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Abstract. We present a fast solver for the Helmholtz equation

∆u± λ2u = f,

in a 3D rectangular box. The method is based on the application of the discrete Fourier transform ac-
companied by a subtraction technique which allows us to reduce the errors associated with the Gibbs
phenomenon and achieve any prescribed rate of convergence. The algorithm requires O(N3 logN)
operations, where N is the number of grid points in each direction. We solve a Dirichlet boundary
problem for the Helmholtz equation. We also extend the method to the solution of mixed problems,
where Dirichlet boundary conditions are specified on some faces and Neumann boundary conditions
are specified on other faces. High-order accuracy is achieved by a comparatively small number of
points. For example, for the accuracy of 10−8 the resolution of only 16–32 points in each direction
is necessary.
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1. Introduction. A fast and accurate solution of elliptic equations is often an
important step in the process of solving problems of fluid dynamics and in other sci-
entific computing applications. Helmholtz-type equations usually appear in acoustics
or electromagnetics and also appear as a result of time discretization of the Navier–
Stokes equations [6].

The approach in the present work is based on the technique developed in [2, 3, 5]
for the 2D case and generalizes the method for the 3D Laplace equation in [4]. The
efficiency (operation count) of an algorithm is especially important for 3D problems
where the computational load is heavy.

In assessing efficiency of algorithms we are really interested in the number of
operations required to achieve a certain accuracy. A high-order accurate method
would achieve a high accuracy with a small number of degrees of freedom. Thus
two algorithms having the same operation count in terms of the resolution N (the
number of points in one direction, say) may be very different in terms of the above
criterion. The algorithm developed here can achieve in principle any prescribed rate
of convergence if the boundary data is sufficiently smooth. Certain singularities can
be handled by the analytical procedure. Furthermore, the number of operations is
asymptotically small: O(logN) per discretization point.

We consider two cases of nonhomogeneous Helmholtz-type equations, including
the monotone case

∆u− λ2u = f(1.1)
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and the oscillatory case

∆u+ k2u = f(1.2)

with Dirichlet or Neumann boundary conditions.
First, a particular solution of the nonhomogeneous equation is obtained; then an

auxiliary problem for an appropriate homogeneous equation is solved. The bound-
ary conditions for the auxiliary problem are obtained as the difference between the
original boundary conditions and those obtained from the particular solution. If, for
example, the particular solution happens to have zero boundary values for the case
of a Dirichlet problem, or zero normal derivative (for a Neumann problem), then we
solve the homogeneous equation with the original (specified) boundary conditions.

Thus, the algorithm consists of two steps.
Step 1. Solving the nonhomogeneous equation (1.1) or (1.2) with some convenient

boundary conditions.
Step 2. Solving the corresponding homogeneous equation with the boundary

conditions as specified above.
The application of the Fourier method has the following advantages when solving

the Helmholtz equation:
1. Differential operators are represented in the Fourier basis by diagonal ma-

trices; this fact reduces the operator inversion to a simple division of the
Fourier coefficients by the corresponding wave numbers. The cost of this step
is O(N3 logN), where N is the number of grid points in each one of the three
directions (N is also the number of Fourier harmonics in the related series
representation).

2. If the function is infinitely differentiable and periodic, then a Fourier series
approximation to f converges to f spectrally, i.e., more rapidly than any
finite power of 1/N .

Multidimensional Fourier representations can be considered for Cartesian geome-
tries (rectangles in two dimensions and parallelepipeds in three dimensions). However,
rapid convergence of the series representation requires the periodic extension of the
solution to have a certain number of continuous derivatives. The periodic extension
of a nonperiodic function is discontinuous and the corresponding Fourier series con-
verges only as 1/N . This is not better than a first-order finite-difference scheme. The
slow convergence is caused by the so-called Gibbs phenomenon. Below we describe
two steps of the algorithm and characterize the methods used to avoid the Gibbs
phenomenon. The first step addresses the Gibbs phenomenon in the particular solu-
tion via extension; the second step uses subtraction to improve the accuracy of the
inhomogeneous solver.

1. The function f in the right-hand side of (1.1) or (1.2) is extended to a larger
domain and replaced by a new function which coincides with f in the original
domain, but the periodic extension of the larger domain has a certain number
of continuous derivatives [2, 12]. The extension procedure is based on the local
Fourier basis method [10, 13] which employs folding functions as described in
[1, 11].

2. An auxiliary boundary value problem for the Helmholtz equation is solved
to satisfy the original boundary conditions (in the present work we consider
principally the Dirichlet boundary conditions). To reduce the effect of the
Gibbs phenomenon the subtraction technique used in [4] for the 3D Laplace
equation is employed.
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The main results of the paper follow.
1. An accurate and efficient algorithm is developed which solves the Dirichlet

problem for the homogeneous Helmholtz equation in O(N3 logN) operations.
2. A fast spectral algorithm is constructed also for the nonhomogeneous bound-

ary value problems of (1.1) and (1.2). This algorithm also requiresO(N3 logN)
operations. It is to be emphasized that for the present algorithm N is small;
an accuracy of 10−7 is usually achieved with N = 16 points in each direction.

3. Similar accuracy and convergence rate are obtained also when we extend the
method to mixed problems where on some of the faces Dirichlet boundary
conditions are specified, while Neumann boundary conditions are specified
on other faces.

The paper is organized as follows. Section 2 is concerned with the solution of a ho-
mogeneous Helmholtz equation. It contains a description of the subtraction procedure
aimed to reduce the Gibbs phenomenon generated at edges and corners. Numerical ex-
amples are supplied. Section 3 describes the procedure for finding particular solutions
for the nonhomogeneous Helmholtz equation. It also contains numerical examples, an
outline of the complete algorithm, and details of the operation count. In section 4
a mixed Neumann–Dirichlet problem is discussed and solved for the homogeneous
Helmholtz equation.

2. Homogeneous Helmholtz equation.

2.1. Mathematical preliminaries. Let C be an open cube

(0, π)× (0, π)× (0, π) = {(x, y, z) : 0 ≤ x < π, 0 < y < π 0 < z < π}

(Figure 2.1). We will solve the homogeneous Helmholtz equation in C

∆Ψ− λ2Ψ ≡ Ψ′′xx + Ψ′′yy + Ψ′′zz − λ2Ψ = 0,(2.1)

which is said to be the monotone Helmholtz (MH) equation, and solve

∆Ψ + k2Ψ = 0,(2.2)

which is said to be the oscillatory Helmholtz (OH) equation.
Either Dirichlet,

Ψ(0+, y, z) = f6(y, z), Ψ(π−, y, z) = f5(y, z), Ψ(x, 0+, z) = f4(x, z),
Ψ(x, π−, z) = f3(x, z), Ψ(x, y, 0+) = f2(x, y), Ψ(x, y, π−) = f1(x, y),

(2.3)

or Neumann,

∂Ψ

∂x
(0+, y, z) = f6(y, z),

∂Ψ

∂x
(π−, y, z) = f5(y, z),

∂Ψ

∂x
(x, 0+, z) = f4(x, z),

∂Ψ

∂x
(x, π−, z) = f3(x, z),

∂Ψ

∂x
(x, y, 0+) = f2(x, y),

∂Ψ

∂x
(x, y, π−) = f1(x, y),

(2.4)

boundary conditions are imposed. Mixed Dirichlet–Neumann boundary conditions
can be treated by a similar approach where each face can be associated with one of
the two types of boundary conditions. First we will introduce the algorithm for the
Dirichlet problem, and later we will describe the changes necessary to accommodate
the Neumann or mixed problem.
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Fig. 2.1. Dirichlet’s problem for cube C. The continuous function f on ∂C can be specified by
six functions f1, . . . , f6, one on each of the six faces of ∂C.

