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In two earlier papers* in this series, the extent to which a square-integra-
ble function and ils Fourier transform can be simullaneously concentrated
in their respective domains was considered in detail. The present paper
generalizes much of that work to functions of many variables.

In treating the case of functions of two variables whose Fourier transforms
vanish outside a circle in the two-dimensional frequency plane, we are led
to consider the integral equation

volz) = f Tulczy) v/ezy o (y)dy. (i)

It 4s shown that the solutions are also the bounded eigenfunctions of the
differential equation

2 1 _ Ar?
(1——.'tcz)d—‘a-'"!‘@-i-(74—62-1'-24-4 sz)qo=0, (77)

dz2 T dax

a generalization of the equation for the prolate spheroidal wave functions.
The functions ¢ (called ‘“‘generalized prolate spheroidal functions”) and the
eigenvalues of both (i) and (i7) are studied in detail here, and both analytic
and numerical results are presented.

Other results include a general perturbation scheme for differential equa-
tions and the reduction to two dimensions of the case of functions of D > 2
variables restricted in frequency to the D sphere.

* See Refs. 1 and 2.
3009
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[. INTRODUCTION

In two earlier papers'” in this series, the extent to which a square-in-
tegrable function and its Fourier transform can be simultaneously con-
centrated was considered in detail. In that analysis, the eigenfunctions
and eigenvalues of the finite Fourier transform played a key role. These
functions, defined for | 2 | = 1 by the integral equation

1

ats(@) = [ ()
can be continued analytically throughout the complex plane. They
possess a number of special properties that make them most useful for
the study of bandlimited functions. The functions are complete in the
class of bandlimited functions; they are orthogonal in (—1,1) and also
in (— =, ); the y; are also the eigenfunctions of the integral equation

L ['sine(z — y)
A (x) = [l W Y(y)dy ®

= < 2
A_Z‘rrlal

whose kernel is positive definite; ¢, , the eigenfunction of (2) belonging
to the largest eigenvalue, is in an appropriate sense most concentrated
among bandlimited functions of given energy. These and other proper-
ties are discussed in detail in Refs. 1 and 2. Some familiarity with these
papers will be assumed in the following.

In the present paper we consider certain aspects of the generalization
of this earlier work to functions of many variables. Many of the structural
results of Refs. 1 and 2 (as was pointed out there) depend only on the
fact that the operator defined by the right of (2) is completely con-
tinuous and positive definite. The generalizations to D dimensions are
perfectly straightforward: we comment briefly on some of them in See-
tion II, but do not belabor them. Our main concern here is with details
of the explicit solution of some of the integral equations that are multi-
dimensional generalizations of (1). An unexpected dividend of this work
is that one of these equations is of interest in the theory of masers.

In Section ITI, we point out some general features of the integral equa-
tions to be considered. Section IV treats the case of functions of two
variables whose Fourier transforms vanish outside a circle in the two-
dimensional frequency plane. The analog of (1) is shown to be the in-
tegral equation
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Yo (r) = f Ty(er )V are()dr, 0 <1< 1. (3)

This integral equation also deseribes the modes in a maser interferometer
with confocal spherical mirrors of circular cross section (Ref. 3, p. 488).
The eigenfunctions of (3) are shown to be the bounded solutions of

2 1 2
(1= 3—;@ — oy (x — ¢’ — = qN) e=0 (4)

U de z?

that vanish at @ = 0.

We call the solutions of (4) generalized prolate spheroidal functions.
Seetion V is devoted to their study: 5.1 treats the case of small ¢; 5.2
and 5.3 treat various asymptotic cases.*

In Section VI, the results of Section V are used to discuss the eigen-
values of (3). Various asymptotic forms for these quantities are derived.

Section VII treats the case of functions of D > 2 variables whose
Fourier transforms vanish outside a sphere in the D-dimensional fre-
quency space. It is shown that this more general problem can be reduced
completely to the case already treated in Sections IV, V and VI.

Finally, in Section VIII we present some numerical detail about some
of the eigenfunctions and eigenvalues encountered. Applications of these
results will be presented elsewhere.”

1I. GENERALIZATIONS OF EARLIER WORK

We denote points in Euclidean space of D) dimensions, Ep , by vectors,
X = (1,22, -+, rn). A square-integrable function of D variables,
f(x), is said to be R-limited if it can be represented as a Fourier integral

fx) = (2m)" jn exp (ix-y)F(y)dy (5)

over the bounded region R. Here x-y = > ay; is the usual scalar
product and we write dy for I1 dy: . 1f f is of total energy A, then by
Parseval’s theorem

A= [ 150 Far = 207 [ 17 Fay,

whereas the energy of f in the bounded region S is

* Qome of the results of Seetions IV and V have been developed independently
by J. C. Huertley," who was led to consider (3) from its laser applications.
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[[176) Fa
= [0 ™ [ dz exp (20 F () f dy exp (—iz-y)F(y)

= @0 [ a [ ay Kulx - F@F()
where
Ks(x —y) = (2m)7" j;e)cp liz- (x — y)ldz (6)
and an overbar denotes complex conjugate. The largest fraction of energy

that an R-limited function can have in the region S is therefore the
maximum value of the fraction

fkdmj;dy Kq(x — y)F(x)F'(y)/j; | F(y) ['dy

taken over all functions F' square-integrable through . This maximum
is the largest eigenvalue of the integral equation

(x) = f Ks(x — YW(y)dy, x€ R, @)

which is the analog of (2).
The kernel (6) of (7) is positive definite, since

fn dz f dy Ks(x — y)f(x)F(y)

= (2m)7" j;dz j;drc exp (iz-x)f(x) : >0

whenever

fR | /(x) [fdz > 0.

By well-known theorems (see Ref. 4, Chap. 6), the eigenvalues of (7)
are real and positive and the eigenfunctions, orthogonal on R, are ecom-
plete in the class of functions square-integrable in 2. A ecomplete dis-
cussion of the simultaneous concentration of square-integrable funetions
in %, and their Fourier transforms can be given in terms of the largest
eigenvalue of (7) as in Ref. 2, Theorem 2.

The right member of (7) can be used to extend the domain of defini-
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tion of ¥. We define
1
v = [ Kelx = yw@dy,  x € Eo.

Then for two different eigenfunetions of (7)

[ w@wmd

1 - _
= — d..vf dy :(x)¢;(y) f dz Kg(z — x)Ks(z — ¥).
AAj R R Ep
To evaluate the innermost integral here, we observe from (6) that Kgis
given as a Fourier transform, so that from Parseval’s theorem,

Ks(z — X)KS(Z - Y)dz

Ep
= (2m)7" fs du exp [—iu-(x — y)] = Ks(x — y).
One then finds

[ wtopmae = o [ dew [ dy Batx = 9)0)

_ ;\_ifnd.v Wi (x)§,(x).

The orthogonality of the y; over I thus implies orthogonality over Ep
as well.

Other results of the one-dimensional case extend as easily to D di-
mensions, but we do not dwell further here on this general structure.

