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Robust fast solvers for the Poisson squation have generally been
limited to regular geometries, where direct methods, based on Fou-
rier analysis or cyclic reduction, and multigrid methods can be used.
While multigrid methods can be applied in irregular domains {and
to a broader class of partial differential equations), they are difficult
to implement in a robust fashion, since they require an appropriate
hierarchy of coarse grids, which are not provided in many practical
situations. In this paper, we present a new fast Poisson solver based
on potential theory rather than on direct discretization of the partial
differential equation. Qur method combines fast algorithms for com-
puting volume integrals and evaluating layer potentials an a grid
with a fast multipole accelerated integral equation solver. The
amount of work required is O{m log m + N), where mis the number
of interior grid points and Nis the number of points on the boundary.
Asymptotically, the cost of our method is just twice that of a standard
Poisson solver on a rectangutar domain in which the problem do-
main can be embedded, independent of the compiexity of the
geometry. © 1995 Academic Press, inc.

1. INTRODUCTION

A longstanding problem in numerical analysis has heen the
development and implementation of a gobust Tast solver Tor the
Poisson cquation in complicated domains. In this paper, we
present such a solver based on poteatial theory rather than on
direct discretization of the partial dilferential equation. Qur
method combines fast algorithms for computing volume inte-
grals |6} and evaluating fayer potentials on a grid {5] with the
integral equation approach of {3] and the adaptive fast multipole
method {2]. Direct methods, based on Fourder analysis, cyclic
reduction. or both. require regular geometries. Standard itera-
tive procedures converge slowly. Multigrid methods, which
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achieve optimal efficiency in theory, require an appropriate
hierarchy of coarse grids, which are not provided in many
practical situations. Capacitance matrix methods, which are
more closely related to the method proposed here, require the
solution of a (dense) capacitance matrix rather than a boundary
integral equation and cannot take advantage of fast adaptive
muitipole methods and highly accurate quadrature formutas.
Before describing our approach, however, let us begin by de-
scribing the target problem clearly. We are interested in solving
the Dirichlet problem

AUX)=p(x) in D ()]
Ux)=f(x) on D, (2)

where 9 is either an inferior or exterior domain with boundary
a9 in R% The boundary is assumed to be smooth, but it may
consist of many components; i.e., the domatin is allowed to be
multiply-connected, For the exterior problem, the inhomoge-
neous term p(x} is assumed to have compact support. Qur
objective is Lo provide a tool which takes as input a simple
specification of the necessary data and which returns the desired
solution in nearly optimal order time without further assislance.

Renark.  For interior problems, a9 consists of an ouler
boundary, which we will denote by a9, as well as a (possibly
empty) collection of interior boundary curves d%,, ..., d%y.

For exterior problems, 9% consists of a collection of boundary
curves 9%, ..., 0%,.

The user is required to provide the following:

Interior Problems. 1. N, points in the discretization of each
boundary component 4%, for k = 0, ..., M.
* The Dirichlet data f(x} at each of the boundary points.

* The inhomogeneous data p(x} at each of the bound-
ary points.
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2. A box 9B which encloses 9.

* The inhomogeneous data p(x) at those points of a
uniform m X m grid on B which lie inside 9.

Exterior Problems. 1. N, points in the discretization of each
boundary component a9, for k = 1, ..., M.

* The Dirichlet data f{x) at each of the boundary points.
* The inhomogeneous data p(x) at each of the bound-
ary points,

2. A box % which encloses both the support of p(x) and
the boundary 4%, as well as the region of space on which the
solution is desired.

* The inhomogeneous data p(x) at those points of a
uniform m X m grid on B which lie in &.

3. The condition at infinity specified in terms of a real
mumber C. If C # 0, then a solution U{x) will be computed
which satisfies U(x) — C log |x} as |x] — =. If C = 0,
then a solution U(x) will be computed which is bounded as |x/
— 00

On completion, the algonthm returns the value of the solution
at those points of the m X m grid which lie inside 9.

