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A DIRECT METHOD FOR THE DISCRETE SOLUTION
OF SEPARABLE ELLIPTIC EQUATIONS*

PAUL N. SWARZTRAUBERY

Abstract. This paper extends the direct method of cyclic reduction to linear systems which result
from the discretization of separable elliptic equations with Dirichlet, Neumann, or periodic boundary
conditions. For an m x n net, the operation count is proportional to mn log, n and mn storage locations
are required.

1. Introduction. In recent years increased attention has been given to direct
methods for solving linear systems which result from finite difference approxi-
mations to elliptic partial differential equations. A survey of direct methods and
a comparison with iterative methods is given by Dorr [4]. Of particular interest
are the Fourier and cyclic reduction methods. For Poisson’s equation on a
rectangle, these methods are desirable from a standpoint of both speed and
storage. For an mn net, their operation counts are proportional to mn log, n. The
storage requirements are minimal since the solution may be returned in the
storage occupied by the right side of Poisson’s equation. Hockney [5], [6] employs
the fast Fourier transform, but prefaces his algorithm with a few steps of the cyclic
reduction method due to Golub. Buneman [1] published a stable version of the
cyclic reduction algorithm with a FORTRAN computer program. This algorithm,
together with generalizations, is studied in detail by Buzbee, Golub and Nielson.
The method is extended to certain irregular regions by Buzbee et al. [2].

This paper extends the stabilized cyclic reduction algorithm to separable
elliptic equations. This extended algorithm possesses the properties of speed and
storage that have distinguished other efficient direct methods.

Section 2 contains a formal development of the algorithm for equations with
Dirichlet or Neumann boundary conditions. Several problems which occur in
the implementation of the algorithm are resolved in § 3. In §4 the method is com-
pared with matrix decomposition, and some computational results are presented.
In §5 the algorithm is developed for equations which are subject to periodic
boundary conditions. Section 6 contains a proof of a theorem which is fundamental
to the method and which is given in § 2.

The methods described in this paper are implemented in a FORTRAN sub-
routine called BLKTRI which is available from the Computing Facility at the
National Center for Atmospheric Research, Boulder, Colorado 80302.

2. Development of the algorithm. Consider the following separable elliptic
equation:
2.1) a(wx,, + bu)x, + cwx + d(v)x,, + e(v)x, + f(V)x = y(u,v), au)d@) >0,
This general form is useful in applications when a transformation to self-adjoint

form is nontrivial. The discussion is given in terms of two independent variables;
however, the method generalizes to higher dimensions. If we discretize (2.1) with
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SEPARABLE ELLIPTIC EQUATIONS 1137

Dirichlet or Neumann boundary conditions using the usual five-point scheme,
then we obtain a linear system of mn equations

2.2) Ax =y,
where A is block tridiagonal
B, C, 0 |
A4, B, G,
(2.3) A= . . . ,
An— 1 Bn— 1 Cn— 1
Y A, B, |
and
Xy Y1
X
(2.4) x = .2 , y = y.z
xn y'l

The vectors x; and y; are of length m. There is no restriction on m; however, n
must have the form 2¥ — 1. The blocks in (2.3) have order m and are of the form

(2.5) A =al,
(2.6) B,= B + b,
2.7) . Ci=cl,

where a;, b; and c; are scalars. For the discretization of (2.1) the matrix B is tri-
diagonal; however, the algorithm is algebraically valid for arbitrary B. Hence,
the method may be applied to higher-dimensional problems where B would be
block tridiagonal.

The solution is obtained using an extended cyclic reduction algorithm which

consists of the following three phases:

(i) Preprocessing phase. Results are obtained which depend only on the
matrix A. These results may be used repeatedly in phases (ii) and (iii) to
obtain additional solutions when only the right side of (2.2) is changed.

(i) Reduction phase. A sequence of linear systems is generated starting with
(2.2). At each step about half the unknown vectors x; are eliminated with
the result that each system has a block order of about half the preceding
system. This process is continued until a system in the single unknown
Vector X -1 is obtained.