We begin by solving a simple canonical problem for (2.1) or (2.2)

Ψ(0+, y, z) = Ψ(π−, y, z) = 0, Ψ(x, 0+, z) = Ψ(x, π−, z) = 0,
Ψ(x, y, 0+) = 0, Ψ(x, y, π−) = f1(x, y).

(2.5)

Evidently the function sinmx sinny sinh δmnz satisfies (2.1) if

δmn =
√
n2 +m2 + λ2.

The same function with δmn =
√
n2 +m2 − k2 is a solution of the OH equation

(2.2) if n2 +m2 > k2.
In the case n2 + m2 < k2 the function sinmx sinny sin(

√
k2 − n2 −m2 z) is a

solution.
Any finite superposition of these solutions

M,N∑
m,n=1

Dmn sinmx sinny
sinh δmnz

sinh δmn
(2.6)

is also a solution of the MH equation, and the sum

∑
m2+n2<k2

Dmn sinmx sinny
sin(
√
k2 − n2 −m2 z)

sin(
√
k2 − n2 −m2)

+
∑

m2+n2>k2

Dmn sinmx sinny
sin(
√
n2 +m2 − k2 z)

sin(
√
n2 +m2 − k2)

(2.7)



FAST 3D SOLVER FOR HELMHOLTZ EQUATION 2241

is a solution of the OH equation. If k is a positive integer such that for certain n0,m0

the equality n2
0 +m2

0 = k2 holds, then the term Dmn sinm0x sinn0y can be added to
the above solution.

If M,N →∞, we obtain

Ψ(x, y, z) =

∞∑
m,n=1

Dmn sinmx sinny
sinh δmnz

sinh δmn
(2.8)

as a possible solution of the MH equation and, correspondingly, we obtain (2.7) for
the OH equation. Here the coefficients Dmn have to be determined so that for z = π
the boundary condition

f1(x, y) =

∞∑
m,n=1

Dmn sinmx sinny

is satisfied. Thus

Dmn =
4

π2

∫ π

0

∫ π

0

sinmx sinnydxdy.

By adding such expressions, we obtain the solution Ψ for the Dirichlet problem as
a sum of six series of the form (2.8) for the MH equation or (2.7) for the OH equation.
For instance, the problem (2.1) with

Ψ(0+, y, z) = Ψ(π−, y, z) = 0,
Ψ(x, 0+, z) = f4(x, z), Ψ(x, π−, z) = 0,
Ψ(x, y, 0+) = Ψ(x, y, π−) = 0

has the series solution

Ψ(x, y, z) =
∞∑

m,n=1

Dmn sinmx sinnz
sinh δmn(π − y)

sinh δmnπ
,

with

Dmn =
4

π2

∫ π

0

∫ π

0

f4(u, v) sinmu sinnvdudv.

When the solution does not vanish on the other faces we may need more series of this
type. The other series solutions that we need are obtained by permuting the variables
x, y, and z in the two series above.

A sum of six series like the one in (2.7) and (2.8) is a solution of the Helmholtz
equation with a given, “general,” boundary function on the surface ∂C. The series
convergence rate depends on the behavior of the “face functions,” f(i). If Ψ ≡ 0
on the edges of the cube together with several normal derivatives of even order, the
convergence rate will be very good.

In the next section we describe the procedure for achieving this situation.

2.2. Subtraction procedure for edges. Suppose Ψ(x, 0, π) = φ1(x), 0 < x <
π. The boundary function can be made to vanish; i.e., Ψ(x, 0, π) = 0, 0 < x < π, can
be achieved by subtraction of one of the following homogeneous solutions:

u1(x, y, z) =
∞∑
n=1

dn sinnx
sinhλ1n(π − y)

sinh λ1nπ

sinhλ2nz

sinh λ2nπ
,(2.9)
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Fig. 2.2. For every edge a function is subtracted from the solution to make the difference satisfy
zero boundary conditions on that edge.

where

λ2
1n + λ2

2n − n2 =

{
λ2 for MH equation,
−k2 for OH equation,

or

u∗1(x, y, z) =

∞∑
n=1

dn sinnx
sinhλ1n(π − y)

sinh λ1nπ

sinλ2nz

sin λ2nπ
(2.10)

with

λ2
1n − λ2

2n − n2 =

{
λ2 for MH equation,
−k2 for OH equation.

Here we assumed the nonresonance condition sin λ2nπ 6= 0. In the MH case we can
use the former series (2.9) with λ1n = λ2n =

√
(λ2 + n2)/2, while for the OH equation

we can use the latter series (2.10) with

λ2n = 1, λ1n =
√
n2 + 1− k2, n ≥ k,

λ1n = 1, λ2n =
√

1 + k2 − n2, n < k.

Here

dn =
2

π

∫ π

0

φ1(x) sinnx dx;

u1 and u∗1 obviously satisfy the corresponding Helmholtz equation and vanish on all
the box edges except the chosen one. See Figure 2.2.
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Similarly, subtraction functions for the other edges are constructed. For instance,
after subtracting

u2(x, y, z) =
∞∑
n=1

[
2

π

∫ π

0

φ1(x) sinnxdx

]
sinnx

sinhλ1ny

sinh λ1nπ

sinhλ2nz

sinh λ2nπ
(2.11)

the function vanishes on the edge (x, π, π) : Ψ(x, π, π) = 0, 0 < x < π.
After subtracting u1, u2, . . . , u12 we obtain the solution that vanishes on the edges

(except perhaps in the corners) and coincides with the initial solution on the open
faces together with its even derivatives.

Accurate approximation of this solution by series of types (2.9) and (2.10) is
possible if both the function values and the even derivatives vanish on the edges. In
(2.9)–(2.11) λ1n and λ2n are not defined uniquely. They can be therefore chosen such
that the second derivatives achieve the required values. We assume that the boundary
function f satisfies the Helmholtz equation on the edges.