By uncoupling the discretization of 4% trom the discretiza-
tion of & itself, it is easy for the user to describe complex
geometries. One can achieve extremely high resolution of the
boundary without complicated triangulations and data struc-
tures. Furthermore, the use of boundary integral equations
allows for the straightforward calculation of derivative quanti-
ties such as the Dirichlet-Neumann map (the evaluation of
aUlan, given Dirichlet data for 7).

Our approach to solving the Poisson equation is based on a
standard potential theory decomposition, namely the construc-
tion of a particular solution V satisfying

AViX) = p(x) in D, &)

followed by the solution of a new Dirichlet problem now gov-
erned by the Laplace equation

AWRX) =0 in%
W(x) = f(x) — V(x) on 3%. “

The desired solution is then given by U/ = V + W.

The paper proceeds as follows: A fast algorithm for comput-
ing a particular solution V is briefly described in Section 2, the
integral equation approach to solving (4) is reviewed in Section
3, and a fast algorithm for extending the function W to the
entire domain is discussed in Section 4, Numerical results are
presented in Section 5 and some concluding remarks are col-
lected in Section 6.
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2. THE RAFPID EVALUATION OF A VOLUME INTEGRAL

An obvious particular solution V satisfying

AV(x) = p(x) in D

is obtained by convolution with the free-space Green’s
function,

1
Vix) = - f , log [x — ¥lp(y) dy.

With the use of appropriate quadrature rules, this integral can
be computed at m? points in O(m?) time, using the fast multipole
method. Although such an approach would be very robust, the
corresponding constant is large and the method i3 not competi-
tive with the approach described below [6] which yields a
different particular solution.

2.1. Notation

Recall that our method uses two distinct grids: a regular
lattice on & which covers the domain %, which we refer to as
the “‘volume grid’” and whose points we refer to as ‘‘lattice
points,”” and a separate discretization of the boundary, which
we refer to as the “‘boundary grid”’ and whose points we refer
to as “‘boundary points.”’

The volume grid is assumed to have sides parallel to the x
and y axes and the point spacing # is assumed to be the same
in both the x and y directions. The N, boundary points on each
curve d%; are assumed to be equispaced in arclength.

The discrete (5-point) Laplacian is defined on the lattice
points by

Akvr'._i = (Vi,jﬂ + Vi,j)) + VmJ + Vi-u - 4Vs,j)llh2, 3)

where the {V,;} are the values of a function defined on the
lattice points {(x;, ¥} A grid point (x;, y;) € B is called a
regular grid point if the formula for A, involves points entirely
inside 9. Similarly, a grid point €x;, ¥,) € B\ is called a
regular grid point if the formula for A, involves points
entirely inside @\%. All other grid points are called irregu-
lar points.

If = {x,, ¥;) is a grid point, then its four nearest neighbors
are denoted by py = (x;, yj-H)s p. = (X, )’J-t)s pe = (X, y;),
and p, = (xi_;, ¥;). If the boundary % crosses the segment
{p, pd, & = N, S, E, W, then the point of intersection will be
denoted by p, and the distance from p to p, by h;. Finally, the
jump in the quantity U/ as one crosses p, in passing from
p to one of its neighbors p,, & = N, §, E, W, is denoted by
(U],



350

2.2. Interior Problems

Consider the following Dirichlet problem:

A {p on %
V= .
0 on PG ()

V=0 onad.

