what was predicted in the previo
section according to the dominant error. After one subtraction step when the functi
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TABLE 1
MAX, MSQ, and £2 Errors after One (Function Values on the Frame) and Two
(also Second Derivatives on the Frame) Subtraction Steps

One subtr. step Two subtr. steps
Nx X Ny X NZ EMAX SMSQ Er2 EMAX SMSQ 8[:2
8x8x8 1.3e-5 1.8e-6 3.0e-6 9.8e-7 8.1e-8 1.4e-7
16 x 16 x 16 3.5e-6 2.3e-7 4.0e-7 8.1e-8 2.8e-9 4.7e-9
32x 32x 32 9.3e-7 3.1e-8 5.2e-8 5.9e-9 8.8e-11 1.5e-10
64 x 64 x 64 2.4e-7 3.9e-9 6.7e-9 4.0e-10 3.0e-12 5.0e-12

before the application of the Fourier transform are periodic, together with their derivatiy
emax decreases a little bit less than four times as the number of points is doubled apd th
eight times. For two subtraction steps, when the functions after the subtraction proce
are periodic, together with their derivatives up to the third order, we obtain a decreas
about 16 and 32 times, respectively.

In the following examples we do not specify boundary conditions and only notice
corresponding exact solution. Examples 2-5 illustrate the same rate of convergenc
various Dirichlet problems.

ExAMPLE 2. In [0, =] x [0, =] x [0, =] the Dirichlet boundary problem is solved for
the Laplace equation such that the exact solution is (Table 2)

sinhv/3( — y) sinhz

U(X,VY,2Z) =CcosX - .
(x.y.2 sinhv/37r  sinhx

ExampPLE 3. The exact solution is (Table 3)

sinhv/5(r — 2)

Y(X, Y, Z) = CcoS X Ccos
(x.y.2) y sinh+/57

, (X,¥,2) €]0, 7] x[0, 7] x [0, 7].

EXAMPLE 4. The same as Example 1, orikg, Yo, Zp) = (—0.1, —0.3, —0.2) (Table 4).

ExampLE 5. The exact solution is (Table 5)

. sinhy sinhz
W(X,Y,2) =sin 2Xsinhn Sinhe (X,¥,2) €[0, 7] x [0, 7] x [0, ].
TABLE 2

MAX, MSQ, and £? Errors after One and Two Subtraction Steps

One subtr. step Two subtr. steps
Nx X Ny X NZ EMAX EmsQ Er2 EMAX EmsQ Er2
8x8x8 1.5e-4 1.5e-5 1l.1e-4 4.2e-5 4.2e-6 3.3e-5
16 x 16 x 16 4.4e-5 2.1e-6 2e-5 3.4e-6 1.3e-7 1.2e-6
32x32x 32 1.3e-5 2.9e-7 3e-6 2.4e-7 4.2e-9 4.4e-8

64 x 64 x 64 3.8e-6 3.7e-8 4.2e-7 1.6e-8 1.3e-10 1.5e-9
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TABLE 3
MAX, MSQ, and £? Errors after One and Two Subtraction Steps

One subtr. step Two subtr. steps
NX X Ny X NZ EMAX 8M5Q 81:2 EMAX SMSQ 852
8x8x8 2.2e-4 3.2e-5 1.6e-4 8e-5 le-5 5e-5
16 x 16 x 16 2e-5 6.8e-7 4.5e-6 6.4e-6 3.6e-7 2.1e-6
32x32x 32 7e-5 5e-6 3e-5 4.3e-7 1.2e-8 8e-8
64 x 64 x 64 5.4e-6 8.8e-8 6.2e-7 2.7e-8 3.9e-10 2.7e-9

2.7. Dirichlet Problems with Discontinuous Boundary Conditions or Boundary
Conditions Which Do Not Satisfy the Laplace Equation

Everywhere above we assumed that the boundary function satisfies the Laplace equ
on the edges and the corners. Let us assume now that for theyedge=0,0<x < 1
the Laplace equation is not satisfied but

2y 32w %W

wherep(x) # 0. For instance, consider the cggex) = ax + b. The function

f(x,y,2) = aXTJFb 2y(r — 2) InV/y2 + (7 — 2)% + arctan”T_Z(y2 —(r—2?

satisfies the Laplace equation everywhere except on theyedg®, z = w, where

92 32 f 02 f
W(X’ 0,m)+ B—yZ(X’ 0,7)+ ﬁ(x, 0,7) =ax+bh.