The functions φ1(x), ∂
2Ψ
∂y2 (x, 0, π) can be presented as

φ1(x) ∼
∞∑
n=1

dn sinnx,
∂2Ψ

∂y2
(x, 0, π) ∼

∞∑
n=1

bn sinnx,(2.12)

with

dn =
2

π

∫ π

0

φ1(x) sinnxdx, bn =
2

π

∫ π

0

∂2Ψ

∂y2
(x, 0, π) sinnxdx.(2.13)

For the MH equation we set the following conditions:
In the case bn/dn > 0 we choose λ2

1n = bn/dn and

if n2 + λ2 ≥ λ2
1n, then λ2n =

√
λ2 + n2 − λ2

1n, the solution is (2.9),

if n2 + λ2 < λ2
1n, then λ2n =

√
λ2

1n − λ2 − n2, the solution is (2.10);

in the case bn/dn < 0 we choose λ2
1n = −bn/dn and

λ2n =
√
λ2

1n + λ2 + n2, the solution is
∞∑
n=1

dn sinnx
sinλ1n(π − y)

sin λ1nπ

sinhλ2nz

sinh λ2nπ
.

For the OH equation we set the following conditions:
In the case bn/dn > 0 we choose λ2

1n = bn/dn and

if n2 ≥ λ2
1n + k2, then λ2n =

√
n2 − λ2

1n − k2, the solution is (2.9),

if n2 < λ2
1n + k2, then λ2n =

√
λ2

1n + k2 − n2, the solution is (2.10);

in the case bn/dn < 0 we choose λ2
1n = −bn/dn and

λ2n =
√
λ2

1n + k2 + n2, the solution is
∞∑
n=1

dn sinnx
sinλ1n(π − y)

sin λ1nπ

sinλ2nz

sin λ2nπ
.

Then, after subtraction of u1 the boundary function vanishes on the edges together
with its second partial derivatives in y and z.
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The procedure is not applicable if at least one dn = 0. In this case the following
function can be subtracted for the elimination of the second derivative for the MH
equation

∞∑
n=1

Bn sinnx

[
sinhλ1ny

sinh λ1nπ

sinhλ2n(π − z)
sinh λ2nπ

− sinhλ3ny

sinh λ3nπ

sinhλ4n(π − z)
sinh λ4nπ

]
,(2.14)

with λ1n 6= λ3n, λ2n, and Bn, λ4n being such that

Bn =
bn

λ2
1n − λ2

3n

, λ2
1n + λ2

2n − λ2 = n2, λ2
3n + λ2

4n − λ2 = n2.

For the OH equation we subtract

∞∑
n=1

Bn sinnx

[
sinhλ1ny

sinh λ1nπ

sinλ2n(π − z)
sin λ2nπ

− sinλ2ny

sin λ2nπ

sinhλ1n(π − z)
sinh λ1nπ

]
,(2.15)

with Bn = bn/(λ
2
1n + λ2

2n), and λ1n, λ2n being such that sinλ2nπ 6= 0, λ2
1n − λ2

2n =
n2 − k2.

A boundary function defined on an interval (i.e., along the edge) can be well
approximated by a sine series (2.12) if it vanishes in the ends (preferably together
with some of its even derivatives). In the next section we describe the procedure for
obtaining such a behavior at the end points of the edges, i.e., the corners of the cube.

It is appropriate to comment at this point that in the present paper the functions
describing the boundary conditions on the faces are assumed to satisfy compatibility
conditions. For example, the functions on two faces intersecting at an edge must be
continuous across the edge and, furthermore, the relevant second derivatives must add
up with the function values to satisfy the Helmholtz equation on all edges and corners;
otherwise a singular behavior can be expected which will prevent fast convergence.
Such a behavior will affect all methods of solution. A possible approach which we
used in our previous papers is to address first all such singularities by a preliminary
analytical subtraction of appropriate singular solutions.

2.3. Subtraction procedure for the corners. Suppose Ψ(0, 0, 0) = A. For
the MH equation a zero value at the origin is achieved by subtracting the so-called
corner function defined as

C(0,0,0)(x, y, z) = A

[
sinhλ1(π − x)

sinh λ1π

sinhλ2(π − y)

sinh λ2π

sinhλ3(π − z)
sinh λ3π

]
(2.16)

with λ2
1 + λ2

2 + λ2
3 = λ2. For the OH equation

C(0,0,0)(x, y, z) = A

[
sinhλ1(π − x)

sinh λ1π

sinhλ2(π − y)

sinh λ2π

sinλ3(π − z)
sin λ3π

]
(2.17)

with λ2
1 + λ2

2 + k2 = λ2
3, sinλ3π 6= 0. The subtraction of such a function does not

influence the values at the other seven corners; therefore, each corner can be treated
separately and independently. See Figure 2.3.

Let A 6= 0. Then by appropriate choice of λ1, λ2 in (2.17) we achieve the coinci-

dence of the second derivatives. Namely, if Bx = ∂2Ψ
∂x2 (0, 0, 0), By = ∂2Ψ

∂y2 (0, 0, 0) > 0,

Bz = ∂2Ψ
∂z2 (0, 0, 0) > 0, then we choose for the MH equation the “corner function” as

C(0,0,0)(x, y, z) = A

[S1(λ1(π − x))

S1(λ1π)

S2(λ2(π − y))

S2 (λ2π)

S3(λ3(π − z))
S3(λ3π)

]
,(2.18)
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Fig. 2.3. For every corner a function is subtracted from the solution to make the difference
satisfy zero boundary conditions at that corner.

where

λ2
1 = |Bx/A|, λ2

2 = |By/A|, λ2
3 = |Bz/A|, λ1 =

√
λ2

3 + λ2
2 − λ2,

and

S1(x) =

{
sinh x, Bx/A > 0,
sin x, Bx/A > 0.

S2,S3 are introduced similarly.
The same technique can be applied to the OH equation. In the practical imple-

mentation the following algorithm was employed.
If Ψ(0, 0, 0) = 0 then the vanishing second derivative is achieved by subtracting

a linear combination of the corner functions.
We will begin with the MH equation. Let Bx stand for ∂2Ψ

∂x2 (0, 0, 0), and let By

stand for ∂2Ψ
∂y2 (0, 0, 0). Then the following function is subtracted:

C(0,0,0)(x, y, z) = a

[
sinhλ1(π − x)

sinh λ1π

sinhλ2(π − y)

sinh λ2π

sinhλ3(π − z)
sinh λ3π

− sinhλ2(π − x)

sinh λ2π

sinhλ3(π − y)

sinh λ3π

sinhλ1(π − z)
sinh λ1π

]
,

with

λ2
1 =

λ2

3
+

2Bx +By
3a

, λ2
2 =

λ2

3
+
By −Bx

3a
, λ2

3 =
λ2

3
− Bx + 2By

3a
.
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This is a solution for the MH equation since

λ2
1 + λ2

2 + λ2
3 =

λ2

3
+
λ2

3
+
λ2

3
+

2Bx +By +By −Bx −Bx − 2By
3a

= λ2.