(iii) Back-substitution phase. The solution vectors x; are determined by first
solving the final system generated in phase (ii) for x,«-:. Then the linear
systems are used in reverse order. Additional vectors x; are determined
from each system, using the figures for x; previously determined.

We shall begin our discussion with the reduction phase and defer phase (i)

until it becomes evident which calculations should be included in it. The first



1138 PAUL N. SWARZTRAUBER

system that we generate from (2.2) will have block order 2¥=1 — 1 and contain
the unknowns x,, X,, - -+, Xsx_,. We shall generate this system by eliminating
the unknowns x;_; and x;,, between the three block equations corresponding
to block rows i — 1, i and i + 1 of (2.2). If we multiply these rows by matrices
®,, ®;, ¥, (yet to be determined) and add, then we obtain

O A;_1X;_, + (OBi_y + ®A)x;_; + (O,C;—; + ©B; + ¥4, 1)x;
(2.8) + (@,C; + ¥Bis1)xi+1 + YiCiv1Xiv2
=0i-1 + Oy + Yiyiss-

In order to eliminate x;_, and x;, , we must select ®;, ®; and '¥; such that

2.9) ©B;_, + ®,4, =0
and
(2.10) (D,-Ci + \PiBi‘Fl = O.

Since the matrices A;, B; and C; commute, this system has an infinite number of
solutions. For simplicity we select

(2.11) ®.' = A;B;; 1,
(2.12) ®;, = —B;_1Bi+:1
(213) ‘Pi - CiBi—l'

If we substitute these into (2.8) and set

(2.14) Ai'l) = ABis14i-y,

(2.15) B = AB;+1Ci-y — Bi_1B;+1Bi + CBi_1 A+,
(2.16) CV = CB;_,Ci,

and

(2.17) W = ABii1yi-1 — Bi-1Biv1Vi + CBio1)is1,

then we obtain
.18) A + B + Cxi = oD,

With i = 2,4, ---, 2* — 2 this system has about half (2~ — 1) of the unknown
vectors x; that the original system (2.1) has. Also it is block tridiagonal and we
can again apply the process described above and obtain the next system in
2¥=2 _ | unknowns X,,Xg, -, Xzk_s. The general reduction algorithm will
now be described. It is not the final algorithm but will be used as a basis on which
to develop a stable algorithm.

Definea; = ¢, =0andfori=1,2,---,n,

(2.19) A© = g,
(2.20) B©® = B + b,
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(221) CO = ¢l
and
(2.22) PO = y,.

Then forr =0,1,---,k — 2and i = 27+1, 2.2+ 1 ... (Qk=r=1 _ pypr+1,
(2.23) Ar*D = AVB) . AD .,

(224)  BY*D = APBY,.CP 4 — BY BB + CPBY 4 AT,
(2.25) Cr*b = CPB" ,.Cl) 5

and

(2.26) P = AVBN D, — BO 5 BN,y + BY,.COY) .

Each block equation is now scaled by a matrix (G * )~ ! which is fundamental
to the algorithm and will be defined later.

(2.27) ACHD = (G )= 140+ D),
(2.28) BI+D = (Gr+v)~1Br+h,
(2.29) Ce+D = (Gr+V)=1Er+n
and

(2.30) YD = (GrF D)~ 1P D),

If we define x4 = x,-+1 = 0, then for each r we generate a block tridiagonal system
(2.31)  APx; 5 + Bx; + COx;ppr =y, i=2,2.2,-,2x"=1)-2,
which we can denote as

(2.32) ANx® =y,

For r = k — 1 the final system (2.32) contains only the vector x,x-::
(233) B(Z"k__l,)xzk-l = y(zkk—,ll).

The back-substitution phase is initiated by solving (2.33) for x,x-: and then
proceeding backward using (2.31). For r=k—-2, k—3,---,0 and i =2,
3.20,5.20 .., (2 =12,

(234) X,' = (Bir))_ l(y(ir) - Ai-')x,-_zr - Ci'r)xi+2r).