Solving
~ pi; O,y eE®

Ah Vr’u’ = . 7
0 if(x,y) €EBD (7

17,-_J- =0 ond®

provides only a first-order accurate approximation to V. To see
why, suppose that (x;, y;) is a regular grid point inside %. Then

AV = AV + O = p + O(Y)

by a standard Taylor series expansion. At regular grid points
outside 9,

AV = AV + O(hY) = 0 + O(h?),

again by a standard Taylor series expansion. At irregular grid
points, however,

AV = AV + 0(1)

because of the discontinuity in the Laplacian across the bound-
ary. There is, therefore, an O(1) error in the right-hand side of
(7} at the irregular points. Since the number of irregular points
is small compared to the total number of grid points, one can
show that the global error is O(k) and not G{1}). To achieve
higher order accuracy, one must analyze the difference A,V —
AV at the irregular grid points more carefully. In [6], it is
shown that

Ah‘/j_j = AV,J + C,',j,

where
) .
Ci,j = ﬁ (h%.'[v:cx]E + h%V[Vxx]W + h%ﬂ[V)‘y]N + h%[vy}‘]S) + O(h).

Note that not all jumps are nonzero. Higher order corrections
are also computable, but the above is sufficient for second-
order accuracy. Once we obtain the C;;, all we need to do is
solve the linear system
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i if (x;, ¥;) is a regular point in %
_ 0 if (x;, y;) is a regular point in B\D
A = o
P N g+ €, iF(x, vy is anirregular point in @D (8)
Cy if (x;, y;) is an irregular point in B\
‘71‘.1‘ =0 on 39‘3

by means of a standard method for inverting the discrete Lapla-
cian on 9. In short, we first compute a right-hand side which
corresponds to the discrete Laplacian of the function we want
and then we apply a standard fast Poisson solver. At present,
we use Buneman’s method [1].

2.3. Exterior Problems

As in the preceding section, we begin by solving the Dirich-
let problem:

A {p on %

V =

o @ 9)
V] =0 on 6%,

where & is the (user-provided) box which encloses the support
of p. Further, let us extend V, to be identically zero outside d%.
Unfortunately, this function cannot play the role of a particular
solution satisfying (3). The boundary % is part of the problem
domain and the particular solution we are seeking must be
harmonic in its vicinity. ¥, on the other hand, has a jump in
its normal derivative as one crosses a%. Consider, however,
the single layer potential

_1 i}
Vi =5 [, Jog Ix = ylaty) dy.

where o is an unspecified but continuous density function. Then
V, is continuous in R?, harmonic in R®ZA, and satisfies the
jump relation

av
[—2] =g onddPb,
v

where d/dv is the unit outward normal derivative, If we set o
= —[aV,/an], then the function V = V, + V, is harmonic on
both sides of 98B and contintous across the boundary with
continuous normal derivative. It is, therefore, harmonic in a
neighborhood of the boundary and is a suitable particular so-
lution.

To obtain the values of V, at all points inside 9B, we first
evaluate the single layer potential on the box boundary % by
the fast multipole method and then extend the solution to the
interior of the box by means of a standard fast solver.
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3. THE SOLUTION OF LAPLACE’S EQUATION

We now consider the solution of the auxiliary Laplace equa-
tion (4), following the treatment of [3, 8]. Note, however, that
we first require the modified Dirichlet d.a‘taf~ =f— Vonthe
boundary. While the original data fis given, we must interpolate
V from the volume grid to the boundary mesh. For this, we
use a third-order accurate formula which takes into account the
fact that the volume integral V has jumps in its second derivative
across the boundary 93 (see, for example, [6]).

In the case of a bounded domain & with M interior boundary
curves a9, we seek a solution in the form of a double layer
potential combined with M singular sources,

1 3 <
Wix) = 37 ) p,(y)g;yln ly — x| dy + ;Akln |x — S, (10)

where S, is a point inside &%,. Applying the standard jump
relations for double layer potentials [8], we obtain the inte-
gral equation

) 3
o)+~ | e o ly — yol dy

(11)
M -
+2 ; Agln ly, — 8o = 2f(%o).

We subject this system to the constraint equations

L@ w(yydy =0, k=1, M. (12)
]

Remark, The coefficients of the singular sources 4, ..., Ay
in the representation {10) are, from a fluid dynamics viewpoint,
the circulations around the boundary components 8%, , ..., 8%.