Constant a is chosen such that λ2
i > 0, i = 1, 2, 3. For example, if a = 3(|Bx| +

|By|)/λ2, then

λ2
1 =

λ2

3

(
1 +

2Bx +By
3(|Bx|+ |By|)

)
> 0,

λ2
2 =

λ2

3

(
1 +

By −Bx
3(|Bx|+ |By|)

)
> 0,

λ2
3 =

λ2

3

(
1− Bx + 2By

3(|Bx|+ |By|)
)
> 0.

Consider the OH equation. We will consider four cases according to the signs of
(By −Bx) and (2Bx +By).

Case 1. Let (By −Bx)(2Bx +By) > 0. We subtract the following function

a

[
sinhλ1(π − x)

sinh λ1π

sinhλ2(π − y)

sinh λ2π

sinλ3(π − z)
sin λ3π

− sinhλ2(π − x)

sinh λ2π

sinλ3(π − y)

sin λ3π

sinhλ1(π − z)
sinh λ1π

]
,

with a being of the same sign as (By −Bx),

λ2
1 =

2Bx +By
3a

− k2

3
, λ2

2 =
By −Bx

3a
− k2

3
, λ2

3 =
k2

3
+
Bx + 2By

3a
.

The constant a again is chosen as

a =
min{|By −Bx|, |2Bx +By|}sgn(By −Bx)

2k2
;

therefore, λi are positive since

2Bx +By
3a

≥ 2k2

3
,
By −Bx

3a
≥ 2k2

3
,
Bx + 2By

3a
> 0.

Case 2. Let (By −Bx)(2Bx +By) < 0. We choose a of the same sign as Bx −By
such that

λ2
1 =

2Bx +By
3a

− k2

3
> 0, λ2

2 =
Bx −By

3a
+
k2

3
> 0,

k2

3
+
Bx + 2By

3a
6= 0

(in fact any a such that |a| < |2Bx+By|/k2, |a| < |Bx−By|/k2, |a| 6= (Bx+2By)/k2

will do).
If (Bx + 2By)/3a+ k2/3 > 0, then we choose

λ2
3 =

k2

3
+
Bx + 2By

3a
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and subtract

a

[
sinhλ1(π − x)

sinh λ1π

sinλ2(π − y)

sin λ2π

sinλ3(π − z)
sin λ3π

− sinλ2(π − x)

sin λ2π

sinλ3(π − y)

sin λ3π

sinhλ1(π − z)
sinh λ1π

]
,

else we choose

λ2
3 = −k

2

3
− Bx + 2By

3a

and subtract the following function

a

[
sinhλ1(π − x)

sinh λ1π

sinλ2(π − y)

sin λ2π

sinhλ3(π − z)
sinh λ3π

− sinλ2(π − x)

sin λ2π

sinhλ3(π − y)

sinh λ3π

sinhλ1(π − z)
sinh λ1π

]
.

Case 3. Suppose By = Bx.
Then we can, in particular, choose

C(0,0,0)(x, y, z) =
Bx

2 + k2/2

[
sinh(π − x)

sinh π

sinh(π − y)

sinh π

sin(
√

2 + k2(π − z))
sin(

√
1 + k2/2π)

− sin
√

1 + k2/2(π − x)

sin
√

1 + k2/2π

sin
√

1 + k2/2(π − y)

sin
√

1 + k2/2π

sinh(
√

2(π − z))
sinh(

√
2π)

]
.

Case 4. Suppose 2Bx +By = 0.
We choose λ > k, a = Bx/(2λ

2) and subtract

C(0,0,0)(x, y, z) = a

[
sinhλ(π − x)

sinh λπ

sin
√

2λ(π − y)

sin
√

2λπ

sinh(
√
λ2 − k2(π − z))

sinh(
√
λ2 − k2π)

− sinλ(π − x)

sin λπ

sinhλ(π − y)

sinh λπ

sin(
√
λ2 − k2(π − z))

sin(
√
λ2 − k2π)

]
.

We recall that λ 6= n and everywhere above the nonresonance condition for the
sine is satisfied.

The same functions are subtracted from the other corners, where x is replaced by
π − x, y by π − y, and z by π − z.

For computing derivatives the method of divided differences was found to be suf-
ficiently accurate when coupled with the subtraction approach. The five-point stencil
was used for the second derivative. More accurate derivatives can be computed in
principle by using global spectral methods. These methods can achieve a spectral con-
vergence rate as N is increased, but only if the Gibbs phenomenon can be controlled.
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Fig. 2.4. The function values on the z = 0 face after subtraction of corner functions.
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Fig. 2.5. The values on the z = 0 face after subtraction of edge functions.

An algorithm which resolves the Gibbs phenomenon was developed in [8, 9]. The
basic concept of this approach consists of reexpansion of the Fourier partial sums into
the rapidly convergent Gegenbauer series. In [14] this algorithm was extended to the
evaluation of the spatial derivatives of piecewise analytic functions. The application
of this method makes it possible to achieve the spectral accuracy when computing the
second (the fourth, etc.) derivative.

Figures 2.4 and 2.5 illustrate the absolute value of the boundary function on
the face z = 0 after subtraction of the corner functions and the edge functions,
respectively, for the numerical solution of (1.1) with λ = 1 in the cube [0, 1]× [0, 1]×
[0, 1] which corresponds to the exact solution

cos(λ1x) cos(λ2y)
sinh(λ3(1− z))

sinh(λ3)
, λ1 = 2π, λ2 =

√
5π2 − 1, λ3 = 3π.

2.4. Numerical results. It was shown in [4] that the error in the results ob-
tained by our numerical algorithm is due mainly to the truncation of the Fourier series
used to represent the solution. The convergence rate of the approximate solution to
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Table 2.1
Numerical accuracy for the exact solution (2.20) of the MH equation (2.19).

Nx ×Ny ×Nz One subtr. step Two subtr. steps
εMAX εMSQ εL2 εMAX εMSQ εL2

8× 8× 8 1.0e-4 1.2e-5 1.4e-6 6e-7 5.5e-8 6.8e-9
16× 16× 16 3.0e-5 1.6e-6 2.1e-7 4.2e-8 1.9.0e-9 2.4e-10
32× 32× 32 7.8e-6 2.1e-7 2.8e-8 2.7e-9 6.3e-11 8.3e-12
64× 64× 64 2.0e-6 2.7e-8 3.6e-9 1.7e-10 3.4e-12 4.6e-13

Table 2.2
Numerical accuracy for the exact solution (2.21) of the MH equation (2.19).

Nx ×Ny ×Nz εMAX εMSQ εL2

8× 8× 8 4.2e-5 4.3e-6 3.3e-5
16× 16× 16 3.5e-6 1.3e-7 1.2e-6
32× 32× 32 2.5e-7 4.3e-9 4.6e-8
64× 64× 64 1.7e-8 1.4e-10 1.5e-9
128× 128× 128 1.0e-9 3.3e-11 3.8e-10

the Helmholtz equation was found to be the same as in the particular case of the
Laplace equation which was evaluated in [4] using the theory and estimates in [7].
According to these estimates, the results obtained when the number of points in each
direction is doubled are four times more accurate when one subtraction step is used
and 16 times more accurate when two subtraction steps are used.