III. SYMMETRY CONSIDERATIONS

In what follows, we shall be concerned with the explicit solution of a
number of instances of (7). Considerable simplification occurs when the
region R is symmetric, i.e., when x € I implies —x € R,and when Sisa
scaled version of B. We write S = ¢R where x € ¢R if and only if x/c € R
with ¢ a positive constant. We restriet our attention henceforth to this
case.

Somewhat simpler than (7) is the integral equation

wp(x) = [ esp Gex-yu(ydy,  x€R (®)
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which is a natural generalization of (1). We shall show in this section
that solution of this equation is completely equivalent to solution of (7)
when the symmetries just discussed maintain. We shall acecordingly here-
after take (8) as our equation of fundamental concern,

TFrom the symmetry of R, it readily follows that if ¥(x) is a solution of
(8), so also is ¢(—x), so that both ¢.(x) = ¢(x) 4+ ¢¥(—x) and
Yo(x) = ¢(x) — ¥(—x) are solutions as well. The ergenfunctions of (8)
can be chosen to be either even or odd functions of x.

The complex conjugate of (8) is

& (x) = [ exp (—iex-yIWIdy, xER 9

Multiply (8) by ¢(x) and integrate over R. Multiply (9) by ¢(x) and
integrate over R. Combining these equations, one finds on using the sym-
metry of R that

(a + &) f V()P (x)dz

. f du f dy exp (iex-9)F () [ (y) = p(—y)l.

If then ¢ is even, by choosing the negative sign in this equation, one
obtains @« — & = 0, whereas if ¢ is odd, by choosing the plus sign, one
finds @ + & = 0. The eigenvalues of (8) associated with even eigenfunctions
are real: the eigenvalues of (8) associated with odd eigenfunctions are pure
imaginary. It follows then that (8) is equivalent to the pair of equations

Boe(x) = Lcos ex-y¢.(y)dy (10)

Buljba(x) = j;sm CX'Yxt’/o(Y)dy (11)

in which 8, and g, are real. These equations have real symmetric kernels
and we can fall back on the extensive theory in the literature treating
such equations. We observe that the eigenfunctions of (10) must be
even and that 8, = 0 cannot be an eigenvalue of this equation, for by
Fourier theory the only even square-integrable function in B for which

f cosex-yy(y)dy =0, XxX€ER
R

isy(y) = 0. It follows then from the theorem on page 234 of Ref. 4 that
the eigenfunctions of (10) are complete in the class of even functions
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square-integrable in R. A similar argument shows that the solutions of
(11) are complete in the class of odd functions square-integrable in K.
The solutions of (10) can be chosen real and orthogonal in R, as can the
solutions of (11). Solutions of (10) are automatically orthogonal to solu-
tions of (11) by symmetry.

We have now shown that the solutions of (8) are complete in the class
of functions square-integrable in R. The eigenfunctions ean be chosen
real, orthogonal, and either even (in which case the eigenvalue « is real)
or odd (in which case a is pure imaginary). We henceforth assume the
¥ so chosen.

By iterating (8), one finds that the ¢ also satisfy

I

A (x) f K.(x — y)¢(y)dy (12)

A = (%r)n | (13)

K.(x) = (%_)DLexp (icz-x) dz = (2m)7" j;k e dz  (14)

with

which is (7) in slightly altered notation and is the D-dimensional ana-
log of (2). Sinee the solutions ¢ of (8) are complete, it follows that they
are also a complete set of solutions of (12). As was asserted, to solve (12),
it suffices to solve (8).

The eigenfunctions of (8) can be extended by demanding that equa-
tion to hold for all x € Ep . It is then easy to show that the extended ¢
are orthogonal in E, and that they are complete in the class of eR-limited
functions.

1IV. THE CASE D = 2, R A CIRCLE

We now treat in detail the equation
ap (o, ;) = f e IR, () dyndy (15)
R

where R is the unit circle y,° 4+ " =< 1. Change to polar coordinates
gives

1 2T
a“.{/(?‘,a) _ /:] d?" ri j‘; del elcrr" cos (B—B')“b(rl’ﬂ.ﬁ)
(16)

2T

* 1
> ime™ f dr’ v’ (err’) do’ e y(r' ")
0 0

—0
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on making the usual Bessel function expansion. Here ¢ (r,8) is exhibited
as a Fourier series in 6. A simple argument then gives for the eigenfune-
tions of (15) and their corresponding eigenvalues

'f’u,n(rve) = Ra.n('r), Qo n — 27".851,71

cos N6,
sin N9,

N=1,2..., n=0012...

Yrn(r,0) = Rya(r)

where
1
— ! ’ I3 ! < <
By B (r) fo Jylerr )Ry (r)rdr’y,  0=r =1, (18)

n, N =0,12....

All the eigenvalues of (15), except possibly the a, . have at least a two-
fold degeneracy inherited from the symmetry of the circle.
Our task now is to study the integral equation

1
BR(r) = fo Jnlerr YR ar, 0<r

1A
—

It is convenient to make the substitutions
v =B, o(r) = VrR(r) (19)

to obtain the symmetric equation

yeolr) = j: Jnlerr’) Aerr'e (v) dr’, 0sr= 1. (20)

Note that ¢(0) = 0. We shall show that the eigenfunctions gx,.(r) of
(20) can be obtained as the solution of a Sturm-Liouville differential

equation.
Let

Ky(z) = Jx(2)Vz (21)
and let the operator M be defined by

@ = [ Knlemy iy

Denote by L. the differential operator

_d . . d i—NZ_“)
Lz—a(l x)d—x+(T ¢ ).



PROLATE SPHEROIDAL WAVE FUNCTIONS — 1V 3017
Consider now

(M Ly (x)

_/;l Ky (cxy) [ (1 - J)dy

i __ 2 N
+ (“ ygN - C'yg):‘ v(y)dy

(K (czy) (1 — "W () — cx(l — ) (22)

Ky Ccanp@lieo + [ $) [cz:f(l — DKy (ezy)

1 2
— 2cayK’ (cay) + (4 yzN - czyz) Klv(cxy):l dy

where the right member is obtained by integration by parts. Here primes
denote differentiation of the function in question with respect to its
argument. The integrated expression vanishes if ¢(0) = 0, since from
(21), Kx(0) = 0. Also from (21) and the differential equation satisfied
by Bessel functions, one has the identity

Ky"(exy) = —(l + L__‘Y_) Kx(cxy). (23)

cirty?

Substitute this expression in (22) to yield
1

(M Iy](x) = f v () [—2cayK' (cxy)
0

+ (3 = N 4 &Yy — & = Fy)K(eay)ldy, (24)
¢(0) = 0.

