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THE METHODS OF CYCLIC REDUCTION, FOURIER ANALYSIS
AND THE FACR ALGORITHM FOR THE DISCRETE
SOLUTION OF POISSON’S EQUATION ON
A RECTANGLE*

PAUL N. SWARZTRAUBERT

Abstract. The methods of cyclic reduction and Fourier analysis are reviewed together with the
FACR algorithm which combines the two methods. It is shown that the asymptotic operation count of
the FACR algorithm for an n X n grid is O(n? log; log, n) which compares with O(n? log, n) for either
cyclic reduction or Fourier analysis used independently. In addition to the description of the methods,
the treatment of the standard boundary conditions for the Fourier method is given and the efficient use
of the fast Fourier transform is also discussed. Computational results are presented for grid sizes up to
1023x1023.

1. Introduction. The primary purpose of this paper is to review the efficient
direct methods for solving the discrete Poisson equation on a rectangle. In
particular, we shall redirect some attention to the FACR (/) algorithm [13], which
combines the methods of Fourier analysis and cyclic reduction. In this paper it is
shown that if / =log, log, n — 1, then the asymptotic operation count for an n X n
grid is O(n® log, log, n), compared to O(n” log, n) for either cyclic reduction or
Fourier analysis used independently. The FACR (/) algorithm also requires
minimal storage and, therefore, possesses the attributes which have distinguished
the efficient direct methods.

Preceding a discussion of the FACR (/) algorithm in § 4, the methods of cyclic
reduction and Fourier analysis are reviewed in §§ 2 and 3, respectively. Section 2
contains Buneman’s second stable variant of the cyclic reduction algorithm which
requires half the storage of the first variant and has the same asymptotic operation
count which is derived at the end of the section. Much additional information
about cyclic reduction is contained in [5], including algorithms for irregular
regions and for Neumann and periodic boundary conditions. The notation in this
paper is consistent with that used in [5] in order to facilitate cross reference.

Originally the method of cyclic reduction was restricted to the solution of
Poisson’s equation on a rectangle but it has subsequently been extended to a
significantly broader class of problems. The solution on irregular regions is
considered in [5], [6] and [7]. Also in[7], the method is applied to the biharmonic
equation. In [14] and [16], the method is applied to Poisson’s equation on the
surface of the sphere and on the disk, respectively. Both coordinate singularities
and singular operators are treated. In [15], the method is extended to separable
elliptic equations. In [8], the method of cyclic reduction is combined with
D’yakonov iteration for solving any self-adjoint, strongly elliptic equation. The
Fourier and cyclic reduction methods are also implicitly found in certain of the
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marching techniques of Bank [ 1] and Rose [2] and in the Fourier-Toeplitz method
[11].

The method of Fourier analysis is presented in § 3 together with a description
of the method for the standard boundary conditions (periodic, Dirichlet-
Dirichlet, Neumann-Neumann, Dirichlet-Neumann). Also discussed is the pre-
and postprocessing of the data so that standard fast Fourier transform (FFT)
packages can be used efficiently. The section closes with a derivation of the
asymptotic operation count and a comparison with the operation count for cyclic
reduction.

The FACR (I) algorithm is given in § 4. The algorithm begins with /=
log, log, n —1 steps of cyclic reduction. The resulting equations are then solved
via the method of Fourier analysis and the remaining unknowns are obtained by /
steps of the back substitution phase. The asymptotic operation count is deter-
mined and is compared with the methods discussed in §§ 2 and 3. The section
closes with an intuitive discussion of the algorithm. Section 5 contains a brief
discussion of the data organization for large grids and experimental results are
presented for grid sizes up to 1023 X 1023.

The methods presented in this paper are most frequently used and, likely,
best understood in the context of solving Poisson’s equation on a rectangle;
however, we shall present them in the context of solving a large sparse linear
system of equations, since the discretization of the Poisson’s equation leading to
the linear system can be found elsewhere [5].

2. Cyclic reduction. In this section we consider the method of cyclic reduc-
tion for the solution of the large sparse linear system

2.1) Mx=y,

where M is block tridiagonal with block order m —1,

A I 7]
I A 1
2.2) M=
I A I
L I Al
and
[ x] —Y1 )
X3 Yy
x=| - . y=|"
2.3)
L Xpm—1 —ym—l—

The form of M given in (2.2) corresponds to the system obtained by
discretizing Poisson’s equation subject to Dirichlet boundary conditions on at
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least two opposite sides of the rectangle. The matrix A is tridiagonal with scalar
elements. Its order (and the length of the vectors x;, y;) is n—1, n, or n+1
depending on the boundary condition on the remaining sides of the rectangle (see
§3).