Assume that Ψ is the exact solution and Ψ′ is the computed one. In the numerical
examples we will use the following measures to estimate the errors:

εMAX = max ‖Ψ′i −Ψi‖,

εMSQ =

√∑N

i=1
(Ψ′
i
−Ψi)2

n ,

εL2 =

√∑N

i=1
(Ψ′
i
−Ψi)2∑N

i=1
Ψ2
i

.

2.4.1. Monotone Helmholtz equation.
Example 1. Consider the solution of the MH equation

∆u− λ2u = 0, λ = 2,(2.19)

with boundary conditions corresponding to the exact solution

u(x, y, z) = exp

(
λ

(√
1

2
x+

√
1

3
y +

√
1

6
z

))
.(2.20)

The numerical results are given in Table 2.1.
Example 2. We solve the MH equation with λ = 1 and the boundary conditions

corresponding to the exact solution

u(x, y, z) = cos 2x
sinh
√
λ2 + 3y

sinh
√
λ2 + 3π

sinh z

sinhπ
.(2.21)

We use a two subtraction step algorithm. The results are given in Table 2.2.
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Table 2.3
Dependence on λ of the accuracy for the MH equation with the exact solution (2.21).

Nx ×Ny ×Nz λ2 εMAX εMSQ εL2

32× 32× 32 4 2.6e-7 4.6e-9 5e-8
16 3.5e-7 6.2e-9 7e-8
64 8.6e-7 1.7e-8 2e-7
100 1.4e-6 3.0e-8 4e-7
256 5.6e-6 1.3e-7 2e-6

64× 64× 64 4 1.8e-8 1.5e-10 1.7e-9
16 2.3e-8 2.0e-10 2.4e-9
64 5.8e-8 5.3e-10 7.6e-9
100 9.7e-8 9.0e-10 1.4e-8
256 4.0e-7 4.0e-9 7.4e-8

Table 2.4
Numerical accuracy for the trigonometrical exact solution (2.23) of the OH equation (2.22).

Nx ×Ny ×Nz One subtr. step Two subtr. steps
εMAX εMSQ εL2 εMAX εMSQ εL2

8× 8× 8 2.8e-4 3.9e-5 1.9e-6 7.1e-5 1.0e-5 5.0e-5
16× 16× 16 9.5e-5 6.5e-6 3.8e-5 5.1e-6 3.2e-7 1.9e-6
32× 32× 32 2.8e-5 9.0e-7 5.9e-6 3.4e-7 1.1e-8 7.2e-8
64× 64× 64 7.2e-6 1.2e-7 8.0e-7 2.2e-8 3.6e-10 2.5e-9

Table 2.3 shows the dependence on λ of the accuracy when the exact solution of
the MH equation is given by (2.21).

From the above numerical results we can see that a good accuracy (10−7) is
achieved with a small number of grid points (16–32 in each direction) especially for
nonhighly oscillating solutions. The error does not depend strongly on the size of λ,
so high accuracy is also preserved for large λ. For the maximal error the convergence
rate is slightly worse than the predicted rate, but it is about two times better than
predicted for the “average” errors εMSQ and εL2 .

2.4.2. Oscillatory Helmholtz equation.
Example 3. Consider the solution of the OH equation

∆u+ k2u = 0, k = 1,(2.22)

with the boundary conditions corresponding to the exact solution

u(x, y, z) = cos (2x) cos
(√

1 + k2 y
) sinh

√
5z

sinh
√

5π
.(2.23)

The numerical accuracy for the OH equation (2.22) with the exact solution (2.23)
is shown in Table 2.4.

Table 2.5 shows the dependency of the accuracy on k.
Example 4. We solve the OH equation with k = 2 and boundary conditions

corresponding to the exact solution

u(x, y, z) = exp(0.8x+ 0.6y) sin
(√

1 + k2z
)
.(2.24)

We use the algorithm with two subtraction steps. The results are given in Table 2.6.
The numerical results for the OH equation show the same convergence behavior as

in the case of the MH equation. As could be expected, the results for the oscillatory
equation are slightly less accurate. However, for an accuracy of 10−7 a grid of 32
points in each direction is sufficient.
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Table 2.5
Dependence of the accuracy on k for the OH (2.22) with the exact solution (2.23).

Nx ×Ny ×Nz k2 εMAX εMSQ εL2

32× 32× 32 4 3.6e-7 1.3e-8 8e-8
16 1.0e-6 5.2e-8 3.6e-7
64 2.2e-6 8.7e-8 6.0e-7
100 2.0e-6 8.0e-8 5.0e-7
256 1.0e-5 1.4e-6 9.0e-6

64× 64× 64 4 2.2e-8 4.2e-10 2.8e-9
16 6.5e-8 1.4e-9 9.9e-9
64 1.2e-7 1.9e-9 1.4e-8
100 1.6e-7 2.0e-9 1.4e-8
256 4.6e-7 2.4e-8 1.7e-7

Table 2.6
Numerical accuracy for the exact solution (2.24) of the OH (2.22).

Nx ×Ny ×Nz εMAX εMSQ εL2

8× 8× 8 1.1e-6 1.6e-7 9.6e-8
16× 16× 16 8.3e-8 5.0e-9 2.9e-9
32× 32× 32 5.6e-9 1.6e-10 9.5e-11
64× 64× 64 3.6e-10 5.4e-12 3.2e-12

3. Nonhomogeneous Helmholtz equations.

3.1. A Fourier method for the Helmholtz equation in a cube. As was
mentioned above, the Fourier method for the solution of the Helmholtz equation has
the advantage that the corresponding operator has a diagonal matrix representation
in the Fourier basis. We seek a solution for the nonhomogeneous Helmholtz equation

∆u− λ2u = F (x, y, z)(3.1)

or for the oscillatory Helmholtz equation

∆u+ k2u = F (x, y, z).(3.2)

Suppose that both the solutions and the right-hand sides are decomposed into sine
series

u(x, y, z) =

∞∑
l,m,n=1

dlmn sin(kx) sin(my) sin(nz),

F (x, y, z) =
∞∑

l,m,n=1

Dlmn sin(kx) sin(my) sin(nz),

which are substituted into the Helmholtz equations (3.1) and (3.2). Assume that u is
twice continuously differentiable. Then for (3.1) we have

dlmn =
Dlmn

l2 +m2 + n2 − λ2

and for (3.2) we have

dlmn =
Dlmn

l2 +m2 + n2 + k2
.
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Thus,

u(x, y, z) =

∞∑
l,m,n=1

Dlmn

l2 +m2 + n2 + λ2
sin(lx) sin(my) sin(nz)(3.3)

or

u(x, y, z) =
∞∑

l,m,n=1

Dkmn

k2 +m2 + n2 − k2
sin(lx) sin(my) sin(nz).(3.4)

Approximation of the particular solution by the truncated series is accurate if F
vanishes, together with some of its even derivatives, on the faces of the cube which
cannot be guaranteed for an arbitrary right-hand side. The approach we use to avoid
the Gibbs phenomenon is the following: First we extend the right-hand side to an
extended cube [−ε, π + ε]× [−ε, π + ε]× [−ε, π + ε] such that the extended function
vanishes together with some of its even derivatives on the new boundary. Then the
solution is found in the extended domain by the truncated sine series. Its restriction
to the original domain is a particular solution of the nonhomogeneous Helmholtz
equation.