The vectors x;_,-and x; ,- on the right of (2.34) are known from a previous step
in the back-substitution.

There are two major difficulties with the algorithm (2.19) through (2.34). The
first difficulty is that as r increases the matrices A", B{” and C{" fill rapidly and
consequently storage and computation requirements become excessive. The
second difficulty is that the algorithm is unstable. The remainder of this section
will resolve these difficulties.

From (2.20) and (2.24) we observe that B{” is linear in B and B!" is a cubic
polynomial in B. Further we observe that all the matrices A, B and C{" can be
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expressed as polynomials in the single matrix B, if we require that GV * ") be a com-
mon divisor of the polynomials A%, B’ and C{". In this event, instead of storing
the matrices we may compute and store the zeros of the polynomials that rep-
resent them. These matrices will also be referred to as polynomials and all matrix
operations will be performed by using their factors. For example, the com-
putation of (B{"”)~'y{"” would be performed by solving a sequence of tridiagonal
systems.

From (2.19) through (2.29), the order of B! would triple at each step if a
common divisor G+ were not removed from A’*Y, B¢ *Y and C!* Y. Hence
3" tridiagonal systems would be solved in computing (B{”)~!y{". The order of the
polynomials, and consequently the amount of computation, is reduced as a result
of the following theorem.

THEOREM. In the algorithm (2.19) through (2.29),

(2.35) Gr+*Y = B0 B,V

i—2r-1
is a common divisor of AY*V, B¢*V and Cr*V forr=1,2,---, k — 2.
The proof of this theorem is deferred until § 6. In general, A", B{" and C{V

do not have a common divisor and therefore we define G{" = I.
Using (2.19), (2.23), (2.27) and (2.35), we find by induction that

(2.36) AP = B,

where

(2.37) W= T aq
j=i—2r+t

and similarly

(2.38) C =B,
where
i+2r—1
(2.39) y = l-ll ;.
j=

Now define B{" ! = I. Using (2.24), (2.28), (2.35), (2.36) and (2.38), we can deter-
mine B” forr =0,1,---,k —2andi=2"*12.2"*! ... (27! —1). 2" by
(2.40) BY* D = (B, B ) My 0By B B
— BP ,.BPB{) 5 + af),y"BY Y B, B ).
From the theorem we conclude that this rational function is a polynomial. These
polynomials are monic except for a scalar multiple of (—1)". The middle term on
the right has the highest order; if we subtract the order of the divisor and use
induction, then we can determine that the order of B{” is 2'*1 — 1. Since there
are 2"! — 1 polynomials for each r, the storage requirement for the zeros is
(2k + 5)2¥ + k + 5. For example, if n = 127, then k = 7 and 1164 locations are
needed.
Equations (2.36) and (2.38) enable us to write the entire algorithm in terms
of the B{” matrices which eliminate the computation and storage of A" and C{".
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Therefore, the preprocessing stage consists only of computing the zeros of the
B! polynomials using (2.40).

The reduction phase is obtained by substituting (2.36) and (2.38) into (2.26)
and using (2.30) and (2.35).

+1 -1 -1 -1 -1
YD = (B B ) B By

(241) )
— B B 3oy + yO B B 5yl 0.

The back-substitution phase is obtained by substituting (2.36) and (2.38)
into (2.34).
(242) x; = (BP) 10 — o« B xim e — YBYT Xk o).
This algorithm (2.41) and (2.42) is unstable ; however, it may be stabilized in the
following manner. If we define
(243) p?‘) = (Bi'r——zlr)— IBE':'._er)— l)— 1y(ir) ’
then substituting (2.43) into (2.41) we eliminate y{” and write the reduction phase
interms of the p. Forr = 0,1, ---, k — 2andi = 2'*,2. 27 ... (27771 = 1)
. 2r+ 1,

(2.44) Pty = a(BE )T g o + yOBE ) T gl — P,
where
(2.45) q" = (BB BV p?.