We now state, without derivation, Buneman’s variant of the cyclic reduction
algorithm for solving the system (2.1). A derivation of the algorithm, together
with his first variant, plus algorithms for the standard boundary conditions, are
contained in [5]. The algorithm is simplified by assuming that m has the form
m = 2**" for some integer k, but this restriction has been removed [18], [19]. The
algorithm consists of three phases: preprocessing, reduction, and back-
substitution.

Preprocessing. The matrices A” are computed from A= A, using the
recurrence

(2.4) AP =2I-(ATV), r=1,---,k

We shall show later how to avoid the explicit computation and storage of the A .
Reduction. The vectors q,‘»’) are computed starting with

(2.5a) q” =y, j=1,2,---,m—1,
(2.5b) q"=q2 +q2,-247"q)", j=2,4,---,m=2,
The remaining q” are determined for r=2,-- -,k and j=2/,2-2",---,m—2"
by

0" =q50 -0+ 47— q) + g

(2.6) + (A (r—1))—1(q](.r_—3%l) _ q,('r:zlh) + q/(‘r—_hZ) _ 2q](r—1)
T~ 42 + a5,
where h =272,
Backsubstitution. If we define q(:})/z + q}’;ll)/z - q,(-O) =Xo=X,, =0, then the

J
solution vectors x; are given forr=k,---,0and j=2,3-2",---,m—2" by

2.7) x; =3(q 20 + 42 —q) + (AD) Q" = Xj_an —X;4an)-

Note that x;_4, and x;.,, which appear on the right side are computed at a
previous step in the backsubstitution and thus are known. We may also note that
the y; can be overwritten by the q{”, which can in turn be overwritten by the x;.
Hence, no additional storage is required. Buneman’s second variant, given above,
requires half the storage of his first variant, at the cost of some additional
computation (which becomes negligible as r increases, as it does not contribute to
the asymptotic operation count).

There remains a computational difficulty which is discussed only briefly here,
since the details are available in [5]. We note that although A is sparse and easily
inverted, the matrices A fill rapidly; as a result, the algorithm becomes expen-
sive in terms of both storage and computation. However, we also note that each
A® is a polynomial, say p.-(A), of degree 2" in A. Let p,-(x) denote the scalar
analogue of p,-(A); then p,-(x) is given recursively from p;(x) = x and

pr(x)=2—[py—1(x)F.
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If we make the substitution x = —2 cos 6, then
par(x)=—2cos 2’6
or
pr(x)=—Cy(x).
where C,r(x) is the Chebyshev polynomial with zeros

af,')=2005(2v—1)-2%, v=1,---,2"

Therefore p,-(A) can be expressed in factored form

.
(2.8) pr(A)=—T1 (A-a?D), r>0.
v=1

Hence, instead of storing the matrix A, only the zeros a are stored, requiring
only 2m locations. Further, all matrix computations can be performed using the
factored form of A,

For example, consider the equation (2.7) for r=k:
(2.9) X2 =3 @a @S ma = A +(AY) g

Then, X,» is determined by first defining wo = q,5,)> and computing w, recursively
by solving a sequence of tridiagonal systems.

(210) (A —af,k)I)W,, =W,_1, v=1,---, m/za
then
(2.11) X2 = 3G + Q)= Al )2) + W2

In this manner, all computations can be made in terms of sparse matrices.

We close this section with a derivation of the operation count for the cyclic
reduction algorithm. We define an operation as consisting of a multiplication or
division plus an addition or subtraction. We shall consider only those computa-
tions that contribute to the asymptotic count. In the reduction phase, a contribu-
tion is obtained from the second line in (2.6). Since A“~" is a polynomial of order
2"V in A, the evaluation of q}’) will require the solution of 2“~" tridiagonal
systems. If we assume the order of A to be n, then 3n 2¢~Y operations are required
since the codiagonal elements of A are 1. Since there are m/2" —1 q,('), the
asymptotic count for one cycle of reduction is 3nm. In a similar manner, the
asymptotic operation count for one cycle of the backsubstitution phase (2.7) is
3 nm. Since there are k cycles of reduction and backsubstitution, the total
operation count for cyclic reduction is 3nm log, m. If the cyclic reduction is
performed in the other direction, the operation count becomes 3mn log, n.
Therefore, the reduction should be performed in the direction which minimizes