The process of constructing a function which coincides with a given function in
the original domain and vanishes together with some derivatives on the boundary of
the extended domain is described in the Appendix for the 1D case. The details of how
to adapt this algorithm to a 3D case are described in the algorithm outline (section
3.2).

3.2. The steps of the algorithm and an operation count.
1. F (x, y, z) is continuously extended to the domain [−2ε, π + 2ε] × [−2ε, π +

2ε]× [−2ε, π+ 2ε]. This step can be omitted if the right-hand side is defined
in the extended domain.

2. A 1D folding procedure in the z direction is applied to the extended function
F̄ (x, y, z) for each −2ε ≤ x, y ≤ π + 2ε. It is described in the Appendix.
As a result, a new function F̄1(x, y, z) is obtained which coincides with the

original function on the cube [0, π] × [0, π] × [0, π] and F̄1
(2r)
z (x, y,−ε) =

F̄1
(2r)

(x, y, π + ε) = 0, r = 0, 1, . . . , − 2ε ≤ x, y ≤ π + 2ε. The cost of this
step is O((N +Nε)

2 ·Nε), where Nε is the number of discretization points on
the extended segment. Nε is small in comparison with N (see equation (A.1)
in the Appendix).

3. The same folding procedure is applied in the y direction. For each −2ε ≤
x ≤ π+2ε, −ε ≤ z ≤ π+ε, we get the function F̄2 which is periodic together

with its even derivatives in y: F̄2
(2r)
y (x,−ε, z) = F̄1

(2r)
(x, π + ε, z) = 0, r =

0, 1, . . . , −2ε ≤ x ≤ π+2ε, −ε ≤ z ≤ π+ε. The cost is O((N+Nε) ·N ·Nε).
4. Application of the folding procedure in the x direction requires that for each
−ε ≤ y, z ≤ π + ε we get the function F̄3 periodic in “the extended cube”

[−ε, π + ε]× [−ε, π + ε]× [−ε, π + ε]

together with its even derivatives in the x, y, and z directions. The cost of
this step is O(N2 ·Nε).

5. The nonhomogeneous Helmholtz equation (3.1) is solved in the extended do-
main; the solution is effective and accurate due to the periodicity of the
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extended right-hand side F̄3 which coincides with the original right-hand side
in the original domain. The restriction of the solution found to the cube
[0, π]× [0, π]× [0, π] is a particular solution of the inhomogeneous Helmholtz
equation which does not satisfy boundary conditions. This procedure requires
O(N3 log2N) operations.

6. Boundary conditions for the homogeneous Helmholtz equation are computed
as the difference between the original conditions and those that were gener-
ated by the particular solution of the Poisson equation found in the previous
step. Corner functions, which are defined by (2.15), are constructed as part
of the solution. This step requires 8 ·O(N3) +O(N2) operations.

7. The second derivatives in two directions are computed for each corner using
the divided differences method and it is performed by 8 ·O(N3) operations.

8. Second derivatives at the corners vanish after subtracting functions defined
in section 2.3. This requires 8 ·O(N3) operations.

9. The discrete sine transform (DST) is applied on each of the 12 edges, and the
subtraction of the “edge functions” (2.9) or (2.10) requires 12 ·O(N3 log2N)
operations.

10. Second derivatives in the normal direction are computed for the 12 edges.
This requires 12 ·O(N) operations.

11. Twelve functions defined by (2.14) are subtracted. This requires 12·O(N3 log2N)
operations.

12. The 2D DST on the six faces is applied to the remaining boundary function;
this requires 6 ·O(N3 log2N) operations.

Therefore, the total computational cost of the algorithm is 32 · O(N3 log2N) +
O(N3), i.e., O(N3 log2N) operations.

3.3. Numerical results for the nonhomogeneous equation.

3.3.1. Monotone Helmholtz.
Example 5. The right-hand side corresponds to the exact solution

Ψ(x, y, z) = exp
{−α((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2)

}
,(3.5)

where λ = 1.0. The results are obtained by application of the algorithm for computing
the particular solution of a nonhomogeneous equation followed by the algorithm for
the Laplace equation.

Table 3.1 exhibits the dependence of the numerical accuracy on the number of
grid points and the steepness of the Gaussian in (3.5).

For α = 3 Table 3.2 describes the dependency between the accuracy and the
length of the extended interval Nε, where (3.5) is solved. Everywhere below we take
(32 + 1)3 points in the box [0, 1]3, while the number of folding points (equal in each
direction) varies.

For α = 15 Table 3.3 describes the dependence of the accuracy and the distance
of (x0, y0, z0) to the boundaries (we take the extreme case: the point approaches a
corner). Everywhere below (16 + 1)3 points are taken in the box [0, 1]3 and we use
eight folding points.

Example 6. Consider a right-hand side corresponding to the exact solution for
λ = 1 which is a sum of 12 random Gaussians:

Ψ(x, y, z) =
12∑
i=1

exp
{−αi ((x− xi)2 + (y − yi)2 + (z − zi)2

)}
.(3.6)
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Table 3.1
Dependence of the numerical accuracy on the number of grid points and the steepness of the

Gaussian in (3.5).

α Nx ×Ny ×Nz Number of fold. points εMAX εMSQ εL2

0.5 8× 8× 8 4 5.7e-6 2.4e-6 2.8e-6
16× 16× 16 8 2.1e-8 3.4e-9 3.9e-9
32× 32× 32 16 9.9e-10 5.1e-11 5.8e-11

3 8× 8× 8 4 3.2e-6 1.4e-6 2.9e-6
16× 16× 16 8 4.0e-9 1.5e-9 3.0e-9
32× 32× 32 16 1.1e-10 4.3e-12 8.2e-12

15 8× 8× 8 4 2.8e-6 4.1e-7 2.7e-6
16× 16× 16 8 1.6e-12 4.8e-13 2.8e-12
32× 32× 32 16 6.0e-15 4.9e-16 2.8e-15

50 8× 8× 8 4 2.5e-2 1.2e-3 1.9e-2
16× 16× 16 8 2.6e-7 1.6e-8 2.3e-7
32× 32× 32 16 7.8e-16 3.0e-16 4.2e-15

Table 3.2
Dependence of the numerical accuracy on the number of folding points for α = 3.