Without these coefficients, the integral equation (11) is singular
in mutliply connected domains, but it can be shown that the
system of Egs. (11) and (i2) is invertible. For a complete
discussion, see [3, 8].

For exterior problems, we seek a solution in the form

as

L A —
W(x) = > Lg w(y) o Inly — x| dy + 5

o Y)Y
(13)
M
+ 2 Aklﬂ Fx - Skl»
k=1

where S, is a point inside the boundary curve %, . We require that

M
> A=C, (14)
=1

where C is the user-specified constant describing the desired
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behavior at . If C = 0, the solution will be bounded at ce.
Otherwise, W(x) — C log |x|.
The corresponding integral equation is

1 d |
w0+ [ w5ty —wlay + 2w ¥

M
+2 12—‘1 Aglnly, — S = 2(ya),
which we subject to the constraints

Lg Wy dy =0, k=1,..M—1. (16)

In order to solve the systems (11) and (12) or (14), (15), and
(16), we use a Nystrdm algorithm based on the trapezoidal rule,
since it achieves superalgebraic convergence for smooth data
on smooth domains. In more detail, we assume that we are
given N, points equispaced in arclength on each boundary com-
ponent 8%, and associate with each such point, denoted y!, an
unknown density value pf. The step in arclength in the discreti-
zation of 8%, will be denoted h, = |§%,|/N,, where [0%,| is
the length of the curve 4%,. The total number of discretization
points is denoted by

M

N= 2 N, for the exterior problem
k=1
M

N=> N, forthe interior problem.
k=0

We replace the integral operators in (11) and (12) by

by
d S ; d & L
 HO) gy =l dy = 20k 2 o inly} = il

Y1

and the constraint equations in (12) and (16) by

Nk
L@ p(y) dy = > plhy.
\ ps

Remark. Inthe preceding linear sysiems, the diagonal terms
of the form (3/du)In ly¥ — ¥/ should be replaced by their
analytical limit, «(y{)/2, where x(y!) denotes the curvature at
the point y!.

The discrete equations for the interior and exterior problems
may be written in block form as

(e 20-6)

(17)
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TABLE I

Computational Results for Example 1

m, m, N K E. E T T, T, T, T, T,
32 32 240 10 22 %X 107 7.9 X 107 37 * * 26 10 *
64 64 480 10 57 % 107 1.9 x 107 64 * 1 36 25 1
128 128 960 10 12 x 107 46 x 107 106 1 3 60 37 3

256 256 1920 10 30 x 107 1i x 107 202 5 11 101 64 iy

512 512 3840 10 75 x 107 2.7 % 107 456 18 50 175 124 50

1024 1024 7680 10 2.1 x 1078 75 X 107 1309 69 219 385 253 217

Note. Times marked by an asterisk (*) were negligible.

(e o) (5)

where, for the interior problem,

(18)

is the vector of unknown density values,
a=(4,. ., A"
is the vector of unknown coefficients, and

£= (f% o S fls o f s o

W U
is the vector of given boundary values. For the exterior problem,
= (s ks s @ )T
and
£l Pl oo I

The matrices K’ and K* in {17) and (18) represent the integral
operators, the matrices 8 and B* represent the togarithmic terms
coupling the density values to the coefficients Ay, ..., Ay, and
the matrices C¥, C¢, DY, and D¢ represent the constraint equations.

The linear systems (17) and (18) are solved iteratively, using
the CGS algorithm [9] in preconditioned form:

o) (2 )0
(e ) )

and

(e o) (& 5)(0)
(e 0 (3)

The bulk of the work at each iteration lies in applying the
full matrix to a vector. The product

(e A

C D/\a

can be computed in time O(N + M) using the adaptive fast
multipole methed [2, 10].