In fact,
9% f
fx,0,7)=0= —Z(X,O,n) =0,
X
ax+bm 92 f ax+b
f X, ,T) = ~ 2 = X, 0, ) = ’
X ym) = =5 =Y = a0 = =
ax+bm 92 f ax+b
f(x,0,2) = -2 —(x,0,7) = ;
( ) 27 2 ( ) 022 ( ) 2
TABLE 4
MAX, MSQ, and £2 Errors after One and Two Subtraction Steps
One subtr. step Two subtr. steps
Ny x Ny x N, EMAX EMsQ &2 EMAX EMsQ &2
8x8x8 5.5e-5 3.8e-6 4.4e-6 3e-5 4e-6 4.7e-6
16 x 16 x 16 1.7e-5 5.6e-7 6.5e-7 1.6e-6 5e-8 6e-8
32x 32x 32 5.1e-6 7.7e-8 9e-8 1.3e-7 1.6e-9 1.9e-9

64 x 64 x 64 1.5e-6 le-8 1.2e-8 9.4e-9 5.2e-11 6e-11
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TABLE 5
MAX, MSQ, and £? Errors after One and Two Subtraction Steps

One subtr. step Two subtr. steps
Nx X Ny X NZ EMAX EMSQ Ep2 EMAX EMsQ Ep2
8x8x8 3.6e-5 3.9e-6 3.4e-5 5.8e-6 6.4e-7 5.5e-6
16 x 16 x 16 1.1e-5 6.3e-7 6.3e-6 3.8e-7 2.8e-8 2.8e-7
32x32x 32 2.8e-6 8.6e-8 9.3e-7 1.7e-8 6.7e-10 7.3e-9
64 x 64 x 64 Te-7 1.1e-8 1.3e-7 le-9 1.6e-11 1.8e-10

thereforev? f (x, 0, 7) = ax + b. After subtraction of this function we obtain regular bound
ary conditions, and the technique that was developed in Sections 2.1-2.3 is applicabl

For the 2D case the problem of corner singularities was considered in [5, 17]. Howev
is to be emphasized thatin 3D the problem is more complicated. First, we have a singul
not only on a single point but on the whole edge. Second, in 3D we cannot apply mett
of complex analysis which appeared to be useful for removing 2D singularities.

At first we describe some cases when singularity can be removed by subtractio
a function which is known analytically. Then a numerical method for the subtraction
singularities of a general type will be presented.

Some Types of Constant Singularities
1. Singularity from the intersection of two planes with different constant values:
Ux,y,00=1 O<x,y<m, V¥(Xx02=0 0<x,z<m,
v0,y,2) =0, O0<y,z<m.
The subtraction function for singularity removal is

Xy
z/x2+y2 4+ 22

2. A box with “a black floor and white walls”:

2
u(x, y, z) = — arctan
b4

U(x,y,0=1 O<x,y<m, W¥(X02=¥Xm72=0 0<x,z<m,
Vv0,y,2)=¥(r,Yy,2=0, 0<y,z=<m.