Number of fold. points εMAX εMSQ εL2

4 2.4e-7 6.8e-8 1.3e-7
8 3.0e-9 2.2e-10 4.2e-10
11 7.7e-10 3.4e-11 6.4e-11
14 2.5e-10 1.0e-11 2.0e-11
16 1.1e-10 4.3e-12 8.2e-12
20 1.9e-11 6.4e-13 1.2e-12

Table 3.3
Dependence of the numerical accuracy on the distance of the centers of the Gaussian bells to

the boundary for α = 15.

(x0, y0, z0) εMAX εMSQ εL2

(0.5,0.5,0.5) 1.6e-12 4.8e-13 2.8e-12
(0.4,0.4,0.4) 2.9e-12 5.9e-13 3.5e-12
(0.3,0.3,0.3) 1.5e-10 2.2e-11 1.3e-10
(0.2,0.2,0.2) 1.8e-9 1.8e-10 1.2e-9
(0.1,0.1,0.1) 6.8e-9 4.2e-10 3.2e-9

(0.05,0.05,0.05)) 5.9e-9 3.1e-10 2.9e-9
(0.01,0.01,0.01) 2.2e-9 1.4e-10 1.6e-9

(0.001,0.001,0.001) 2.9e-9 1.6e-10 2.0e-9
(0.0001,0.0001,0.0001) 3.0e-9 1.6e-10 2.1e-9

(1.e-5,1.e-5,1.e-5) 3.0e-9 1.6e-10 2.1e-9

In the numerical example below,
α = 2.0, 16.0, 0.04, 4.5, 9.7, 26.3, 2.9, 1.2, 17.5, 6.2, 29.7, 19.6,

and the centers of the Gaussians
(0.23,0.54,0.82), (0.2,0.65,0.45), (0.03,0.78,0.02), (0.74,0.06,0.89),
(0.12,0.26,0.58), (0.28,0.83,0.09),(0.69,0.19,0.31), (0.86,0.37,0.91),
(0.37,0.55,0.33), (0.99,0.71,0.12), (0.17,0.34,0.77), (0.46,0.96,0.98).

are shown in Figure 3.1.

Table 3.4 describes the numerical accuracy for an exact solution being a sum of
random Gaussians given by (3.6).

The numerical results demonstrate that for a nonhomogeneous equation the
method gives a very high accuracy (10−7 − 10−9 was obtained with only 16 grid
points in each direction) and there is also indication of quick convergence to the exact
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Fig. 3.1. The centers of the Gaussians.

Table 3.4
Numerical accuracy for the exact solution being a sum of random Gaussians given by (3.6).

Nx ×Ny ×Nz Number fold. points εMAX εMSQ εL2

8× 8× 8 4 8.1e-4 8.6e-5 3.0e-5
16× 16× 16 8 7.5e-8 4.4e-9 1.5e-9
32× 32× 32 16 4.4e-9 1.0e-10 3.4e-11

Table 3.5
Dependence of the numerical accuracy on the number of grid points and the steepness of the

Gaussian for the oscillatory Helmholtz equation with the exact solution given by (3.7), where k = 1.

α Nx ×Ny ×Nz Number of fold. points εMAX εMSQ εL2

0.5 8× 8× 8 4 2.0e-6 1.3e-7 1.2e-6
16× 16× 16 8 5.5e-9 3.5e-10 3.3e-9
32× 32× 32 16 4.8e-10 1.8e-11 1.8e-10

3 8× 8× 8 4 3.7e-6 1.6e-6 3.3e-6
16× 16× 16 8 3.4e-8 5.1e-9 1.0e-8
32× 32× 32 16 7.9e-9 6.4e-10 1.2e-9

15 8× 8× 8 4 2.8e-6 4.2e-7 2.7e-6
16× 16× 16 8 1.7e-12 4.9e-13 2.9e-12
32× 32× 32 16 6.6e-14 5.3e-15 3.0e-14

50 8× 8× 8 4 2.5e-2 1.2e-3 1.9e-2
16× 16× 16 8 2.6e-7 1.6e-8 2.3e-7
32× 32× 32 16 5.6e-16 4.8e-17 6.7e-16

solution. Tables 3.3 and 3.4 show that the high accuracy is preserved even when the
exact solution is very steep near the boundary.

3.3.2. Oscillatory Helmholtz equation.

Example 7. The right-hand side corresponds to the exact solution

Ψ(x, y, z) = exp
{−α ((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2

)}
,(3.7)

where k = 1.

Table 3.5 illustrates the dependence of the numerical accuracy on the number of
grid points and the steepness of the Gaussian for the oscillatory Helmholtz equation
given by (3.7).

Example 8. Let the right-hand side correspond to the same exact solution as
in Example 6 (the sum of random Gaussians), where the equation is the oscillatory
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Table 3.6
The numerical accuracy for the exact solution of the oscillatory Helmholtz equation being a

sum of random Gaussians, where k = 1.

Nx ×Ny ×Nz Number of fold. points εMAX εMSQ εL2

8× 8× 8 4 8.1e-4 8.7e-5 3.0e-5
16× 16× 16 8 2.9e-6 3.7e-7 1.3e-7
32× 32× 32 16 7.0e-7 5.0e-8 1.7e-8

Helmholtz equation with k = 1. The numerical accuracy for the exact solution of the
oscillatory Helmholtz equation is given in Table 3.6.

4. Neumann/mixed problem for the Laplace equation. Consider the mixed
problem for the Laplace equation with Dirichlet boundary conditions at two parallel
faces and Neumann boundary conditions on the other faces:

∆Ψ = 0,(4.1)

∂Ψ

∂z
(x, y, 0+) = f1(x, y),

∂Ψ

∂z
(x, y, π−) = f2(x, y),

∂Ψ

∂y
(x, 0+, z) = f3(x, z),

∂Ψ

∂y
(x, π−, z) = f4(x, y),

(4.2)

Ψ(0+, y, z) = f5(y, z),Ψ(π−, y, z) = f6(y, z).(4.3)

Suppose that the above six functions are decomposed into sine/cosine series such
as

f1(x, y) ∼
∞∑

m=1,n=0

Cmn sinmx cosny, f5(y, z) ∼
∞∑

m,n=0

Dmn cosmy cosnz(4.4)

(sine is for x while cosine is for y, z).
Then the solution of the mixed problem

∂Ψ

∂z
(x, y, 0+) = f1(x, y),

∂Ψ

∂z
(x, y, π−) =

∂Ψ

∂y
(x, 0+, z) =

∂Ψ

∂y
(x, π−, z) = 0,(4.5)

Ψ(0+, y, z) = 0,Ψ(π−, y, z) = 0,(4.6)

can be presented by the following series

∞∑
m=1,n=0

Cmn sinmx cosny
cosh δmn(π − z)
δmn sinh δmnπ

,(4.7)

where δmn =
√
m2 + n2.