On the other hand, by direct caleulation and use of (23), one has

Il

1
[LMyl(x) = L, j; Kx(caxy)y(y)dy

1
f ¥(y) [(1 — )Y Ky (exy) — 2acyKy' (cxy)
0
+ (i _qN‘ — c'“‘;vg) KN(C-TII)] dy
1
_ f #J(IU) [_23"{‘”1\:‘-’((3.”) + {—(1 —_ :];2)(32?}'2

1 _ N*? 1 _ N
.(1 + 9]\;) + 2 N szz} I(N(czy)]dy

ity z*
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1
= fo Y [—2cyKy'(cay) + (2 — N* + 2y

— 'z’ — ') Ky (eay)ldy
= [MLy)(z)
on comparison with (24),

Let € be the class of functions square-integrable in (0,1) and twice
differentiable there that vanish at the origin. Operating on functions in
(', the operators M and L commute. It follows that solutions of

Lap(z) = —xe(2)

in C are also solutions of (20). Consequently, we next turn our attention
to the differential equation.

2 1 _ 2
(1 —a:z)g—;— 23:3—:—{—(4 ng —czmz—i—x)w =0. (25)

V. GENERALIZED PROLATE SPHEROIDAL FUNCTIONS

When N = 3 in (25), this equation reduces to the equation for pro-
late spheroidal functions of order zero. We shall refer to bounded solu-
tions of (25) for arbitrary values of N as generalized prolate spheroidal
functions, These functions are similar in many respects to prolate sphe-
roidal funetions, as the development that follows shows. Bounded solu-
tions of (25) exist only for discrete values of x, say xy..,n = 0,1,2, ...
which we label so that xy. = xv1 = xv2 = ... . We denote the corre-

sponding eigenfunctions by e .(2).

5.1 Expansions tn Powers of ¢

Consider first the case when ¢ = 0. Substitution of the series

-]

Y = ZD:a,-J:

a+2j

into (25) shows that we must have « = 3 = N. If N # 0, the negative
sign leads to solutions having a singularity at + = 0. If N = 0, a second
solution can be found, but it has a logarithmic singularity at x = 0.
We must have therefore

a=3+N.
The coefficients are given by the recurrence

— — a (@ + 27)(a+ 2j+ 1) — x
MV e+ 2+ e+ 2+ D)+ - N
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For large j, a;/a; — 1, so unless the series terminates, this solution
becomes unbounded as x — 1. Choosing x to terminate the series at
2T we have

£
x = xva(0) = (N +2r+3) (N + 2n+ 1) (26)

for the eigenvalues of (25) when ¢ = 0. The series solution now becomes
(when a, is set equal to unity)*

(74 T‘\""(ﬂ') - .'l'-w“r%RN,n(m)

Ry.(x) =F(—n,n+ N+ 1;N 4+ 1; z*)

(27)

where

o _ ab z ala + Db(b + 1) 2
F(a,b,c,z)—l—l—-c—ﬁJr CESY) 2—!+

is the usual Gaussian hypergeometric function. The polynomial Ry .(z) is
readily expressed in terms of Jacobi polynomials P,®(z) (Ref. 5,
Chap. IV). Adopting the notation of Szegé, we have

-1
RN.H(I) = (n —; N) Pn(N'D)(l - 23:2)_ (28)
From (27), (28) and the known properties of the Jacobi polynomials,
one finds
—1
ren) = =07 (" V) (29)
[1 ( ) ann’
7’4'.!;(-1‘) T".n' & d.L‘ = .
0 ¥ ¥ 2(2)1 + N + ]) (n + N) (30)
n

2(n + N + 1)°(2n + N)Ryuna
— Cn+N+D[(2n+N) (2n+ N +2) (1 — 22°)
+ N*|Rya— 2n°(2n + N + 2)Ry nt
(2n + N)z(1 — 2°) a Ry..(x)
dx

a[(2n 4+ N)(1 — 22") — N]Ry.(z) — 2n°Ry .1 (%)
-T:ﬁTN.n(-T) = ’YN.anN.ri+l(-T) + 'Y.'c’,nDT.V,n(-T) + 'YN,n_lTN,nﬁl(-r) (31)

* Tt has been called to our attention that our 7'y »(x) are closely relate(.! to the
Zernike polynomials. These latter arise in the diffraction theory of aberrations.!
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Vo (n+ N+ 1)°
Vam Pn + N+ D@+ N F2)
_1 N* _
2 (1 HRCTE D Iy 2)) (32)
-1 _ _ ﬂz
TWa = TOn+ N2+ N + 1)

| Tyw(z) | €1 for 0 <2 = 1.

The function 7'y ..(z) has n zeros in (0,1]. We define Ty .(z) = 0 if
n < 0.

Returning now to (25) for arbitrary values of ¢, we attempt a power
series solution in ¢’ by writing

(@) = prm(z) = Trnlz) + gcﬁQ,-(N,n,m) (33)
x = xva(€) = xva(0) + ;cg"a,-(N,n), (34)

where the @’s and a’s are independent of ¢. When this latter quantity is
zero, this solution reduces to that already found. As is shown in Appendix
A, the §’s and a’s can be determined recursively in an elementary man-
ner. We have

QN = 3 AN T aia(2) )
with
ai(Nm) = i AT (Nywads  F=1,2, ... (36)
Do mm(0) — xo0n(0)]A /(N m)

Z:m(NnM n *(Nm) — Z:LH,.. YN ) Yxmetim's  (37)

k=1
m=—j, —j+1,...,5 i=12....

Here A,’(N,n) is defined to be zero if | k| > j,ork < —nork =
and j # 0. In addition we have 4,.'(N,n) = 0, m = 0, A,"(Nn) = 1,
a,(N,n) = 0. For use in (36) and (37), the-y s of (32) must be defined
so that for n < 0, ‘Yan = Yum = YNar = 0.

To terms of order ¢’ the eigenfunctions and eigenvalues of (25) are
explicitly
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xvale) = (2n + N + ‘—i) (‘.Zn- + N + ;)

1 y (38)
+§(1 TeF Mm@ty +2>)c o
N ﬂzTN.n—-l(x)
ena(2) = Twal2) + (4(273 +N)@n+ N +1) (39)

_ (n +N+ I)QHN.n+1(2J) ) ) .
4:(2’”. + N + ]_) (Zn + N + 2)2 C + O(C )-

In view of (353), the series (33) can be formally regrouped to give
enal(x) = 20: d;""(e) T'w (). (40)

Substitution in (25) yields the three-term recurrence

2 1 N,n
cyn, it dj

v F (AN +H @ +HN+ —dd"" (41)
+ CQIYN,J-PI_I dj+1N'ﬂ = 0.