The corner singularity function is

y

1 X yX
d(X,Y,2) = — arctanE + arctanz — 2arcta
T

n— 9

/X2 +y? 4 22
which corresponds to the corner (0, 0, 0). The complete subtraction function which rem
the singularities is

(2.16)

SX,¥,2)=1—d(X,Y,2) —d(r —X,¥,2) —d(X, 7 —Y,2) — P(7 — X, T — Y, 2).
3. A box with “black floor and ceiling and white walls™:

Y(x,y,0=1, ¥y, nm)=1 0<Xy=m,
U(x,0,2=¥(X,7,20=0, 0<x,z<m, V(0,y,2)=V¥(r,y,2=0, 0<y,z<m.
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TABLE 6
Numerical Accuracy after One Subtraction Step when the Solution Is Equal
to One on the Bottom and Vanishes on All the Neighboring Faces

Ny x Ny x N, EMAX EmsQ &2

16 x 16 x 16 2.0e-7 4.0e-8 2.0e-8
32x 32x 32 4.7e-8 3.5e-10 1.8e-9
64 x 64 x 64 1.2e-8 3.0e-11 1.7e-10

The harmonic function with the same singularityS&, y, z2) + S(x, y, # — z), whereS
stands for the function defined by (2.16).

ExampLE 6. Consider the second problem, i.e. the problem of a cube with a “bla
floor and white walls” (Table 6).

The General Case

The above results demonstrate that in the case when “a jump between the face
constant we usually can construct the subtraction function analytically. This leads t
smooth problem. Suppose now thiagx, 0+, 0) — W (X, 0, 0+) = g(X).

The problem is how to build a function which has the same jump at the 2dge=0
and has no jumps on the other edges. This is equivalent to introducing a double layer &
facey = 0 with a fixed density 8(x) atz=0 and zero density &= 1; for example, a
subtraction function is introduced as

1 1l gty ®(s)dtds
P YD =50 /0/0 [(X— D7+ Y2 + (z— 972

where®(s) is a smooth function such thét(0) =1, (1) =0. Obviously,®(s) is equal

to zero aty =0. We assumg(0) =g(1) =0 to avoid a jump at the edg€®, 0, z) and
(1, 0, 2). This situation can be achieved by subtracting the corner singularities as show
Fig. 5. Figure 6 illustrates the values on the fazes0O andz=1 for the particular case
®(s) = (1—9)?, g(x) = sin(zx). The functiond has a jump at = 0 and is smooth a= 1.

3. POISSON EQUATION IN CUBE

The following problem involves the Poisson equation with boundary conditions or
rectangular boB = (0, ) x (0, w) x (0, 7):
Wy + Wy + ¥, = —F(X, y, 2), Poisson equatign
v0,y,2) =V¥(r,y,2) =0 W¥(X,0,2 =W¥(X,m2z =0, boundary conditions
U(x,y,0 =¥y, m)=0.
(3.1)

To solve (3.1) we expand andF in triple sine series,

W(X,y,2) = Z dmn Sin(kx) sin(my) sin(nz)

k,m,n=1

F(x,y,2) = Z DymnSin(kx) sin(my) sin(nz),

k,m,n=1
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FIG. 5. Plot of the subtraction functio8(x, y, z) atz=0.005.

and substitute it into the Poisson equation (3.1) and, assuming tisatvice continuously
differentiable, we see that

d _ kan
KM 2 4 m2 4 n?
Thus,
w _ Y Pkmn ik si i 3.2
x.y.2= Y msm( X) sin(my) sin(nz). (3.2)
k,m,n=1

This series and its first and second partial derivatives converge absolutely and unifol
provided the serieB does the same. This is the casE is extended as an odd function, itis
continuously differentiable, and if the squares of its second derivatives have finite integ
In this casel is the solution of (3.1). The complete details are given in Appendix 3.

We proceed with the numerical algorithm for the solution of the Poisson equation.
numerical technique that locates a particular solution of the Poisson equation (3.1) incl
the three-dimensional Fourier transform of the right-hand side. It is efficient and accu
if the right-hand side is periodic in the cube. If not, a smoothing procedure that inclu
extension and folding is applied on the right-hand side. Finally, the solution of the Dirict
problem for the Poisson equation incorporates the follovsiegps

1. F(x, Y, 2) is continuously extended to the domairde, m + 2¢] x [—2¢, T + 2¢] x
[—2¢, m + 2¢]; this step can be omitted if the right-hand side is defined in the extenc
domain.