The back-substitution phase (2.42) may also be written in terms of p{” for
r=k—-1,k—2---,0andi=2,3-2",---,(2*"=-1)-2"

%o = (BB B ) — (B ) i
- ‘yf-’)(B(i';;,), )" 1x,~+ 2]

3. Implementation of the algorithm. A formal development of the algorithm
was given in the previous section; however, there remain several computational
difficulties which must be resolved before the algorithm becomes useful. In this
section we shall first discuss the calculation of the zeros of the B{” polynomials
in the preprocessing phase. Next we shall discuss the implementation of the
reduction and back-substitution phases. We shall also include some heuristic
remarks about stability and provide certain techniques for reducing the amount
of computation.

The zeros of the B{" polynomials may be determined by using a scalar
analogue of the matrix recurrence relations given in § 6 or by using (2.40). For
reasons of simplicity and economy, the use of (2.40) is preferred. One could deter-
mine the zeros by expressing the polynomials B{”, B{ ~!) in terms of their monic
basis and then using (2.40) to compute the coefficients of B *!). Then the zeros
could be determined by using current zero-finding techniques. However, both the
calculation of the coefficients and the zero-finding techniques are subject to con-
siderable error, with the result that this method is unsatisfactory for polynomials
of high order.

(2.46)
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A more satisfactory method is to express the polynomials in factored form
and to use Newton’s method to determine the zeros of B * V. Using this technique,
we have been able to determine the zeros of polynomials of order 511 using single
precision on a Control Data 7600 computer.

We shall now proceed to describe in some detail a method for determining
the zeros. We assume that the zeros of B{” have been determined for [ < r. We
then define

@3.1) F) = a9 BES D BN, B,
(32 gx) = B BB,

(33) hx) = o BY Y. BT, B o,
(3.4) F(x) = f(x) — g(x) + h(x)

and

(3.5) G(x) = B" ). \B¥ V..

From (2.40) a zero of B * ') must satisfy
(3.6) F(w)/G(w) = 0.

If we define x, to be an initial approximation to w, then Newton’s method yields
the successive approximations

G(x,)  Fx,)\ ™t
G(x,) F(x,)

When w has been determined we can then set G,(x) = (x — w)G(x) and obtain
a second zero of F(x)/G(x) by applying (3.7) with G(x) replaced by G(x). Con-
tinuing in this manner we can obtain all the zeros of F(x)/G(x). The quantity
G(x)/G(x) is given as the sum of the inverse factors of G. F(x)/F(x) may be com-
puted in the form

3.7 Xpi1 = X, + (

Fx) _ fx) elx) g0 hx) gx)

. o~ [0,

g0 e

The reason for evaluating F(x)/F(x) in this form is to avoid overflow. For higher
order polynomials, the value of f, g or h is likely to produce an overflow condition.
The calculation of f(x)/g(x) proceeds by alternately multiplying by a factor of
f(x) and dividing by a factor of g(x). From (3.1), (3.2) and (3.3) we observe that
g(x) has factors in common with f(x) and h(x), which simplifies the calculation of
f/g and h/g. If a factor of f(x), g(x), or h(x) is zero, then it can be replaced by the
product of its nonzero factors with a corresponding modification of (3.8). '

This method of computing the zeros is globally convergent only if the zeros
are real and simple. Numerical experiments indicate that this is the case unless
the matrix A deviates significantly from being diagonally dominant.