these counts. For an n X n grid, the operation count is 3n’log, n.
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3. Fourier analysis. In this section we shall discuss the method of Fourier
analysis which may also be used to efficiently solve the system of linear equations
(2.1). We noted previously that for the method of cyclic reduction, a detailed
description of the algorithms for the standard boundary conditions was available
elsewhere [S]. However, for the method of Fourier analysis, a comparable
reference is not available. Therefore, we shall consider the treatment of periodic,
Dirichlet-Dirichlet, Dirichlet-Neumann, and Neumann-Neumann boundary
conditions. The method is efficient only when used in conjunction with the fast
Fourier transform; hence, we discuss how the FFT can be adapted to take
advantage of symmetries associated with each boundary condition. The section
closes with an operation count for the method of Fourier analysis and a compari-
son with the operation count for cyclic reduction.

Referring now to the system (2.1), let Q denote the matrix whose columns are
the eigenvectors of A. Then, Q" 'AQ = diag (A}, Ajy+1,  * * 5 Ay,), Where it will be
shown that the subscripts i, i, depend on the boundary conditions. When A is
symmetric and Q is normalized, then Q' = Q; however, for Neumann bound-
ary conditions, A is not symmetric. If we define X; = O_lxj and compute y; =
Qy,, then, substituting into (2.1) and multiplying by Q~', we obtain

(3.1) X1+ Q 'AQX; +%;., =¥, j=1,---,m—-1.
Letx,; and y,; denote the vth component of X; and y;, respectively; then for each
v=iy, -, i, we obtain a tridiagonal system of order m — 1.

(3.2) iv,j—] +)t,,f,,,] +-iv,j+l = )_)v,j, j= 1, e, m— 1.

Hence, the &, ; can be easily determined by solving a sequence of independent
tridiagonal systems. The solution is then given by the inverse Fourier transform
x; = OX;.

This completes the general discussion of the Fourier method; however, it
remains to describe the treatment of the various boundary conditions. Since the
following discussion is independent of j, its use will be discontinued and x; ;, X, j, y; ;
and y, ; will be referred to simply as x;, X,, y;, and y,. Also, x;, y; will be referred to
asxandy.

Periodic. If A results from the discretization of Poisson’s equation subject to
periodic boundary conditions, then A has the form

[—2a 1 1]
1 —2a 1
(3.3) A=p’
1 —2a 1
1 1 —2a|nxn

where p is the ratio of the grid spacings and @ = (1+p?)/p>. The unknowns are x;
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fori=1,- - -, n. The Fourier transform y = Qy is given by
_ 2z
(3.4a) y1==— X ¥
ni=1
2 2
(3.4b) V2 =— 2, ¥i COS v v=1,2,--- ,2— 1,
ni=1 n 2
- 2 . L2 n
(3.4C) y2,+1=;i§1 y; Sin Vl7, V=1,2,‘ . ',-2'—1
_ 2> i
(3.44d) Yn=— 2 yi(=1)"
ni=1
The inverse Fourier transform x= QX is given by
n/2—1 2 2 l A
(3.5) «x; =lil+ Y (fz,, cos vi—7r+f2,,+1 sin vi—7r> +=x,(—1),
2 =1 n n 2
i=1,---,n
The eigenvalues of A for use in (3.2) are
(363) Ay=-— 2’
(3.6b) Aoy =Agpi1 = —2(1 +2p? sin? u’;T)
n
=1,2,---,=—1,
g 2
(3.6¢) A, = —2(1+2p?).
Dirichlet—Dirichlet. If Dirichlet boundary conditions are specified at both
boundaries, then the unknowns are x; fori=1,---,n—1 and A has the form
[ —2a 1 ]
1 —2a 1
(3.7) A=p’
1 —2a 1
i 1 —2a|@-nx@-1
The Fourier transform y = Q™ 'y is given by
n—1 T
(3.8) Vo =— X y,—sinvi;, v=1,---,n—1.
i=1
The inverse Fourier transform x= QX is
n—1 T
3.9 x= Y f,,sinui;, i=1,---,n—1.
v=1
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The eigenvalues of A for use in (3.2) are

(3.10) A= —2(1+2p2 sin’ V%) v=1,---

Neumann—Neumann. If Neumann boundary conditions are specified at both

boundaries, then the unknowns are x; for i =0, - - - , n and A has the form

[ —2a 2
1 —2a 1

(3.11) A=p?