This recurrence can be used to determine the ;""" and the eigenvalues
in a manner quite parallel to that used in the study of prolate spheroidal
wave funetions. The method of Bouwkamp® can be adopted and used
advantageously for the computation of the ;""" and the eigenvalues for
values of ¢ too large to permit effective use of (33) and (34). The d’s
can, of course, be expressed in terms of the A’ of (35). One has

doyi""(c) = 2, A/ (Nm)e, = —n—n+1,.... (42)
L=T71
The series solutions (40) or (33), (35) for the generalized prolate
spheroidal function are, of course, valid only for 0 = = = 1. To obtain
a series valid for z > 1, we use (20) and the fact (established in Appendix
B) that

1 -1
f Jx(exy) Viexy Twn(y)dy = (N + n) 'Eﬂl—-(—&?—z . (43)
0 n \ex
The solution (40) then extends for all z by the series

! — . N.n Sy y2i (cx)
eva(2) = o ; d; (N + j) Ve (44)
7
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which is obtained by inserting (40) in the right of (20) and integrating
term by term.
The eigenvalue yx,. can be expressed in terms of the d;*". Divide

both sides of the equation
1
Yusona(@) = [ Tulead) Ve puald)as (45)

by 2" and take limits as # — 0. From (27) and (40), we see that the
left member of (45) becomes

Yym 20 A "Ry a(0) = ynm 2 dN"
Since Jy(2)Vz ~ (2/2)"v/2/T(N + 1), the right of (45) becomes

fi (ex') " on . (2)da'

TV + 1n2v Jo
CNJF% N ! INH) ! '
T aTm Rl
cl\H—é N
=m J nf TNU('U)TNJ(J;)dJ)
CN+§d N.n

TV ¥ 22

where we have used suceessively (40), (27) and (30). The combined
result is
CN+}dgN E

YN = 2N+1F(N + 2) Z djN'" .
i=0

(46)

The integral equation (45) is also useful for obtaining the asymptotic
behavior of ¢y .(2) as x — . We have

pra(@) = 2 [ ) L2 ()

N+

on letting crz’ = u. Now (u" T Ivn) = (u¥Jy), so that (47) can be
integrated by parts to yield

_1_': N+1p ( ) ©N, n(u/c-'l?)
cT

cx

YN 2PN, (17) =

0

_f du Ty () 2 qun(u/cx)]

y N+
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1
= LTE ‘\/EQDN.R(]-)JN+1(C$) - R‘

Tor large z, this becomes

2 cos [ex — (N + 1) (#/2) — (x/4)]

™ cx
1
+ 0 (E)

This of course is consistent with (44). If now we define ¢x..*(z) to be a
generalized prolate spheroidal function normalized so that for large =

_cos fex — (N 4 1) (x/2) — (x/4)]

cx

'YN.nQoN.n(x) = WN.H(I) /‘/
(48)

'PN.n*(x) (49)

(48) gives us
YN = /‘//2 enn*(1) (50)
™
a relation that will be useful to us later.

5.2 Asymptotics for Fized n and Large ¢

The behavior of gencralized prolate spheroidal functions for large ¢
can be determined by methods quite parallel to those used in Ref. 7 in
discussing the prolate spheroidal functions. Five different asymptotic
forms for ¢y..(2) are found, depending on the x range under considera-
tion. These are properly joined to furnish a solution for all x. For most of
these regions, we content ourselves here with writing only the leading
term of the asymptotic development.

In (25) we make the substitution { = x4/¢. There results

Ly — (1/e)Me + (x/c)e = 0 (51)
where the operators are given by
4 =N .
o a " o | (52)
M = t’i + 2t d
et Tt

Now the equation

LU+ ANU=0
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has solutions
U = Uxna(t) = ¢ HHL,Y (1 (53)
A= 4n + 2N + 2, n=2012...

(see Ref. 5, p. 99) where L, (x) is the Laguerre polynomial of degree n
in Szegd’s notation. The function Uy .(t) has n zeros in (0, ). This
suggests attempting solution of (51) for large ¢ by the series

ova' = Unall) + 3 (1/6)5,(Nn0) (54)
xeale)/c = dn + 2N +2 + 3 (1/e)b(N ). (55)

We now note that
MUyu(t) = pxn Unnse + pvn Usin + v Uz (56)
where
pya = (n4+1) (n 4 2)
pva' = —[(2n+ 1) (n + N + %) + 3 (57)
pya = (n+N)(n+N-—1),

a fact which can be readily derived from (52), (53) and the properties
of Laguerre polynomials. The perturbation scheme of Appendix A applies
therefore, and we find at once that

" .
Si(Nnt) = 27 B (Nn) Uy () (58)

k=—]

where the B’s and b’s are given by the recurrence

1
bi(Nn) = X BT (Nomdpwaa's G =1,2, ..

J .
Smij(Arsn) = Z bk(lNan)BmJ_k(N}n)
k=1

1
- kZIB—HmH(N,ﬂ)#w.n+2k(m — k) (59)

m = _j: _j+17'-')j; j=112;---

with the convention By/(N,n) = 0if [k| > jyork < —nork = 0
and j % 0. We take B,,"(N,n) = 0,m # 0, B"(Nmn) = 1, h(N,n) = 0.
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In this manner we obtain explicitly
xvale) = (4n + 2N + 2)e = [(2n + D(n + N + §) + 3]

(N +2n+ 1)[20° + 20(N + 1) + N + 2| 0(1) (60)
- 4c + P

which gives the behavior of xx~ . for large c.
We write the solution just found as

iPN,ul(-v) = A 1l(£ + Z E BI- ln)UN.ﬂ+2k(t)! .
! k=i ([)1)

t=a:\/E.

The right side of (61) is ordered in powers of ¢ when expressed in terms
of the variable £, However, if { = x+/¢ is substituted, the terms are no
longer so ordered since Uy ni2(2v/¢)/Un.m(z4/¢) = O(c). The range
of x values for which the first few terms of (61) furnish information
about ¢y, vanishes as ¢ gets large. We shall use (61) only for0 = z =
1/¢.

To obtain an asymptotic form for ¢y, (x) for ct=a
it is convenient to write gy .(7) = 2" ¢y..(2) and set y
Equation (25) now becomes

(1) T8+ [5 ~ (2N + s)y] u

S

=1- (1/e)
=41 = 2%

dy

(62)
2 1 3 2 2
+|:XN.n - - (N +§)(N +2) +CU]¢/ = 0.
Into this equation, substitute xv..(¢) as given by (60) and set
e =y
- ‘\/g(l + y)N+n+1 v,
One finds then for v,
dv
dy + 0( ) 0.
Accordingly we write
” ’\+, (1 — J) ngey
©N.n s l) v_(l y) N+n+1 (63)

_ 1
y=1-—-2a% c'=x=1-—-.
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To obtain an asymptotic form for ¢y .(x) valid near x = 1, set
y = s/cin (62) and again use (60) for x»,» . There results

dy | 1dy (1)_

Accordingly we write

ona (@) ~ 2", (ey)
y=+1—2%, 1—(1/c)=z=1

where I,(z) is the modified Bessel function. (See Ref. 8, Vol. 11, p. 5).
When z > 1, we set z = /2% — 1, and have y = 4z, The solutions

np_.\r,,,z and ¢y.." then give rise to two more asymptotic forms. We write

(64)

exat (@) = 2", (c2), l=sx=1+4+ ; (65)

5, B ..N+} eiez(l _ 7;3)" _1 <. .

enn () = Re Vil £ 1+2 =7 (66)
z = —1.