(20)

Remark. In actual practice, we solve the interior problem
by introducing an additional source term,

Apln|x = 8,

’

where §; lies outside the outer boundary 9%,, and an addi-
tional constraint

INZE:

Ak=0.

e
I
=1

(This has no effect on the original integral equation, but is -
necessary to ensure the invertibility of the preconditioner.)

4. EVALUATING THE DOUBLE LAYER POTENTIAL ON
THE GRID

Once we have obtained a solution to Eq. (19) or (20), we
need to evaluate the double layer potential W at all grid points
in B. We do this using the method developed in [5], which is
closely related to the technique described in Section 2. Specifi-
cally, let
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TABLE II

Computational Results for Example 2
”, m, N K E. E, T T, T, 7, T, T,
64 64 986 23 1.4 % 107 38 % 107 222 1 1 158 &1 1
128 128 2000 23 33 x 107 8.5 x 107 414 2 4 308 93 4
256 256 4000 23 74 % 107 1.5 % 107 159 9 19 557 148 19
512 512 8000 23 1.9 x 107* 44 x 107 1529 31 86 1029 268 85
W in% For each example, a smooth resampling of the boundary,
We = 0 inID equispaced in arclength, was obtained using an algorithm due

Observe now that at regular grid points in 95,
AW = AW, + O = 0 + O(RY).

The discrete Laplacian of Wy, at irregular points can, of course,
be obtained directly from the definition (5). All that is required
are the values of Wy at the irregular points and their neighbors.
These can be computed in optimal order time by using the fast
multipole method and high order quadrature [7]. Thus, we solve
the system

. 0 if (x;, y;} is a regular point in B
By (Wg),; = _ L o
Ci;, if(x; y)isanirregular pointin %
_ 21)
(Wg),-u,‘ = Wg, on 693, (

where
Cij= &Wg,
using the same Poisson solver as for the volume integral. Note

that for interior problems, Wy, = 0 on a%8. For exterior problems,
Wy is computed on 4% by the fast multipole method.

5. NUMERICAL RESULTS

The fast solver described above has been implemented in
double precision in Fortran on a Sun SPARCstation 2. In this
section, we evalnate its performance on four multiply-con-
nected interior and exterior problems,

to Rokhlin [11]. Tangential derivatives of the curve were ob-
tained by Fourier differentiation, from which it was straightfor-
ward to compute normal vectors and curvature. We then solved
the Poisson equation on a sequence of refined meshes in order
to examine the convergence rate and CPU time requirements
of the algorithm.

Qur resolts are sutnmarized in Tables -1V, In these tables,
m, and m, are the numbers of points in each direction of the
volume mesh, N is the number of points vsed to represent the
boundary, and K is the number of CGS iterations required to
achieve six digits of accuracy in the solution of the integral
equation, E, and E.. denote the relative £, and L.. errors, and
the remaining columns indicate the computational times re-
quired by the various steps of the methed. 7 is the total CPU
time (in seconds) required for the calculation, 7, is the time
required for locating irregular points, 7, is the time reguired
for computing the volume integral, 7, is the time required for
solving the boundary integral equation, T, is the time required
for evaluating the double layer potential at the irregular points,
and 7, is the time required for evaluating the double layer
potential on the volume mesh.

ExampLE L. We first consider the interior region with eight
hoies depicted in Fig. 1. The left-hand figure shows the bound-
ary of the domain as well as the boundary of the volume mesh.
The right-hand figure is a contour plot of the computed solution
when the input data corresponds to the exact solution

u(r, 8) = rsin(86).