2 2a | @+)x@+1)

The Fourier transform § = Q™ y is given by

(3.12) y‘,=%yo+%j§ y; cos vig+%(—l)"y,,, v=0,---
The inverse Fourier transform x = QX is

(3.13) x,-=%f0+nii %, cos vi§+%(—1)if,,, i=0,---
The eigenvalues of A for use in V(;.Z) are

(3.14) A= —2(1+2p2sin2u§), y=0,- -

-, h.

Dirichlet-Neumann. If Dirichlet boundary conditions are specified at i =0
and Neumann conditions at i = n, then the unknowns are x;, i=1,---,n,and A

has the form

-—Za 1

1 2a 1
(3.15) A=p?
1 2« 1

2 —2a nxn

The Fourier transform y= Q™ y is given by

(3.16) y —l(—l)"+1 +Z"i1 sin (2 —l)il v=1,---
. Yo n Yn n = Yi v 2na )

The inverse Fourier transform x = QX is

(3.17) x=73 % sin(v—1)i—=, i=1,--
v=1 2n
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The eigenvalues of A for use in (3.2) are
(3.18) Av=—2[1+2p2sin2(2u—1)£], v=1,---,n.

The most commonly available FFT programs are for periodic real or complex
data. These programs can be adapted to perform the transforms given above by
employing suitable pre- and postprocessing of the data before and after calling the
FFT package. The procedures for the cosine transforms of even data and sine
transforms of odd data are given in [9]. The procedures for all the remaining
transforms will not be given; however, we will describe a method for the transform
(3.17) which is not given in [9].

From (3.17) we can obtain

T ..
(x; +x,_;) cos 12—+(x,» —X,_;) Sin i—
n 2n

3.19 L C o I _ .2 .
(3.19) =x+ ) [(xz,,+1—x2,,) cos V177T+(f2,,+1+f2,,) sin vi%]

v=1

+%,(—1)""

Hence, if we preprocess ¥, by computing

(3203) a,;=2x,,
(3.20b) Az =X2,41 7~ X2,,
o y=1,++,n/2-1,
(320C) A2p41= X20+1 +x2w
(3.20d) a, = —2%,

then, the real periodic transform (3.5) can be used to compute

n/2-1 2 .27 _ ;
(3.21) a,=3a,+ Y (dz,, cos m7+d2,,+1 sin WT +3a,(-1).
v=1

But, from (3.19) and (3.21), we obtain

(3.22) ;= (X, + X ) COS i m—+ (X; — Xpp—;) SiN i
2n 2n

or

(3.23) X, =Xa; +a,_;)sin i—+Xa,—a,_;) cos i—.

2n 2n

Hence, once the a; are determined from (3.21), they can be postprocessed by
(3.23) to determine the x;. Note that only a real transform of length n is required.
Should only a complex FFT be available, then pre- and postprocessing algorithms
which perform the efficient transform of real data using the complex FFT can be
found in [3].

We close this section with some comments on the operation count of the
Fourier method. The only computations which contribute to the asymptotic
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operation count are the Fourier transforms § = Q 'y and x = QX, as the solution
of (3.2) requires O(mn) operations and does not contribute to the asymptotic
operation count.

A real transform of length n has an asymptotic operation count of n log, n.
Since m transforms are required for both the transform and the inverse transform,
the total asymptotic operation count is 2mn log, n. When compared with the
count of 3mn log, n for cyclic reduction, we see that the method of Fourier
analysis has the potential for being more efficient. However, since the counts are
close the final comparison will likely depend on a number of factors, including the
particular program, the compiler, and the effect of low-order terms in the
operation counts for smaller values of m and n.

4. Fourier analysis-cyclic reduction. In this section we shall describe the
FACR (!) algorithm [13] which combines the methods of §§ 2 and 3 to produce a
third method whose asymptotic operation count is less than either Fourier analysis
or cyclic reduction used independently. Dirichlet boundary conditions on all sides
will be assumed; however, the other standard boundary conditions can be treated
by selecting the appropriate transform given in § 3.

The FACR (/) algorithm begins with [ steps of cyclic reduction in which the
q,(’) are computed using (2.5) and (2.6) forr=1, - - -, [, where [ <k and is yet to be
determined. With r =1, (2.7) can be written as the linear system

4.1) X + AV +x00 =3AO (¢ +q P —q") +q°

for j=2'---, m— —2'. But this system can be solved using the Fourier method.
Define X; —Q x and compute § = Q" 'q;. Then substituting into (4.1) and
multlplymg by Q" ', we obtain

X+ Q'AY0% +%,:2=107'A%Q
—(I- —(1
(g +qp-1— (1))+q(l).

However, since A" =p,:(A), equation (4.2) reduces to i,—i;+1 independent
tridiagonal systems, of order m/2' —1.