2. Aone-dimensional folding proceduregis applied to the extended functi€rix, Y, 2)
for each—2¢ <X,y <m + 2¢. It is described in Appendix 4. As a result a new functiol
F_l(x, Yy, Z) is obtained which coincides with the original function in the cubgr{Px

[0, =] x [0, =] and F_(lfr)(x, y, —&)= F_(lzr)(x, y, Tt +¢)=0,r=0,1, ..., -2 <
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X,y <m + 2¢. The cost of this step i©((N + N,)2 - N,), whereN, is the number of
discretization points on the extended segmBhtis small when it is compared witN.

3. The same folding procedureynforeach—2s < X < 7w +2¢,—¢ <z < 7w +¢,leads
tothe functiorF_z whichis periodic, together with its even derivativeyirF_(zir) (X, —¢,2)=
F_(lzr)(x,n+s,z) =0,r=01...,- 2 <XxX<m+2—¢<z<mw+e¢.Thecostis
O((N + Ng) - N - Ng).

4. Folding procedure ir for each—¢ <y, z < 7 + ¢ generates a functioRs periodic
in “the extended cube”

[—e,m+e] x[—e,m+e] x[—e,m+¢],

together with its even derivatives i y, andz. The cost of this step i©®(N? - N,).

5. The Poisson equation (3.1) is solved in the extended domain; the solution is effe
and accurate due to periodicity of the extended right-hand Bigerhich coincides with
the original right-hand side in the original domain. The restriction of the obtained solut
to the cube [0r] x [0, =] x [0, ] is a particular solution of the Poisson equation whic
satisfies some boundary conditions. The procedure reqDiris log, N) operations which
is crucial for the algorithm.

6. An additional Laplace equation is solved with boundary conditions which are ec
to the difference between the original conditions and those of the particular solutio
the Poisson equation that was obtained in the previous step. When the solution o
Laplace equation is added to the solution of the Poisson equation we obtain a sol
of the problem. As shown in Section 2.4 this part of the algorithm can be implemer
with O(N3log, N) operations. Consequently, the solution of the Poisson equation requ
O(NZ3log, N) operations.

ExAmMPLE 7. The right-hand side is one of the following functions:

F(X, Y, 2) = sin(4x) sin(4y) sin(4z),
sinx siny sinz,
COSX COSy c0sz

The results are obtained by successive application of the program that computes a
cular solution of the nonhomogeneous equation and the program for the Laplace equ
(Table 7).

ExAMPLE 8. The right-hand side is (Table 8)
f(X,y,2) = exp{—a((X — 0.5)2 + (y — 0.5% + (z— 0.5))}.

The results are obtained by successive application of the program that computes a part
solution of the nonhomogeneous equation and the program for the Laplace equation.

Fora = 3 Table 9 shows the dependence of the accuracy on the length of the exter
interval. Everywhere belo82+ 1)2 points are taken in the box [@]%, while the number
of folding points (equal in each direction) varies.
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TABLE 7
Maximal, MSQ, and £2 Errors for the Numerical Solution of the Poisson Equation (3.1)

F(x,Y,2) Ny x Ny x N, Fold. points EMAX EmsQ &2

sin(4x) sin(4y) sin(4z) 8x8x8 4 2.6e-6 4.3e-7 6.9e-4
16 x 16 x 16 8 7.9e-9 1.9e-9 2.7e-6
32x32x 32 16 1.7e-12 1.3e-13 1.8e-10

sinx sinysinz 8x8x8 4 1.9e-6 7.5e-7 7.5e-5
16 x 16 x 16 8 1.9e-9 6.9e-10 6.4e-8
32x 32x 32 16 4.7e-11 4.4e-12 3.9e-10

COSX COSY C0Sz 8x8x8 4 1.2e-6 2.0e-7 1.5e-5
16 x 16 x 16 8 1.1e-9 2.1e-10 1.6e-8
32x32x 32 16 8.2e-11 1.4e-12 1.1e-10

4. SUMMARY AND DISCUSSION

We developed a spectral algorithm which has the following properties:

1. The algorithm provides fast convergence (in fact, any prescribed rate of converge
which leads to high accuracy for comparatively small number of grid points in each direct
(the error 107 — 102 is achieved for 32 grid points in each direction when two subtractia
steps are applied).