We now determine the joining factors for these five solutions. In
oxn' and gy’ we set @ = u/c’ and let ¢ become large for fixed . One
finds

n (2n+N+1)/4
1 1 ("1) c 2n+N+E —u?q/c/2
PN (u/c ) ~ ] u € \/—
n.
ecc—(2n+N+%)M

2n+N+-§-e—u""\/_c,'2
2N+2ri+1

@N.uz(‘r = u/ci) ~

where we have used the fact that
LY (w*ve) ~ (=1)"™"c"?/nl.
When i = v/+/¢, one finds for fixed v and large ¢
own(y = v/\/e) ~ eV /o
on u:{(y — U/'\/E:} ~ ;_1 eu'\/z/‘\ﬂ)
' ‘\/ 2w

where to obtain this last expression we have used the known asymptotic
formula I,(z) ~ ¢"/+/2rx (see Ref. 8, Vol. II, p. 86). Finally, when
z = v//c we find
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/2 o4 cos (rAe — 7/4)

. _
W (Z = “/\/C) ~ =

o Vo

A oS (vVe — 7/4)

where we have made use of the formula (see Ref. 8, Vol. II, p. 85)

J(z) ~ (sz“z)—a cos (z — w/4).
All these results can be summarized in the following statement:

WN.NE(Z = ”,/\/E') ~

LM (), 0<z<c¢*
$N+iefu(1 — .U)" . .

A - <zr=<1-—

’2\/;(1-%}])"”“’ ¢ =1 c

Pvon (1) ~ 4 kL (ey), l—c¢'sz=1

k™0 (c2), lsx=<1+c"

Nt e (1l — 12)" -1 <

ksv Re Viz( + iz) l4+c¢ ==z (67)

where

= 2, ¥y =1 —=2ua% =1 —1

A N+2n+1 NI2+} —
(_1)112 +2n+ Cn+ / o ¢

],-2 = 2

n!

n QN+2n+3/2 ntN/2+] —c
o= _ (=1 V72 c e
g = g

n!
( _ 1) 112.\'+2H +Ecn+!\’i‘2+}e—f

kg = —

n!
is the asymptotic form for large ¢ of a bounded continuous solution of
(25) belonging to the eigenvalue (60).
We next calculate the normalization constant
1 . )
= , [@v‘n(ﬂ')] dx.
.\ N Y0

For the contribution due to ¢y.,' we find

-1
.

‘ —12/2,x e 1ot 0
dr l’ﬂ‘_!.\+lL"(.\) A = dl e !t2N+1 L,.(m Yk
[ e (OF = = [ de e LY (@)

L o(ve . »
=i /; du ¢ UL, (u)]
F('”‘ -+ N + 1) [1 + O(CN+2HE-'\/(‘)|

T o/er(n + 1)
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where we have used the fact that

“ o o ‘(‘“’ + o + 1)
¢ IJH —_—
[ ewora = St et
(see Ref. 5, p. 99). It is not hard to show that the contribution to 1/Ny ,,*
from integration over the region ¢ <z < 1is O(c?eVe) for some P>
0. We have then

24/cl'(n + 1)

2
MR CE £

(68)

5.3 Asymptotics for n and ¢ Both Large

The techniques employed here again follow very closely those used
in Ref. 7. We accordingly give a minimum of detail.
We assume that when n and ¢ are both large x can be written

Xy~ €+ 28¢ 4 by + bife+ . (69)

The ranges of » and ¢ for which this is valid will appear in the analysis
to follow.
In (25) make the substitution x = (/¢ and replace x by (69). One

finds
d'e 1 Nz) (1)
d12+(1+ ¢:+OE =0

and hence for large ¢, o(1) ~ A/tJx(t). We write

ovn () = Valy(ez), 0=z< \/— (70)
Returning to (25) with x replaced by (69), we observe that the sub-

stitution
ex [i cx — 8 10 1 - a:)
P gl ¥z
0 = v

\/1—:::2

yields % + 0 (%) = 0, so that for large ¢, v becomes constant. After

multiplying this solution by a complex constant, we take its real part
for the next section of ¢. Explicitly we define

11—z
E cos l:m: - ]()g1 T N+ 1) ] (71)
e Vi ‘

GBN,”?(J;) =
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Note that when = 1/+/¢ and ¢ is large (71) becomes

v (&) ~ g 2o [Wa WD g]

The asymptotic formula for Jy (see Ref. 8, Vol. IT, p. 85) shows that
exa' (@ = u/v/e) ~ /‘/% cos |:u\/5 - (N+ 1) g]
I

also, so that ex." and ¢, agree for large ¢ in the neighborhood of
r = 1/4/c.

To find an appropriate asymptotic form for ¢ valid near z = 1,
substitute ¢ = V" into (25) with x given by (69). Now make
the substitution + = 1 — i£/2¢c. There results

d*u du 1 .3 1

Accordingly, we are led to define

ova' () = "D E - i%, 1; —2ie(1 — rc)] (72)
where
; ) = ax ala+ 12"
b(ab;e) = 1 + b1l + (b + 1) 21 +
is the econfluent hypergeometric function in the notation of Ref. 8, Vol.
I, Chap. 6.

The solution (72) is real. Its asymptotic form for large ¢ whenz = 1 &
v/+/¢ can be found from the knownt asymptotics for the & funetion.
One finds

. /B
oy (x = 1 0v/4/¢c) ~ R TYN
X )
v oc*R (8) (73)

cos I:a\/E F %log (208/¢) = 0(8) — E]

where the real functions R(8) and 8(8) are defined by
1 ) i
r (§ + 1 5) = R(5)e". (74)

This latter definition is made precise by requiring 6(38) to be continuous
with 8(0) = 0.
Now when ¢ = 1 — v/4/¢, (71) shows that

t See Ref. 8, Vol. I, p. 278, Eq. (2).
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1
evm (x = v/4/c) ~ P )
(75
cos[v\/&—l—élogz'%/——k (N + %)E— c:l.

Comparison of this expression with (73) shows that ¢y, and (—1)%
R(8)e "on .2 /24/ 7 are asymptotically the same for x = 1 — v/4/¢
provided

¢ + 8log(24/c) — 6(8) = (N + 1)(x/2) + =g (76)

with ¢ an integer to be determined shortly.
Quite analogous to (71) is the solution for x> 1,

o) = (i €08 [cx - 2log T 1 — (N + 1) ;] 77)
A Ve Var—1 '
When # = 1 + »/4/c and ¢ is large, this solution becomes
85(71‘2)

EDN.nB(x =1+ U/\/E) NC'\/Z_

L

cosl:c-l—v\/f:—%logz\y/é— (N + l)g—l—r]

Comparison with (73) shows that this is the same as (—1 Y(R(8)e /2.
vV #)ena8(x = 1 + v/4/¢) when account is taken of (76).
Our results thus far can be summarized as follows:

vVt y(ex), 0<z=<c¢?
Ecos[cx— 10g1+ ——(N—|-1)%
e V1— 2
i1 -¢"
(=1)R(5)e’™" NV H e
oxn(z) ~ a L (78)
@[Q — g, 15 —2ie(1 — a:):l,

\m—l\éc_i

i €08 [C’L - —log T 1 — (N + 1) i LI]
V'me Ve — 1

:c;l-l—c_4
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is the asymptotic form for large n and ¢ of a continuous solution of
(25) provided 8 and ¢ are chosen to satisfy (76) and the requirement
that ¢ as given by (78) has n zeros in the open z-interval (0,1). The
corresponding eigenvalue is given by xy.. ~ ¢ + 25c + O(1). Higher-
order terms can be found by methods analogous to those presented in
Ref. 7.