4.2)

X, ;2! +p2’(A')x_vj +X,j420

- 2P2 (A )(qulj 1% q_f/l]-:%' 1= ({))+qf'l;
wherej=2',2-2',-- -, m—2". Once ,, is determined from these systems then X;
can be obtained from the inverse transform x; = QX;. Note, however, that only
every (2')th vector x; has been determined. The remalmng x; are determined by /
cycles of the backsubstltutlon phase,ie., forr=1—-1,: O using (2.7).

The FACR (/) algorithm given in [13] is very similar to the algorithm which
has just been described. However, we shall show that / can be chosen so as to
reduce the asymptotic operation count below that of either cyclic reduction or
Fourier analysis. To this end, we make use of the operation counts given in §§ 2
and 3 and, again, consider only those operations which contribute to the asympto-
tic count. Since [ cycles of both the reduction and backsubstitution are required,
the count for this portion of the algorithm is 3mnl. The Fourier analysis portion
requires 2 - m/2' transforms of length n for a count of (mn/2'™?) log, n. Hence,

4.3)
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the total count is C,=3mnl+2"'mn log, n. This expression is minimized at
I =1og, log, n +log,(31n 2) or I =log, log, n — 1. With this value of /, we refer to
FACR (/) simply as the FACR algorithm. Substituting into C;,, we obtain an
asymptotic operation count of 3mn log, log, n for the FACR algorithm.

In practice it is likely that the exact choice of / will depend on a number of
factors, including the particular program, the compiler, I/O considerations for
large grids, and the low-order contributions to the operation count for small grids.

In the preceding discussion, it is not intuitively evident why the change to
Fourier analysis in the middle of cyclic reduction is so effective in reducing the
operation count. We close this section with a few remarks which may provide
some insight. In the course of cyclic reduction, one must solve several systems of
the form

(4.4) _Iiil (A—a)x=y.

This system can be solved as a sequence of 2" tridiagonal systems as described in
§ 2. If A has order n, then each system requires 3n operations and the total
asymptotic count is 3n2". Alternately, we may solve the system by the Fourier
method which requires the transform of y, the solution of a diagonal system,
followed by the inverse transform to determine x. The asymptotic count for this
method is 2n log, n. Thus, if 7 is such that 3n2’ is less than 2n log, n, then (4.4)
should be solved as a sequence of tridiagonal systems as in the method of cyclic
reduction. However, if 3n2" is greater than 2n log n, then the Fourier method is
more efficient. The crossover point is for r =log, log, n +log, 3.

5. Experimental results. Three programs were written, all of which solved
Poisson’s equation subject to Dirichlet boundary conditions on all sides. The
programs were written and timed in FORTRAN. The cyclic reduction and Fourier
analysis programs were ‘‘in core” and thus the times given for n larger than 127
are extrapolated in Table 1 below. The extrapolations are based on the formula
t=c,n*log, n+c,n” where ¢; and c, were determined from the actual times for
n=63 and n =127.

The FACR program was an “out of core” program. To accommodate the
large grid sizes, the large core memory (LCM) of the NCAR Control Data 7600
was used. Also, some disk storage was required. Only 2'*'—1 vectors y; were
maintained in small core memory (SCM); this permitted / cycles of reduction (see
(2.5), (2.6)). The right side of (4.2) was computed and stored in LCM. The next
2'*1—1 vectors y; were placed in SCM and the cycle was repeated. Once all the
right sides of (4.2) were computed, then the solution of (4.3) could be obtained
without significant storage manipulation. The data flow for the backsubstitution
was essentially the same as the flow for the reduction phase. A value of / =2 was
optimal for n =63 and 127, and / =3 was optimal for n =255, 511, and 1023.
Only computational times are given in Table 1. To provide perspective on these
times, they may be compared with 0.011 seconds which is required for one
iteration of successive overrelaxation (SOR) on a 63 X 63 grid. Thus, the solution
via the FACR algorithm requires roughly the same amount of time as five SOR
iterations.
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TABLE 1

7600 Computation times in seconds

Cyclic Fourier

n reduction analysis FACR
63 0.073 0.062 0.052
127 0.335 0.283 0.228
255 1.512% 1.272* 1.156
511 6.736* 5.648* 4.420
1023 29.696* 24.832* 15.977

* Extrapolated times.
TABLE 2

Asymptotic operation counts

Cyclic Reduction 3n? log, n

Fourier Analysis 2n’log, n

FACR 3n%log, log, n
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