2. The algorithm requires the same order of operations as the usual Fourier me
requires which iD(N3log N). HereN is the number of grid points in each direction. The
cost of each subtraction step@x N®), which is asymptotically smaller than the cost of the
application of the Fourier transform.

For example, we consider the Dirichlet problem for the Laplace equation with the bou
ary conditions corresponding to the exact solution
1

W(X,Y,2) = :
(x.y.2) V(X +0.1)2+ (y+ 032+ (z+ 0.2)2

Table 10 shows the numerical results of the straightforward application of the Fou

TABLE 8
The Dependence of the Numerical Accuracy on the Number of Grid Points
and the Steepness of the Gaussian

o Ny x Ny x N, Fold. pOintS EMAX EMSQ Er2
0.5 8x8x8 4 4.2e-6 1.7e-6 2.0e-6
16 x 16 x 16 8 3.6e-7 1.8e-8 2.0e-8
32x 32x 32 16 8.9e-8 1.9e-9 2.1e-9
3 8x8x8 4 3.4e-6 1.5e-6 3.1e-6
16 x 16 x 16 8 1.0e-8 1.7e-9 3.4e-9
32x32x 32 16 2.8e-9 6.0e-11 1.2e-10
15 8x8x8 4 2.8e-6 4.2e-7 2.7e-6
16 x 16 x 16 8 1.6e-12 4.9e-13 2.9e-12

32x32x 32 16 6.2e-15 5.1e-16 2.3e-15
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TABLE 9
Dependence of the Numerical Accuracy on the Number of Folding Points

Fold. points Emax EmsQ &2
4 2.0e-7 5.4e-8 1.0e-7
8 1.1e-8 3.3e-10 6.3e-10
11 7.3e-9 1.6e-10 3.1e-10
14 4.3e-9 9.3e-11 1.8e-10
16 2.8e-9 6.0e-11 1.2e-10
20 1.1e-9 2.2e-11 4.3e-11
24 3.5e-10 9.7e-12 1.8e-11

transform without subtraction. They are compared to the results of the algorithm develc
in this paper using the two subtraction steps. Due the Gibbs phenomenon that exists
the function is not periodic we can see that the esfg is constant since it is stipulated
by the “jump” of the function at the end. The average erepiso ande 2 decay as AN,
whereN is the number of grid points in each direction.

The present algorithm, that computes the solution of the Poisson equation fastinare

3D domain, is a part of a more general algorithm. Suppose that we solve a Dirichlet prot
for the Poisson equation

Au(x,y,2) = f(X,y,2), (X,¥,2€, UXVY,2=0¢(YV,2, (XV,2) €0,

in a 3D domair2 with complex geometry. The domafhis decomposed into some subdo
mains that have regular geometry and only few subdomains have complex geometry (v
are located near the boundary). In each subdomain a different resolution is choser
depends on the smoothness of the right-hand §id€his makes the algorithm adaptive.
The Poisson equation in domains of complex geometry can be solved similar to [20], w
the 2D case was considered. If the equation

Au(X,y,2) = f(x,y,2

was solved in each subdomain, the collection of these solutions may have discontinuit

the domain interfaces. The matching procedure for domains with different resolutions
developed in [7].

TABLE 10
Comparison between the Numerical Results That Were Derived from the Application of

the Fourier Method (without Subtraction Steps) and the Present Algoritm with Two Subtrac-
tion Steps

Fourier method without subtraction Two subtraction steps
Nx X Ny X NZ EMAX EMsQ Er2 EMAX EmsQ Er2
8x8x8 2.8 3.6e-1 5.3e-1 3e-5 4e-6 4.7e-6
16 x 16 x 16 2.8 2.0e-1 2.9e-1 1.6e-6 5e-8 6e-8
32x32x 32 2.8 1.0e-1 1.5e-1 1.3e-7 1.6e-9 1.9e-9

64 x 64 x 64 2.8 5.2e-2 7.6e-2 9.4e-9 5.2e-11 6e-11
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The results of this paper can be extended in two directions:

1. Elliptic equations of amore general type can be considered, for example, the Helmt
equation. This is critical for computational fluid dynamics problems. Discretization of t
Navier—Stokes equation leads to a Helmholtz equation at each time step.