We proceed now to discuss the implementation of the reduction phase
given by (2.44) and (2.45). We assume that B{” are matrix polynomials in B. If
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in the computation of ¢” we repeatedly multiply p{” by the factors of
BY~V_\BU D). (or by the inverse factors of B{”), then the magnitude of the round-
off error is approximately multiplied by the largest modulus of the eigenvalues
of each factor (or inverse factor). The result would be that (2.44) and (2.45) would
be unstable. Therefore, in computing g7, it is necessary to multiply alternately
by the inverse of a factor of B{” and by a factor B!~} ,B",}.,. That is, q” is
obtained by defining z, = p{” and computing z; recursively by solving linear
systems of the form

(39) (B —0;l)z;+, =(B— ¢;l)z;,

where 0 is a zero of B{” and ¢, is a zero of B!, ,B"",}).,. Then ¢! is given by
zyr+1_1. Observe that 6; and ¢; should be selected so that |0; — ¢,| is as small as
possible to ensure that the largest modulus of the eigenvalues of (B — 6,I)!
- (B — ¢;I) will be close to unity and that the roundoff error (and z;) will not grow.

Because it is not possible to avoid repeated multiplication by inverse factors
in computing a term like «{(BV~,)),)" 1q{" ,. in (2.44), this term may be subject
to error. However, this error is ‘‘shifted off”” when the term is added to the
dominant term in the expression which is p{”. The technique used in the reduction
phase should also be used in the implementation of the back-substitution phase,
i.e., equation (2.46).

The preceding remarks are based mainly on a number of experimental
observations which guided the development of the algorithm to its present form.
Although the discussion may not be rigorous, we have included it in an attempt
to provide some insight into the design of (2.44) and (2.45) and into the dependence
of stability on implementation.

We close this section with an observation which results in a significant
reduction of computation.

If we define 2, by

(3.10) Ziv1 = Zj41 + 25,
then substituting (3.10) into (3.9) we obtain

When 2;, ; has been obtained from (3.11), then z;,, can be obtained from (3.10).
Hence all matrix multiplications can be avoided.

4. Operation counts and experimental results. This section contains operation
counts for the reduction and back-substitution phases of the algorithm. In addition,
the counts and storage requirements are compared with the method of matrix
decomposition which can also be used to solve the system (2.2). The algorithm
is also timed for various net sizes and the roundoff error is tabulated.

If we recall that k = log, (n + 1), then we can show that the number of
tridiagonal systems which must be solved in the reduction phase, using (2.44) and
(2.45), is

@.1) ¢, =@k —6)n+ 1)+ 2k +6
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and for the back-substitution phase, using (2.46), we obtain
4.2) ¢y =2k —5)(m+ 1)+ 2k + 5.

By combining these we obtain the total number of tridiagonal systems which
must be solved:

4.3) c= 4k — 11)(n + 1) + 4k + 11.

We now assume that the order of B is m. If we only count multiplications and
divisions, then 5m operations are required to solve a tridiagonal system. Hence,
the total number of operations is

4.4 cr = Sme.

If we neglect the computation of the eigensystem, then the operation count for
matrix decomposition is

4.5) dr = 2n’m + Snm.

Setting m = n in (4.4) and (4.5), we can develop a comparison of the operation
counts (Table 1).

TABLE 1

A comparison of operation counts for an n X n net

n Cyclic Reduction Matrix Decomposition
15 8025 7875
31 49445 64387
63 273105 519939
127 1406525 4177411
255 6909225 33487875

The storage requirements for the eigensystem used in matrix decomposition is
n? as compared to (2k — 5)2* + k + 5 locations required for the zeros of the
B{” polynomials used in cyclic reduction. For a 63 x 63 net, these numbers are
3969 and 459, respectively.

We now present experimental results which were obtained by solving
Poisson’s equation on the interior of a sphere and subject to Dirichlet boundary
conditions (Table 2). Axisymmetry was assumed, which reduced the domain to
two space variables, r (radial) and 0 (meridional). The grid is n x n, with n points
selected in both independent variables. A solution was first generated randomly
and then substituted into the finite difference equations in order to compute the
right side. The solution was then recomputed using this right side and the
algorithm. The error is the maximum absolute difference between the known and
the computed solution. The solution was of the order of magnitude one. The
times are in milliseconds and the program was run on a Control Data 7600
computer.
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TABLE 2
Computational results for a model problem

n Preprocess Solution Error

15 28 12 7.99 x 10714
31 135 54 295 x 10713
63 621 259 3.63 x 10712
127 2807 1214 193 x 10710