The solution with the nonvanishing Dirichlet boundary condition

∂Ψ

∂z
(x, y, 0+) = 0,

∂Ψ

∂z
(x, y, π−) = 0,

∂Ψ

∂y
(x, 0+, z) = 0,

∂Ψ

∂y
(x, π−, z) = 0,(4.8)

Ψ(0+, y, z) = f5(y, z),Ψ(π−, y, z) = 0,(4.9)
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is as follows:

∞∑
m,n=0

Dmn cosmy cosnz
sinh δmn(π − x)

sinh δmnπ
(4.10)

with the same δmn.
By adding solutions of the six boundary problems we obtain the solution for the

original mixed problem. This series converges quickly if the derivatives in the y and
z directions vanish on the edges parallel to the z and y axes, respectively. To achieve
a high-order accuracy we have to treat the first odd derivatives in the same way as
even derivatives in the case of the Dirichlet problem. However, here we consider the
simplest case corresponding to one subtraction step. At the edges parallel to the x
axis the mixed derivative in y and z has to vanish to ensure fast convergence of the
cosine series. This is achieved by the procedure which subtracts “edge” functions
similar to the one described in section 2.2.

In the case of the mixed problem (4.1)–(4.3) the edge functions have to be modified
as follows.

Suppose the function f1(π, y) can be presented as

f1(π, y) ∼
∞∑
i=0

dn cosny.(4.11)

After subtracting the function

∞∑
i=0

dn cosny
coshλ1n(π − z)
λ1n sinh(λ1nπ)

sinh(λ2nx)

sinh(λ2nπ)
, λ2

1n + λ2
2n = n2,(4.12)

we obtain a solution with the vanishing z-derivative on (π, y, 0)-edge.

Now let g(x, y) = ∂f1(x,y)
∂y and the decomposition of g(x, π) into the sine series be

the following:

g(x, π) ∼
∞∑
i=0

dn cosny.(4.13)

Then by subtracting the function

∞∑
i=1

dn sinnx
coshλ1ny

λ1n sinh(λ1nπ)

cosh(λ2n(π − z))
λ2n sinh(λ2nπ)

, λ2
1n + λ2

2n = n2,(4.14)

we eliminate the mixed yz-derivative at (x, π, 0)-edges. The other edges are treated
similarly.

It is easy to check that the above sine and cosine series for the edges converge
quickly if the mixed yz derivatives of the solution vanish in the corners. Thus, first
we subtract the “corner” functions. Let

A =
∂f1

∂y
(0, π) =

∂2Ψ

∂y∂z
(0+, π−, 0+).

Then, for instance, the corner function

C(0,0,π)(x, y, z) =
sinh(λ1(π − x))

sinh(λ1π)

cosh(λ2(π − y))

λ2 sinh(λ2π)

cos(λ3z)

λ3 sin(λ3π)
,(4.15)
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Table 4.1
The numerical results for the solution (4.16) of the mixed problem using one subtraction step.

Nx ×Ny ×Nz εMAX εMSQ εL2

8× 8× 8 6.4e-5 8e-6 1.4e-5
16× 16× 16 1.0e-5 6.0e-7 1.0e-6
32× 32× 32 1.7e-6 4.0e-8 7.0e-8
64× 64× 64 2.4e-7 2.7e-9 4.6e-9
128× 128× 128 3.1e-8 1.8e-10 3.0e-10

Table 4.2
The numerical results for the solution (4.16) of the Dirichlet problem for the Laplace equation

problem using one subtraction step.

Nx ×Ny ×Nz εMAX εMSQ εL2

8× 8× 8 1.3e-5 1.8e-6 3.0e-6
16× 16× 16 3.5e-6 2.3e-7 4.0e-7
32× 32× 32 9.3e-7 3.1e-8 5.2e-8
64× 64× 64 2.4e-7 3.9e-9 6.7e-9

λ2
1 +λ2

2 = λ2
3 has the same mixed yz-derivative at (0, 0, π)-corner. The arguments can

be modified to fit the other corners.
This algorithm is expected to have the same rate of convergence as the corre-

sponding one for the Dirichlet problem with one subtraction step. The only difference
is the necessity of having multiple computations of the first derivatives. The accuracy
of this operation essentially influences the accuracy of the numerical result. How-
ever, if a stencil for computing a derivative contains enough points, then the same
convergence as in the Dirichlet case can be achieved, as the following example shows.

Example 9. We solve the Laplace equation with Neumann boundary conditions on
the XY and XZ faces and Dirichlet boundary conditions on the YZ-face corresponding
to the exact solution

1√
(x+ 0.5)2 + (y + 0.5)2 + (z + 0.5)2

.(4.16)

Table 4.1 brings the numerical results for the solution of the Laplace equation using
one subtraction step.

Here the first derivative was computed by the divided differences method using
three grid points.

Table 4.2 gives the results for the same exact solution (4.16) when the Dirichlet
problem was solved instead of the mixed one. We observe that the same rate of
convergence and similar accuracies were obtained.

Appendix. In order to convert the extended function into a function vanishing
together with some even derivatives we introduce the bell function B(x), supported
on the extended interval a1 < a < b < b1:

B2(x) +B2(2ā− x) = 1, x ∈ [a1, a],
B(x) = 1, x ∈ [a, b],
B2(x) +B2(2b̄− x) = 1, x ∈ [b, b1],
B(x) = 0, x < a1, x > b1,

(A.1)

where ā = (a + a1)/2, b̄ = (b + b1)/2. This function is equal to B = 1 inside the
subdomain and smoothly decays out words over the distance 2ε = b1 − b = a − a1.
Some particular forms of B(x) were tested by Israeli, Vozovoi, and Averbuch [11].
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Fig. A.1. The folding operation.

The smoothing of the function f , denoted by f̃ , appears as a “folding” across the
lines ā and b̄, f̃ ≡ B · f (see Figure A.1):

f̃ = FāFb̄f(x) = B(x)f(x)−B(2ā− x)f(2ā− x)−B(2b̄− x)f(2b̄− x)(A.2)

(the “folded” function f̃ is defined in [ā, b̄]; the second term is “switched on” only in
the interval x ∈ [a1, a] and the third term in the interval x ∈ [b, b1], respectively). The
extra pieces of the function f , required for the smoothing operation, are provided by
overlapping the neighboring subdomains over the 4ε range. On the interval x ∈ [a, b]
we have f̃ = f .

The smoothing procedure keeps the function f̃ highly continuous at x = a, b. In
addition, (A.2) yields that in the vicinity of the points x = ā, x = b̄ the function f̃(x)
is odd and thus all even derivatives f̃ (2r)(ā) = f̃ (2r)(b̄) = 0 for r = 0, 1, . . .. After an
antisymmetric reflection across the point x = b̄ (or x = ā) is performed, we obtain
a smooth periodic function, which can be represented by a rapidly converging sine
series.

In the numerical implementations of the algorithm in this paper the following bell
was used:

B(x) =


0, x < a1 or x > b1,
sin(θ(x)), x ∈ [a1, a],
1, x ∈ [a, b],
cos(θ(x)), x ∈ [b, b1].

(A.3)
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