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Abstract

Gordon methods for transfinite interpolation may be extended so as to allow interpolation of
derivative information at arbitrary mesh lines. These results are reviewed and applications and
examples are presented. © 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

This paper discusses some current experience with the problem of constructing a suitable
surface which interpolates a given rectangular mesh in R*. The problem is of central
importance to the field of geometric modeling and has numerous application. Instead
of building surfaces as conglomerates of individual patches, as was and still is common
practice, Gordon (1968, 1969a, 1969b), introduced a technique whereby certain methods
of univariate polynomial spline interpolation are extended so as to allow a rectangular
mesh to be interpolated as a single surface. For a number reasons, which include the
inability to assign derivative values at arbitrary mesh points, reliance on a scheme of
cardinal interpolation, and lack of local control, Gordon methods seem to have fallen by the
wayside. Although the Gordon methods dispense with the difficulty of having to specify
large amounts of data for each surface patch, they provide no good methods to specify this
same data should it be essential.

The present papers builds on the results of (Walker, 1998) in which the Gordon methods
are extended so as to avoid some disadvantage. In particular it is shown in (Walker,
1998) that any two univariate interpolation schemes may be extended to a bivariate mesh
interpolation method, according to the method set out by Gordon. In the case of univariate
schemes based on cardinal polynomial blending functions of odd degree, the result is
known and appears in (Gordon, 1968). The general result is very simply proved. and,
although perhaps part of the folklore of CAGD, it has not appear and is important in that
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it opens the door to an investigation of bivariate interpolation schemes based on various
univariate, perhaps non-polynomial, methods.

Also in (Walker, 1998), it was shown that with the extended Gordon methods it is
possible to construct surfaces which interpolate not only the given mesh but also prescribed
derivatives of arbitrary order in directions across mesh lines. Unlike the previous, this result
has no reflection in any of the literature surrounding Gordon’s work

In this paper, we report on experience applying the above results. In Section 2, definitions
and notation are introduced together with a review of the results in (Walker, 1998) for
the sake of completeness. In Section 3, two applications are discussed, assigning tangent
values across mesh lines and the G* attachment of one surface along a mesh line to a curve
in another.

2. Preliminaries

Definition 1. Given strictly increasing sequences of real numbers ug < u| < --- < u,, and
Vg <V << Uy, if

n n
U= Jlwo, uml x {v;) and Vv ={_Jtu} x [vo, va],
j=0 i=0

we refer to the set U U V as a domain mesh. A rectangular parametric mesh is a function
f:U UV — R3. For such a parametric mesh an interpolating surface is considered to be
an extension of f to the rectangle [ug, #m] x [vo, vy] — namely, a function

q: [0, um] X [vg, vy] — R? such that qlxuy =f.
Definition 2. Given a strictly increasing sequence fy < t; < --- < f,, an associated uni-

variate interpolation scheme is a function h: [z, 7,] x (R3)™! 5 R3 with the property
that

h(t;, Py, Pr,....,P)=PF, 0<i<r.

Given a parametric mesh f: U U V — R3 and univariate interpolation schemes
hy:[uo, um] x (R*)" > R and  hy:[v,, v,] x (RY)" — R,

define extensions q:[ug, um] x [vg, v,] — R3, q2: [uo, um] x [vo, vy] — R3, and
q3:[uo, um] x [vo, va]l — R3 by

qi(u,v)=h (u,f(uo, V), ..., f(um, u)),

qQ(u, v) =ho(v, f((u, vo), ..., flu, vp)), and
Q3 (u, v) =ha (v, q) (u, v0), ... q) (1, vy)),
qa(u, v) =hy(u, q2(uq, v),....q2Un, v)).
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Theorem 3. If a:{ug, uml x [vo, vn] — R? and B:luo, um] x [vo; v,] — R3 are
functions with the property that a(u, v) + B(u,v) =1, then the function q:[ug, unm] X
[v0, vn] — R3 defined by

q=qi +q — (xq3 + Bq4)
interpolates the mesh £:U UV — R3.

In the context of Theorem 3, suppose we are given an integer &, a mesh point (x,, v),
0 < r < m, aneighborhood W of (u,, v) together with functions

o WnN{u} x [vo,v,,]—->R3, 1<i<k,

which define desired derivatives across the mesh line {&,} x {vg, v,]. For
¥ : [0, Um] X [v0, ve] = [v0, va] x (R?)"

defined by
¥u, v) = (u, g, v), ..., fum, v)),

we then have the following theorem.

Theorem 4. If the surface q = q) + q2 — (xq3 + BqQ4) is such that:
o a(u, V) = l,for (u,v) e W,
o ('h(X)/u" ) |x=p(u,,v) = 0i(v), for 1 i <k, 0<r <m, and (u,,v) € W N
({u,} x [vo, va]),
then
d'q
Fw (r,v)=0;@), for (u,v) €W N ({u} x [vo, val).