2. The Neumann/mixed problem can be solved for the Poisson equation.

The paper [6] includes fast spectral solvers both for the Dirichlet problem for tl
3D Helmholtz equation and for the Neumann/mixed boundary problem for the Pois:
equation.

APPENDIX 1: SOLUTION OF THE LAPLACE EQUATION BY FOURIER SERIES

We discuss now the validity of (2.4) as a solution to (2.1). Similar arguments apply
the other series that occur in solving Dirichlet’s problem in the dDbe
Suppose thatDm,| < A, a constant, for alin andn. This is certainly true if

// | f(x,y)ldxdy
0 JO

isfinite. f0<z<m —§for§ > 0, then

SInhSng = A e(smnz 1_ e_28mnz < Ae_lsmnls 1
S|nh8mn7'[ e dmnm @dmnm _ 1 — e2\/_27-r -1

andy %, Ae dmi[e2v2r _ 1]-1 converges by the comparison test. It follows that

Z Dmnsinmxsinny(sinhdmnz/sinhdmpr) (4.3)

m,n=1

converges uniformly tal for 0 < z < 7 — §. Similar arguments show that (4.3) may be
differentiated term by term any number of times, provided thatzG< = — §. Hence, letting
8 approach zero, we find thdt is harmonic irC.

If f; is C2 when extended as an odd periodic function, tiesatisfies the boundary
conditions of Dirichlet’s problem.

Finally, we note that the uniquenesswffollows by the maximum—minimum principle
for harmonic functions.

APPENDIX 2: ONE STEP SUBTRACTION PROCEDURE

If in (2.6) all d, # 0, the function values at the edges and the second derivatives
be subtracted simultaneously. We observe that in (2.6)—(2.40h)on are not uniquely
determined. They can be chosen such that the second derivatives have the appro
values.

The functions¥ (x, 0, ), (3°¥/dy?)(x, 0, ) can be expressed as

= RV >
W(x,0,7) ~ > dysinnx, a—yZ(X’ 0.7) ~ > bysinnx, (4.4)
n=1 n=1
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where
2 [T . 2 [T 92w .
dnh = —/ Y(x,0,m)sinnxdx b, = —/ ——(X,0,7r)sinnxdx (4.5)
T Jo T Jo ay2
Let us set
)‘in = bn/dm
Aon = 4/N2— 22 if n > Agnin (2.6), (4.6)
Aon = \/A3, —n2, ifn < g in (2.7)
if by/dn > 0,
M= —bn/th, Az = /3%, + 12, (4.7)
4.7
nd SinA1n(r — y) sinhiznz
ui(x,y, z) = dn sinnx
1% Y. 2) HZ:; " SiNkinr  Sinhignm
if bp/dn < O.

Then, after subtraction af; the function vanishes with its second partial derivatives i
y andz on the edge (the boundary conditions satisfy the Laplace equation on the edge

This procedure is not applicable if at least ahe= 0.

Similar procedure can be applied to the corners. Consider the c@dner0). If
v(0,0,0) = A # 0, then by the appropriate choice of, A, in (2.14) we can in fact
achieve the annihilation of the three second derivatives with repeated indices. For
ample, if By = (32¥/9y?)(0,0,0) >0, B, = (32¥/32%(0,0,0) < 0, —B, > By, then
A2 = /By, A3 = /=B, A1 = /A5 — 3. If also By < 0, then we choose the “corner
function” as

sinhi1(r — X) siniz(r — y) Siniz(r — 2)
sinhiim SinAom SinAsm

C.00(X,y,2) =¥(0,0,0) } (4.8)
with
2w 92w
2 _ _ 2 _ _ _ 2 2
25 = —a—yz(o, 0,0)=-By, A= ~ 37z (0,0,0) = —B,, A1 =1/A3+ 22

In caseBy > 0, B, < 0, —B;, By the function

sinAy(mr — X) sinhio(r — y) Sinig(r — z
Coo0(X, y,20 =A 1 ) 2( Y) 3( )}

sinAi sinhAom SinAam

is subtracted, whereilp = /By, A3 = /=By, A1 = /A5 — A3, etc.