ExampLE 2. Our second example is the interior domain

TABLE II1

Computational Results for Example 3

", n, N K E, E, T T, T, Ty T, T,
256 2560 3600 34 4.1 X 1) 1.4 x 1072 921 3 10 719 17 10
512 512 7200 34 6.1 X 107* 2.1 X 1p? 1816 18 46 1411 26 46
1024 1024 14400 34 3561 71 159 2482 449 200
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TABLE 1V

Computational Results for Example 4

", ", N K Ew E, T T, T, Ty I T
108 64 1250 29 37 X 1072 9.6 X 1077 319 I 1 251 64 1
216 [28 2500 29 4.0 X 1073 9.1 x 0™ 605 2 4 454 136 4
432 256 5000 28 9.2 x 19 1.8 x 107! 1212 4 17 932 219 17
864 512 10000 29 1.3 x 107 2.1 x 107* 2382 29 79 1751 3719 79
1728 1024 20000 32 5027 13 342 3293 664 340

Note. Here, T, includes the time to evaluate the single layer potential on the boundary of the box (see Section 2.3).

with 20 holes depicted in Fig. 2. The input data here also
corresponds to the exact solution

u(r, ) = r*sin(86).

ExampLE 3. Our third example is the interior domain with
11 holes depicted in Fig. 3. For this geometry, we have solved
the problem

Au = —(x* + ¥Y) sin(xy),

with 4 = 0 on the outer boundary and u alternating between
1 and 2 on the interior boundary components. Since the exact
solution is unknown, we have used the computed solution on
the finest mesh as our exact solution for evaluating the errors
on coarser meshes.

ExampLk 4. Our final example is the domain exterior to
the 25 foil-shaped regions depicted in Fig. 4. In fluid mechanics
terminoiogy, we have solved

AY = —q,

where the vorticity w is supported within the bounding volume
mesh and consists of 40 separate patches. Thirty-two of the
patches are of radius 0.06, centered near the tips of the foils
and alternating in sign. The remaining eight are located farther
away and have radius 0.1. The long dimension of each foil is

FIG. 1. The interior domain of Example 1 and a contour plot of the
computed solution.

approximately 0.22 and the dimensions of the embedding box
are 3.2 X 1.9. The stream function ¥ has been set to a different
constant on each boundary component. As for the third example,
the exact solution is unknown and we have used the computed
solution on the finest mesh as a standard for evaluating the
errors on coarser meshes.

From the above, it is easy to verify that the algorithm
is second-order accurate and that the time required grows
approximately linearly with the number of unknowns. It is
also evident that solving the boundary integral equation is
the most expensive part of the calculation for small values
of N, m,, and m,. As N, m,, and m, grow, however, the
cost of the two fast Poisson solvers (T, and T) will eventually
dominate. In our examples, we made no atternpt to optimize
the number of boundary points, simply doubling all the
parameters to study the convergence rate, In fact, we could
have solved the integral equations with fewer boundary points
and retained the same accuracy in the solution. In Example
1, for instance, using N = 1920 points in the discretization
of the boundary with m, = m, = 1024 yields the same

accuracy as using ¥ = 7680. The cost of solving the integral
equation in this case is only 10% of the total cost. Finally,
we note that the time 7, for evaluating the double layer
potential at frregular points could be substantially reduced
by using an adaptive fast multipole method. The algorithm
we used is based on a nonadaptive code [7].

FIG. 2. The interior domain of Example 2 and a contour plot of the
computed solution.
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I

FIG. 3. The interior domain of Example 3 and a contour plot of the
computed solution.

6. CONCLUSIONS

We have developed and implemented a robust fast Poisson
solver for irregular, multiply-connected regions in the plane.
The algorithm has a simple user interface and handles intericr
and exterior problems with equal ease. While limited at present

FIG. 4. The exterier domain of Example 4 with the enclosing box and a
contour plot of the computed solution.
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to Dirichlet boundary conditions, the extension to Neumann,
Robin, and mixed problems is relatively straightforward. The
solution of the auxiliary Laptace equation in each of these cases
can be expressed as a single layer potential or as a combination
of single and double layer potentials. The resulting integral
equation can be solved by a fast multipole-accelerated itera-
tive procedure.

Extension of this work to three-dimensional problems has
begun and will be reported at a later date. For related work on
boundary integral equations in three dimensions, see [4].
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