5. Periodic boundary conditions. In this section we discuss the solution of
linear systems which result from the descretization of separable elliptic equations
which are subject to periodic boundary conditions. These systems are of the form

(5.1)

Ax =y,

where A4, has the form

(5.2)

A =

e A, B,

We shall assume that n has the form n = 2* where k is any natural number. This
form differs from the form of n given in § 2. The vectors x, y and the matrices
A;, B; and C; have the same form as in (2.4) through (2.7). The cyclic reduction
algorithm can be adapted to solve (5.1). Proceeding as in (2.8) through (2.17),

we compute fori = 2,4, ..., 2k — 2,

(5-3) Agl) = AiBi+1Ai—1’

(5-4) B(il) = AiBi+1Ci—1 - Bi—lBiBH-l + CiBi—lAH-l’
(5-5) Cﬁ'l) = CiBi— 1Ci+1 s

(5.6) W = ABi+1Yi—-1 — Bi_1Bi11yi + CiBi_ 1Y+,
We then eliminate x, and x,._, between the first and last two equations of (5.1)
and obtain

(57) A(zlk) = AszlAzk_ 15

(58) B(zlk) = Asz1C2k_1 - sz_lekBl + Csz2k_1A1,
(59) C(zlk) . Cszzk_ ICI

and

(5.10) Y3 = AgeB1yax_y — By_1Byyyx + CoxBoe_1y;.
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We observe that these equations may be obtained from (5.3) through (5.6) by
setting i = 2* and evaluating the subscripts modulo 2*. This result holds through-
out the development of the algorithm and enables us to write the final algorithm
which corresponds to (2.40), (2.44), (2.45) and (2.46). The preprocessing phase
consists of computing the roots of the B{” polynomials for r = 0,1,2,---, k — 1
and i =2"*1,2.201 3.0 L. 0k
BY+Y = (BUSY BUSY )T @y 2B, By
5.11 ' ' L e l
G0 _ BY,BOB, + o),y "BY D BYSY, BY,).

The reduction phase consists of computing p for r=0,1,---, k — 1 and
i = 2r+1 2.2r+1’3‘2r+1’ cee, 2k'

(512) BT = aBYR ) o + yPBYY ) gl —
where
(5.13) g = (BY)"'BY A B pl.

The back-substitution phase consists of computing x; forr = k,k — 1, ---, 0 and
i=2,3.2,5.2, ..., 2k —1). 2.
xi = (BY)™'BYTY B0 [p — o (BIP-) i

- 'Ys‘r)(B;r;zpf D)7 Xy 2]
The first step of this back-substitution phase differs from that given in § 2. With
r = k then (5.14) reduces to the single equation

(5.15) @PBE=D + BY + yRBRV)xpn = B VB DpP.

(5.14)

Hence in order to determine x,x, the roots of the polynomial on the left-hand
side must be computed. This can be simplified somewhat since it can be shown
from (5.11) that B} has a factor of B}, }’ which can then be cancelled from (5.15).

6. Proof of the theorem in § 2. In this section we shall prove the theorem
including (2.35) given in §2. We shall also develop a set of recurrence relations
which could be used in place of (2.40) to compute the B{” polynomials.

If we set r = 0 in (2.23) through (2.29) we obtain

(6.1) AP = aa,_ B9,

(6.2) CM = cic;41B2,,

6.3) BY =aq,,,¢;B®, — B?9,BOB®, + ac;,_,B%,
and

(64) GV =1.

If we continue the algorithm for r = 1, 2, then a pattern emerges and we are
encouraged to look for a recurrence of the form

(6.5) AT = af TUB 5,

©6) IV =3B,
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67) Br*D = POBY ,, + (— 1y * 1 BOBY 1B, + QVBY) 5
(638) Gr* Y = BrD BIY.