When ¢ becomes large and 5 remains fixed, i.e., § = O(1), the number
of zeros of gy .(x) in 0 < x = 1 can be estimated roughly from (78).
Using the asymptotic expansion for Jy , we find that ¢~ .°(x) contributes

z = (Ve/m) + 0(1)
zeros as x ranges from zero to 1/4/c. From ¢y . (z) we find
7= (1/m)le — 24/ + (8/2) log v/c] + 0(1)
zeros for 1/4/¢ < @ £ 1 — 1/4/c. Finally, by using the asymptotic
form (73) for ¢y .., the number of zeros of ¢ for 1 — 1/v/e<a =1
is estimated as

%= (1/m)[Ve + (8/2) log v/l + 0(1).

Since we must have n = 2z + 2 + z, the last three equations show
that

nr = ¢ + 8 log 24/¢c + 0(1).
Combined with (76) this implies that as ¢ — =,
8(8) + (N + 1)(x/2) + wqg — nw = O(1). (79)

The equation just established can be used to obtain a limiting result.
Let N be fixed and suppose that n grows with ¢ according to

n = (1/m)[c + blog (24/¢)] (80)

where b is a fixed number (independent of ¢). Multiply this equation
by =, add to (76) and rearrange to obtain

(6 — b) log (2+v/¢) = 6(8) + (N + 1)(x/2) + m¢ — nw = O(1) (81)

where the last equality comes from (79). Divide (81) by log(24/¢). We
then obtain the limit result: if n grows with ¢ according to (80), then

limé = b. (82)

c*0
VI. ASYMPTOTICS OF Yx.. AND Ax,n

6.1 I'ixed N and n. Large c

The asymptotic solution ¢y ..(z) given in (67) has the values
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éN.n(l) = ’\'3
cos [ex — (N + 1) (x/2) — (x/4) '

x

@nan(e — o) ~ (—1)"s

On recalling the definition given in (49), we see that for large ¢
ena*(x) ~ (—1)"¢wn(x)/cks,

so that for fixed n and N as ¢ becomes large

* —~ (_I)Hks _ (_1\n ’; .
©N.n (1) T5 = ( 1) 1/% (33)

Equation (50) then gives

~ =D
YN ‘\/;: . (84)

We now proceed to use (84) and the useful formula (to be established )

a‘YN,n YN 2 _
3 = o oy (1) — 1] (85)

where
1
f e (2) do = 1 (86)
0

to get a much stronger statement regarding the asymptotic behavior
of yx .. . I'irst we establish (85)-(86).
For simplicity of notation let us write (45) as

1
vigae) = [ Klera)o (') daf (87)
0
where we have suppressed dependences on N. Differentiating, we find
3Yn A ()
3 en(x) + ¥a e

1 1 3 ( f) (88)
= f z2' K (cxx)ea(z') da’ + f K(cxz") 227 g,
0 0 de

Differentiating (87) with respect to x gives
1
Tuen () = fi— f 22’ K’ (exx")pa(2") da’,
£Lodo

so that (88) becomes
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9. dp,(x) o Yo el
2 ¢ e () + 7. el () + .,; K(eaxx") e dx'.

Multiply this equation by ¢, («) and integrate. One finds
0n o, (x
Tf n(x)dx—l-vnfoson()“o()

dc
- [11 L ) de + v fl (21) 225 g
Y o DCdl ©“n n o [ZIaNy aC oy

where the last term has been obtained by interchange of orders of inte-
gration and use of (87). Equation (85) then follows by integrating the
first term on the right by parts and by using (86).

Touse effectively (85)-(86) itis eonvenient to introduce kv, = (—1)"-
VvV eyn . . We then have

1 aKN,u _ 1 2
KN —52__ - % ©ON.n (1) (89)
lim sy, =1 (90)

from (85) and (84) respectively. From (67) and (68) we see that

,)2N+4IL+IICN+2?!+28—28
I'in + DI'(n + N + 1)°

Using this expression in (89) and integrating, we obtain

o0
N+2ntl —2
f ARl T}
¢

WN,ng(l) ~ k32NN‘n2 =

‘1|'02N+4ﬂ+3
I'(n+ DHT'(n + N 4+ 1)
Integrating by parts and using (90), we finally find

_ (=" _ (=D"r )-‘V+4"+26A+2n+1e—2cl: (1)]
A T v ey e b A VY A (91)

In terms of A of (13), we find from (17) and (19)
Avm = CYN (92)

®
l()g KN.n lﬂ =

so that

ﬂ_22h+4ﬂ+30\+2ri+18725 1
Mo T T M+ DT T N D) [1 "o (E)] %)

6.2 I'ived N and n. Small c.

We use (46) to obtain an expression for yy . for small ¢. From (42),
it follows that
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4" () = ; A (Np)e" = A" (Nan)e™[1 + 0(c)]

(94)
257 (2n + N + 1)T(2n + N 4 2)
where we have used (124), (26) and (32). From (42) one has
Zdj.h"n — dﬂN‘n + O(C‘Z) — 1 + 0(62). (95)
1=0
Equations (94), (95) and (46) now give
(—1) I‘(n + l)I‘(n + N + 1) czu+.\’-|-5_ (9(5)

YV T SmENAD(2n + N + )T(2n + N + 2)

Higher-order terms could be obtained in a similar manner. An alterna-
tive route, however, is to use (85) and (86). From (39) and (30), one

sees that [2(2n + N + 8k (n -; N) (—1)"[1 4 O(eY] is the normaliza-
tion factor for (39). Using (39) one then finds for a normalized solution

eva(1) = (=1)"v/2(2n + N 4+ 1)

N )
I:l + 4(2n + N)*(2n + N + 2)2] +0(c").
Inserting this expression in (85) and integrating, we find
(=D + DI{n + N + 1)
Yo T guebN D (20 + N + DI(2n + N + 2) o
97
N )

6.3 Asymplotics for n and ¢ Both Large

To obtain an expression for v, valid for n and ¢ both large, we use
(77) and (49-50). For the asymptotic solution (77) we have
R(a)eﬁ(rli)( — 1}';
WN.):(I) ~ 2‘\/1; (98)

and for very large

e eog [cx — (N + 1)(7/2) — (x/4)]
pwn(t = ) ~ = x '

Comparison with (49) shows that ey.* = v/7/ce "oy, , and (98)
and (50) now give
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(—1 }qR(a)e—ﬁer)
R B ‘\/2—1r{:

Now (91) and (97) show that for large and small ¢ the sign of yn ..
is the same as the sign of (—1)". As ¢ varies, y~,. cannot change sign,
for by (92) if yw,. were to vanish for some value of ¢ # 0, so would
Av.n . Since, as we have noted in Sections IT and III, the kernel K. of
(12) is positive definite, this is impossible. We can therefore replace
q by nin (99) and we have

g = n(mod 2). (100)
Trom the definition (74) of R(4), one has

[R(®] =T (% + 1;—)T‘ (% — zg) - m (101)

Here we have used the functional relation [Ref. 8, Vol. I, p. 3, Eq. (7)]
for the gamma function

(99)

I'(: 4+ 2% — 2) = 7see 7z
Equations (99), (100), (101) and (92) combined are

(=1)"
YN ™ _\/(‘(] + e’”’) ’ ~ 1 + ﬂr&.