APPENDIX 3: GREEN FUNCTION FOR THE POISSON EQUATION

By the Parseval equation we can write the solution (3.2) as

wx,y,z>=/0/0/0 G(X. Y. Z £ 1, O)F (¢, 1, ) dé dy e, (4.9)
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providedG is a function such that

sinkx smmysm nzsinkg sinmn sinng
=53)I)Y -

g (4.10)

GX,y,2&,n,¢0) ~

To find this function we let

r=vE—-x24+ 0 - Y2+ —2?

and choose a constaatdepending upon the fixed poi, y, z) in such a way that the
sphereg < ainside our cube. We define the function

4 5
oo d #8508 -20-D7 r<a
0, r>a.
Then,y (r) — 1/r has a continuous second partial derivatives, bounded third derivativ

and square integrable fourth derivatives.
We expand/ (r) in a triple sine series. Making the change of variable

E/ZS_X’ U/Zn—y, §/=§_Zv

we let

3 T T T
T A= [ [ [ w (V& =307+ 0=y + &~ 27) sinke sinmy sinng d diy dc
0 JO JO
://Lz g w( /%-/24_7]/2_’_&—/2)
Pyttrt<a?

x sink(&" + x) sinm(y’ + y) sinn(¢’ + 2) d&’ dn’ d¢’

= /// Y [sink&’ coskx + coské’ sinkx][sin mn’ cosmy + cosmn’ sinmyj
x [sinn¢’ cosnz+ cosneg’ sinnzl d&' dn’ d¢’

= sinkxsinmysinnz///wcoskg’cosmn’ cosn¢’ d& dn’ dg’.

(Sincey is even ing’, n’, and¢’, integrals ofyr sing’, ¢ siny’, andy sin¢’ are zero.)
Now
I ’ I 1 / ’ ! / ’ !
cosk&’ cosmn’ cosng’ = Z[cos(lf;‘ +mn’ +n¢’) +coqléE’ + my’ —ng’)

+coslg’ — my' +n¢’) + coglE — my' —ng’)].

Sincey isevening’, n’, and¢’, we find that the integrals af times each of these cosines
gives the same result. Then,

3

T A = / / / ¥ (VEZ 12+ ¢2) costke’ + my’ +n¢’y de’ diy'de.
2ot <a?

8
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We now use the spherical coordinates, ¢) with origin at(x, y, z) and the polar axis
in the direction of the vector with componenks fn, n). Then,

/5/2 + n/Z + é—/z — r’
ke +my +n¢’ =rvk?+m?2+ n2cosb,

and, hence,
7'[3 a pm 2w
gAkng // ¥ (r) cos(rv/k2 +m?2 + n2cosd )r2 sing dr do de.
0J0 JO

We investigate first with respect ggoand then with respect #:

73 a —sin(rvk2 +m2 +n2cosh) 1™
— Axmn = 21 r 2
g X" /ow(){ k? 4+ m? 4+ n2 0

(r VK& + M2 1 ) dr.
m/ Y (O)r sin(rv/k? +m? + n?) dr

Using the definition of/, we find

32 60(2 + cosavk? + m?2 + n2)
Akmn = -

180 sinav'k? + m2 + n?

ad(k? + m? 4 n?)5/2

} sinkx sinmysinnz.

Thus,

1 8 1 60(2 + k2 + m2 + n?
EW(r)N;ZZZ[kz 0(2 + cosa~/ m2 4 n2)

+m+n at(k2 + m2 + n2)3

180 sinavk? + m2 + n2

ad(k? + m? 4 n?)7/2

} sinkx sinmysinnzsinké sinmy sinng.