The significance of this form is that no factorization by G{"* " is required as it is
in (2.40). We shall prove by induction that a solution of this form exists and
determine the scalars "1, y*1 and the matrices P{” and Q. We shall also
show that B ,.Bf),. is a factor common to AY*?, B¢*? and C¢*?, which
proves the theorem. For r = 0, we see that (6.1) through (6.4) has the desired
form (6.5) through (6.8) if we define

(6.9) o) = aa;_y,

(6.10) YD = ciciyhq,

(6.11) PO =a;, ¢l
and

6.12) 09 = auc;_,I.

Equation (6.4) also has the desired form if we define B{" ! = I.
We shall now assume that (6.5) through (6.8) are valid for r + 1 and show
that they are valid for r + 2. From (2.23), (2.24) and (2.25) we determine that

(6.13) Ar+® = gt BW  B" B,
(6.14) Crvd =y Dy B ) B, B,
and
BI* =l ol VB o By B
+ o O B o B 5 5 BE
(6.15) — [P 5 iB" 55 + (=1 1B, 0B 5 5B 5 + Q5B ]

(r) R(r) +11(0) p( (r)
' [Pir Bir—zr + (= 1)' Bi )Bi'—)Z’Bi’+ 2r + Qg")Bf"l 2r
(r) (r) +1p(0) pr) (r) (r) (
’ [ i+2’+1Bir+2' + (_ 1)' Bi+2'Bi+2'Bir+3-2' + ir+2r+lBir+)3«2r]'

We note that 472 and C{*? have the common factor GY*? = B B,
and hence we shall try to arrange (6.15) so that B{"*?) also has such a factor.

BY*D = BY el VL — POQI 5 0B 5 o B
+ B YDAl — QPP L )BY 5 B
- Bgr—) 2rBf'r+) 2r
(6.16) — BY,.BY,.00,...Q"BIY,,
- Bgr—) 2*B$2 2r( - 1)'+ IBS‘?L)zw 1B§r+) 3~2rP§r)Bf'r—+2lr)+ 1
— BB, (— 17 1B, BY 0 OVBIY.,

(r) (r) _1yt+t2RO0O)pr+1) (r+1)
+ B, B, (= 1) "B VB, By

(r) (r) R(r+1)
Pl'+2r+lPi Bi-zr*l
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Now the only terms in (6.16) which do not have G"*? = B{" ,,B"),. as a
factor are the first two on the right side. We shall show later, however, that the
following factorization can be made:

(r+1) Lr+1)1 _ plrynr — RR
(6.17) o ey = PO 5 = RPBY,,
and

(r+1),(r+1) _ N pr — Q)R
(6.18) oYl = QPP i =SB0

where R and S{” are yet to be determined. In this event A" 2, B"*? and C{¢*?
have the common divisor G¥*? = B{" ,,B"),., and using (2.27), (2.28) and (2.29)
we obtain the desired form (6.5), (6.6) and (6.7) at r + 2:

(r+2) _ (r+2)Rr+1)
(6.19) AT — g+ DRIED |
(r+2) _ ,r+2)p(r+1)
(6.20) CU+D = yr+2preD
and
(621) . BU*D = Pr*VBItD. 4 (1Y 2BOBIEY. BN, + QU VB,
where
(6.22) O(i_r+2) — O‘E-r+l)°‘$r,+21r)+1,
(r+2) _ +1 +1
(6.23) YD gyt
and

(624)  P*Y = RVBM 5, + (— 1By 1BY) 3.0 PO — PY) oy PO,
(625) Q§r+l) = SE"BE'_)}F + (— 1)’B$~0_)2r+1B5~r4)3.2rQ$r) - Q?jz,le?‘).

We now proceed to prove by induction that the factorizations (6.17) and
(6.18) can be made. This is true for r = 0 since by (6.9) through (6.12) plus (6.22)
and (6.23) we have the left sides of (6.17) and (6.18) are zero. Hence

(6.26) R® =0
and
(6.27) S© = 0.