Finally from (80), (82) and (102) we have the limiting result: if
n = [(1/7)(c + blog 2+/¢)]

where the brackets denote “largest integer in” and b is a fixed number,
then

)\N.n (102)

>0 - 1 + e"""

VII. THE CASE [} > 2, R THE UNIT SPHERE

In the previous sections, we have treated the important special case
D = 2, R the unit circle in considerable detail. Most of the analysis there
was eoncerned with solving the integral equation (20). Fortunately, as
we shall now see, the solution of that equation also affords a complete
solution of the casc R the unit sphere centered at the origin in E,,
D = 3,4, ....In treating this general case, we shall draw freely on the
theory of D-dimensional spherical harmonies as given, for example, in
Ref. 8, Vol. II, Chap. XI. We follow the notation of this work and set

D=p+2 p=12 ... (104)



3036 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMBER 1964

Let x = r£ and y = r'n where £ and n are unit vectors in £,,. . Equa-
tion (8) now becomes

o (rE) — f dr'y' fﬂ exp (ierr'E-m)y(r'm) d2(n)  (105)

where  is the surface of the unit sphere in £, .

Now let
— 1)1
h(Np) = (2N + p) (N—’L%k”, N=0012.., (106)
and let Sy'(£),1=1,2, -+, h(N,p), be a complete set of orthonormal

surface harmonies of degree N. The Funk-Hecke theorem (Ref. 8, Vol.
II, pp. 247-248) asserts that

j;zexp (Gerr’E-n) Sy’ (n) d(n) = Hylerr')Sy' (8) (107)

where
Hy(err')

(p — '
21r++11“”’2N-| (p 1) ! f e{crr’ucwpﬂ(u) (1 — -1&2)@_1”2 du (108)
r (P )+ p -1

is independent of { and C'y"(u) is a Gegenbauer polynomial (Ref. 8, Vol.
IT, p. 235). By expanding ¢ in surface harmonics,

o h(N.,p)

VD) = 203 Rea(r)Se'(8),
we find from (105) and (107)

OAN.JRN,:(T' f dr'r ’p+1HN(CW")RN,l(T’); (109)

from which it is seen that Ry ;(r) and ax; are independent of {. We have
the expected degeneracy of eigenvalues due to spherical symmetry.
Now [Ref. 8, Vol. II, p. 236, Eq. (25)]

/2 _ (=" (p)~ _ —(p—1)/2 d" 2y N+(p—1)/2
Oy (u) = 5 75 1 o (1 — %) Tov 1—u)
2 v

where (a)y = a(a + 1) -+ (a + N — 1), so that from (108)

O P2 (—1)"

(CRHCS)

7

Hy(err') =

j du & ud (1 —w 2Nz,
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Integration by parts gives for the integral here

(_1)’" f]' du(l — u2)N+(p—1)12d_N‘ ei'ﬁff'u
-1 du¥

1
= (—icr-r')Nf du "M (1 — ut)Nroeoe
-1

(—=i)"/xT (N + L;_l) O¥FPR (! Y TP ey ppaerr”)

where we have used the Poisson formula
1
D+ D) = 772G/ [ @™ (1 — )™ du
—1

[Ref. 8, Vol. II, p. 81, Eq. (7)]. We have then, finally

1+p/2

Hy(err') = i¥(2m)" " Ty pppelerr’) [ (err' )™

We see now from (109) that the eigenfunctions and eigenvalues of
(105) are

\bw.e.a-("‘,i) R.-\'.u(-")'\'h'rtz): =12 ..., h(N,p)

ayu = 1 (2m) By (110)
Npm=0,1,2, ...
where
By lin(r) = Ol%f)ﬂ;p PP R L) dr (111)

These equations are the analogues of (16), (17) and (18). Set
v = 6C(p+ﬂt'2 0 = 7'[p+l”2R. (112)

Equation (111) becomes

1
ye(r) =fﬂ I yppmerr’ )N err'e (") dr'. (113)

This, however, is (20) with N replaced by N + p/2. The formulae of
Section IV for the solutions of (20) can be taken over exactly replacing
N by N + p/2 throughout, (Expressions involving factorials must be
replaced by the appropriate ones in terms of I' functions when p is an
odd integer.) Together with (110), (111) and (112), they provide solu-
tion of (105) for all D = 2,

It is interesting to note that the one-dimensional case treated in Refs.
1 and 2 ean be obtained as a speeial case of the present theory by ap-
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propriate interpretation. The parameter N of this section is the degree
of the homogeneous polynomial solution to Laplace’s equation in D
dimension afforded by the spherical harmonic Sy’ when expressed in
rectangular coordinates, When D = 1, Laplace’s equation d’y/dz’ = 0
has only two homogeneous solutions, ¥ = & and ¢ = =, respectively of

degrees zero and one. For D = 1, ie.,p = —1 from (104), we have
200
180 // ///
7
160 /| /////A/
/A
140 // ////
// // / /
120 nN=2 n;y Vi // /
X // 3 7 7 7 / //
100 ,/ 7/ // / //
. ' /‘"‘3/// /A A
80 — // }/ 2/ /A/ / //
,// / ?/f%/ ‘ //
60 yé/// /4/;2// //
— ] y/f/ oz ]
40 /,/ ,/ /2 // —
a// |/ —
20 — ////1/ ///
/ L] /,2—"’9'—/
..—-"'/
% 2 4 3 8 10 12 14

c

Fig. 1 — Curves of xx,.» of (25) vs c.
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only two allowed values, N = 0 and N = 1. The quantity N + p/2
oceurring in (113) then has values —% and 3. The kernel becomes
/277 cos err’ and A/2/x sin err’ respectively in these two cases, and we
retrieve the integral equations for the even and odd prolate spheroidal
functions of zero order. Note that when N = =+1, (25) reduces to the
prolate spheroidal equation.

VIII, NUMERICAL RESULTS

A program for the IBM 7090 has been written to compute generalized
prolate spheroidal functions using formulae (40) and (44). Trial values
for the x»n. were obtained from (34) and (55) and the recurrences
(36)—(37) and (59). The method of Bouwkamp® was then used to cor-
rect these estimates and obtain the d,¥'". Values of vy . were obtained
from (46) and these were converted to values of A by Av. = YN

Fig. 1 shows plots of xv. versus c. Fig. 2 gives the behavior of the
first few Aw.. . By definition of the labels, xx.a41 = xwv. for Nypn = 0, 1,
... and if ¢ > 0 the inequality is strict. From Sturmian theory, it follows
that xy41» > Xw.. For the \’s, one can show correspondingly that
At < Awa and Avgrn < Awa for Nono= 0, 1, ... . The problem of
ordering the A’s and x’s for all N and n appears to be a difficult one. Some
values are listed on Table I.