Comparing with (4.10), we see that

1 480 S & X, [2 + cosavkZ + m2 + n?
G, Y, Z 60 0) = ¥ () — ZZZ[

a*(k? + m2 4 n?)3

3sinavk? + m2 +n?
ad(k? + m? 4 n2)7/2

} sinkx sinmysinnz sink& sinmy sinn¢.

(4.11)

The series on the right and its first and second partial derivatives converge uniformly.
means thaG — 1/(4xr) is twice continuously differentiable and th@tvanishes on the
faces of the cube. It can be verified by direct differentiation that

1
V2<F> =0 forr #0
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and that

v r]—ldzr forr #0
1#()—?@(1//) # 0.

From this it follows that the Laplacian of the series is the series@f/47)V?y. Hence,
V2G =0.

The functionG is called the Green’s function. For a general domBirthe Green'’s
function G is characterized by the properties

1. V3G =0in D,
2. G = 0 on the boundary,
3.
1

4r [ X— 8P+ (Y =P+ 2= 0P

GX,¥,z6,1n,0) = v(X, ¥, Z,€,1,0),

wherey is a regular solution of Laplace’s equation. Such a Green'’s function exists for ¢
sufficiently regular bounded domain. However, it can usually not be found explicitly. As
two dimensions@ is symmetric:

G, y,.z6 10,8 =G, n.6:%XY,2)
Physically,G is the potential atx, y, z) due to a charge &g, n, ¢) inside a cubical box
whose sides are kept at zero potential.

The functiony in condition (3) is the solution of the boundary value problem

vzyzo’ |n D,
1

V= )

A/ (X =62+ (y—m2+z-10)?

on the boundary

It is infinitely differentiable inD. Hence, the same is true f& except atx, v, 2).

By using the form (4.11) of the Green function we can show that the function (4.9) satis
the Poisson equation (3.1) K is continuous and continuously differentiable. Under thes
hypotheses we see from the Schwarz inequality and the Parseval equation that the ¢
(3.2) converges uniformly, so thdt also satisfies the boundary conditions of the probler
(3.2).

APPENDIX 4: FOLDING PROCEDURE

To implement the smoothing, we introduce the bell funct®x), supported on the
extended intervady < a < b < by,

B2(x) + B?(2a—x) =1, Xxe€[ay,a],
B(x)=1, xe]lab],

B2(x) + B22b—x) =1, x e [b, ],
B(x) =0, X <ag,X> by,

(4.12)
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FIG. 7. The folding operation.

wherea = (a+a;)/2, b= (b+ by)/2. Thisfunctionis equal tB = 1 inside the subdomain
and smoothly decays out words over the distarnce-2; — b = a — a;. Some particular
forms of B(x) were tested in [13, 14].

The smoothing of the functiofi, denoted byf, appears as a “folding” across the line:
aandb (see Fig. 7):

f=B- f=FaFf(X)=BX) f(x)— B2a—x)f(2a—x) — B(2b—x) f (2b— x)
(4.13)

(the “folded” function f is defined in &, 5]; the second term is “switched on” only in the
intervalx € [a, a] and the third term in the intervad € [b, b;], respectively). The extra
pieces of the functiorf , required for the smoothing operation, are provided by overlappil
the neighboring subdomains over Fange. On the interval € [a, b] we havef = f.

The smoothing procedure keeps the functfdnighly continuous ax = a, b. In addition,
Eq. (4.13) yields that in the vicinity of the poimts=a, x = b the functionf (x) is odd and
thus all even derivatives ™ (@) = f®’(b) =0 forr =0, 1, . ... After an antisymmetric
reflection across the poim:B (or x=a) is performed, we obtain a smooth periodic
function which can be represented by a rapidly converging sine series.

In the numerical implementation of the algorithm the bell was used,

0, X < a orx > by,
) sin(@(x)), X e [ag,a],
BOO=191 x € [a, b] (4.14)

c,os(e(x)), x € [b, by]

O(X) = %(1+sin<%sin<sin<%§>)>). (4.15)
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