We shall assume the factorization is true for r and show it is true for r + 1. Using
(6.24) and (6.25) we obtain

(r+2) r+2)y _ (r+1)Nn(r+1)
o I-PrihQ

+2r+2Yi i+2r+2
628) = o2 T — [ROB e + (— 1By By PO — PO, P
(872 2B o + (B, B0 5 = Q1@ o
or :
L~ PO,
= B P PO O

(6.29) — B{) 3., RVB!) 5.8 50

( +1pn(0
+ Ssrl 2r+2P,'r)(—1)r B£~+)2r+1B$-r..).2rB£'rls.2r (Cont.)
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+ 8%, :PYPY),, . .BY,.
+ RO 3r+20 3041 B 3.2
+ ROQN oo~ 1Y 1B+ B B 5
+ (= 1)YBQ 3 POQY s o= 1) By 1B 5r Bl 5.0
+ (= 1YBQ e PYQM 5200 51 B 550
+ (= 1YB{Q5r+: PVQN 5002 (rizrﬂBﬂzr-

Using (6.17), (6.18), (6.22) and (6.23) we can determine that the sum of the first
two terms on the right side of (6.29) is

(630) S(,rizr ZP(r)Q(+2r+l +3 o+ R(r)Q(Jrzwz 2r+lB§rl2r,
and since

(r+1) (r) (r) r+1n(0 (r) (r) r
(631) BH—Z"+1 P1+2"+’Bt+2"+( ) B+2"*1B1+2"Bl+3 2" x+2"*lBl+3 -2r
we see that (6.29) has the form
(632) a(r +22r)+ ,))(r+ 2)1 Pi‘r + I)Q}r++2lr)+ R(r+ I)BY: 1r)+ .

i+

where

(633)  RY*D = ROQY 5os + (= 17B©Qy 1 Qe P + 80050 aPY.
A similar proof of the factorization (6.18) yields

(6.34) Srth — §Wpn L+ (=1YB2, P, 200 + R, 000,

Tl'lis completes the proof of the theorem. The B{” polynomials given by (2.40)
can also be computed by (6.21) using (6.24), (6.25), (6.33) and (6.34) together with
initial polynomials (2.20), (6.11), (6.12), (6.26) and (6.27). From these recurrence
relations we can determine that for r > 0 the order of the B{” polynomials is
271 _ 1, the order of P, Q! is 2"*! — 2, and the order of R{", S is 2" *! — 3.

In general, B,V ,B7), is not the greatest common divisor of A¥*?",
Bt and CU* V. If the linear system results from the discretization of Poisson’s
equation in Cartesian coordinates, then additional’common divisors exist. How-
ever, numerical experiments have shown that for Poisson’s equation in spherical

coordinates B" ), B ")), is the greatest common divisor.

Acknowledgments. I wish to thank Professor G. H. Golub for his helpful
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REFERENCES

[1] O. BUNEMAN, A compact non-iterative Poisson solver, Rep. 294, Stanford University Institute for
Plasma Research, Stanford, California, 1969.

[2] B. L. Buzseg, F. W. DORR, J. A. GEORGE AND G. H. GoLUB, The direct solution of the discrete
Poisson equation on irregular regions, this Journal, 8 (1971), pp. 722-736.

, G. H. GoLus AND C. W. NIELSON, On direct methods for solving Poisson’s equations, this

Journal, 7 (1970), pp. 627-656.

(3]




1150 PAUL N. SWARZTRAUBER

[4] F. W. DoORR, The direct solution of the discrete Poisson equation on a rectangle, SIAM Rev., 12
(1970), pp. 248-263.

[5] R. W. HOCKNEY, 4 fast direct solution of Poisson’s equation using Fourier analysis, J. Assoc. Comput.
Mach., 8 (1965), pp. 95-113.

[6] , The potential calculation and some applications, Methods in Computational Physics,
vol. 9, B. Adler, S. Fernback and M. Rotenberg, eds., Academic Press, New York and
London, 1969, pp. 136-211.