3. Applications and examples

Using preceding results, if f:1/ U V — R3 is a parametric mesh as described in
Definition 1, it is possible to construct an interpolating surface q whose derivatives across a
sequence of parallel mesh lines interpolate prescribed values. In the case of a single mesh
line f({u,} % [vo, v,]), 0 < r < m, and some choice of a positive integer k, it is desired
to be able to assign derivatives (3'q/du’)(u,, v), vo < v < v, and 1 < i < k, according
to the values of specified functions ¢ : [vg, va] — R?, where 0 (v;) = (3'f/du’) (u,, v)),
for 0 < j < n. The task of constructing the surface q, according to the requirements of
Theorem 4, then reduces to that of choosing an appropriate univariate interpolation method.
In the examples below, Figs. 1 and 2, the mesh being interpolated consists, from front to
back, of a trigonometric curve, an exponential curve, a straight line, and a parabola. From
left to right connecting curves are polynomial splines which satisfy (3f/9u)(ug, v;) =
(1,0,0), 0 < j <5, in the case of Fig. 1 and (3f/du)(uo, v;) = (2,0,3), 0 < j <5, for
Fig. 2. Choosing k = 1, for Figs. 1 and 2, manipulation of the derivatives (dq/du)(ug, v)
was achieved by setting e = 1 and choosing o : [vg, v,] — R? so that o(v) =(1,0,0) and
o(v) = (2,0, 3), respectively. The univariate interpolation method £, was chosen to be a
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Fig. 1. The red curves front to back are: a trigonometric curve, an exponential curve, a straight line,
and a parabola. From left to right they are polynomial splines. The blue surface interpolates the red
mesh in such a way that partial derivatives in the x direction along the front edge all have value
(1,0,0).

Fig. 2. The same as Fig. 1 with the exception that partial derivatives in the x direction across the
leading edge now have value (2, 0, 3).

form of Catmull-Rom interpolation consisting of a B-spline blending local interpolating
polynomial functions each possessing derivatives equal to o (v) at the points (1o, v). The
interpolation method 4, was likewise chosen to be Catmull-Rom interpolation—but with
no restrictions on derivatives of local interpolating functions.
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Fig. 3. A cylinder with radius scalloped with trigonometric variation together with a mesh of curves
to guide the attachment of another such surface.

3.1. Attaching surfaces

The techniques above may be used to attach two parametric surfaces with G* continuity
in such a way that one is attached along a mesh line f({x,} x [vg, v,]), 0 < r <m, to
a curve in another. Following Gregory (1988), let D be a compact region of the plane
homeomorphic to a closed disk, p: D — R? be a C* continuous parametric surface,
and & :[a,b] — D be a C* continuous curve in the domain of p. Given a domain mesh
U UV, as in Definition 1, let A : [vg, vs] = [a, b] be a C¥ continuous change of variable
function with A'(s) # 0, for s € [vy, v,], and define E; : [vg, vs] = D by E; = £ o &. For
0<r<m, let Ex:[vog, vs] = U UV be defined by E»(s) = (#,,s). For W a suitable
neighborhood of Ez([vy, va]), let @ : W — R? be a CF diffeomorphism such that for
s € [vo, vy, Er(s) = @(Ea(s)). According to (Gregory, 1988) Lemma 5.2, a surface
q:[1g, um) x [vo, vn] — R3 is connected with G* continuity to the surface p: D — R so
that the mesh line q(E>(s)) is joined to the curve p(@(E(s))), provided that for derivatives
in the wu-direction,

d'q00

_ 'ple(x)
ou' N /

- 0<i <k
x=Ez(s) du

x=E>(s)
In order to guarantee that this condition is satisfied, let q be as constructed in Theorem 4

and choose the univariate interpolation method h; so that
3'hy (x)

aut

_ 'plex)
T Buf

x=¢(Ez(s)) x=@(Ea(s))

In Figs. 3 and 4, we see how two cylinders, each scalloped according to a trigonometric
variation of the radius, may be attached. In Fig. 5 a cylinder is attached to the example
occurring in Fig. 2. In each of these examples, the univariate interpolation scheme h; was
chosen to consist of a Hermite segment in the region of attachment and Catmull-Rom
interpolatory segments elsewhere; the interpolation scheme hy was chosen to consist only

of Catmull-Rom segments.
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Fig. 4. A second scalloped cylinder attached with G continuity to the first in such a way that it
interpolates the curves in Fig. 3.

Fig. 5. A cylinder attached with G continuity to the surface of Fig. 2.
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