Tigs. 3 and 4 show plots of gy .(x) versus x for N = 0,2, » = 0,1,2,3
and ¢ = 2,10. Values of the ¢, for a larger set of parameter values are
given in Table I1. Normalization is as in (86).

N A 1 ,/;’/ y ~ ] 7

ARy v AV Y iver Sy
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-////
0/////// __—/

>Z
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Fig. 2 — Curves of Ax,» of (13) and (15) vs c.
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TaBLE I — NUMERICAL VALUES OF Xy,. AND Ayn

X

A

c

et

Sopwwm—oo
CcCooooUMO G-

[=Ru=Ne Rl B Ll

—

N=0 n=0
7.5499805 — 1 2.4968775
8.7434809 — 1 6.0585348
1.2395933 + 0 2.2111487
1.8225178 + 0 4.2951906
2.5857968 + 0 6.2963045
4.,4622709 + 0 8.8705036
6.5208586 + 0 9.7495117
8.5869176 4+ 0 9.9534230
1.8690110 4+ 1 9.9999957

N=0 n=1
9.2562398 4+ 0 1.0829815
1.0847476 + 1 6.7214485
1.3698728 4+ 1 6.6745424
1.7898720 + 1 2.6742780
2.3241561 + 1 5.7877057
2.9277622 + 1 8.3060712
3.5550580 + 1 9.4973850
4.18056821 + 1 9.8782700
4.7985976 + 1 9.9738554
5.4108072 + 1 9.9947801

N=0 n=2
2.5751488 + 1 1.8834675
2.6773866 + 1 1.9235204
3.8241737 + 1 1.6017987
4.4846367 + 1 8.1254764
5.3021146 + 1 2.5847455
6.2527715 + 1 5.3544699
7.2854528 + 1 7.8635574
8.3461406 + 1 9.2600949
9.4019226 + 1 9.7915064
1.0443896 + 2 9.9484586
1.1474313 + 2 9.9882732
1.2496987 + 2 9.9974793
1.3514611 + 2 9.9994820
1.4528810 + 2 9.9998984

N=0 n=3
4.9250694 + 1 6.0066949
5.0761114 4 1 9.8333952
6.1688709 + 1 3.5422330
7.4995083 + 1 3.5278392
8.3823340 + 1 2.0130790
9.4336396 + 1 8.2918248
1.0659367 + 2 2.4212641
1.2034708 + 2 4.9658387
1.3504432 + 2 7.4660703
1.5007176 + 2 9.0244395
1.6502439 + 2 9.6944048
1.7977291 + 2 9.9165204
1.9433894 + 2 9.9791376

[

I
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6
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8.3789365
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1

1

1

1

N =1

3.9163765 +
4.4119661 +
6.3394615 4
9.3427678 +
1.3086855 +
1.7170130 +
2.1310500 +
3.75556900 +

N =

1.6255011
1.7912353
2.4832293
3.0401459
3.7326440
4.5219234
5.35656692
6.1976089
7.0297509

e = My

N =

3.6265101
3.7820310
.9160037
. 5464880
.3286568
. 2759605

.59556815
0867089
.21455689
.3409696
. 4657506

Ftttt bttt T

N =

6.4258400 +
6.5789319 +
7.6749767 +
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2001776 +
-3350648 -+
+
+
+
+
+
+

—

1

1

1.4872078
1.65622672
1.8237982
1.9961900
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2,3347382
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1.3986168
1.6123183
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7.8473505
9.3671678
9.8534260
9.9998314

I
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7.4672551
1.8549511
3.8313651
1.6818804
4.,2912557
7.1473948
8.9618892
9.7041388
9.9279210

I
(M)

4.6976877
1.9082396
1.0305314
8.3652966
4.4641026
1.6080875
3.9082845
6.6399691
8.6120123
9.5495434
9.8759852
9.9692509

=3
7.6540787
4.9988893
1.1190662
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1.5017502
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6.1969392
8.2818634
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9.8150785
9.9500835
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A

c

N=2 n=0 N=2 n=2
1 9.4976317 + 0 3.9517707 — 4 1 4.9202042 + 1 1.0614368 — 14
2 1.1710916 + 1 1.9088335 — 2 2 5.0922802 + 1 1.7074109 — 10
3 1.5201960 + 1 1.3627864+ — 1 5 6.2566028 4 1 5.5306960 — 5
4 2.0048498 + 1 4.0298411 — 1 7 7.6509011 4+ 1 5.0165514 — 3
5 2.5667098 + 1 7.0317221 — 1 8 8.5676381 + 1 2.7077307 — 2
6 3.1747966 + 1 8.9417071 — 1 9  9.6519700 4+ 1 1.0455606 — 1
7 3.7952889 + 1 9.7092917 — 1 10 1.0904728 + 2 2.8443961 — 1
8 4.4125820 4+ 1 9.9324606 — 1 11 1.2295597 + 2 5.4626700 — 1
10 5.6324064 + 1 9.9972026 — 1 12 1.3768257 + 2 7.8216583 — 1
13 1.5265435 + 2 9.1919613 — 1
14 1.6752489 + 2 9.7528766 — 1
15 1.8220066 + 2 9.9334500 — 1
N=2 n=1 N=2 n=3
1 2.5333581 + 1 4.1659113 — O 1 8.1275280 + 1 9.2115325 — 21
2 2.7088321 + 1 4.0530517 — G 2 8.2854667 + 1 2.3940665 — 15
5 3.9788041 4 1 2.5787154 — 2 5 9.4065006 + 1 3.2504658 — 8
G 4.68425656 4+ 1 1.1592915 — 1 10 1.3679420 + 2 5.8064778 — 3
7 5.5371030 4+ 1 3.25731656 — 1 11 1.4973956 + 2 2.6682390 — 2
8 6.5067655 + 1 6.0754452 — 1 12 1.6450899 + 2 9.5057491 — 2
9 7.5425367 4+ 1 8.3161633 — 1 13 1.8113152 + 2 2.5380401 — 1
10 8.5969115 4 1 9.4455397 — 1 14 1.9931616 + 2 4.9785798 — 1
11 9.6442775 + 1 9.8484078 — 1 15 2.1846670 + 2 7.3845601 — 1
16 2.3793070 + 2 8.9380256 — 1
17 2.5727411 4+ 2 9.6462917 — 1
| 18 2.7635393 + 2 9.8968676 — 1
TABLE IT — VALUES OF ¢y, ()
N=0 n=0
x c =1 =2 =35 c=10
0.1 4.74638 — 1 5.05421 — 1 9.15662 — 1 1.31456 + 0
0.2 6.68776 — 1 7.74706 — 1 1.22032 + 0 1.62247 + 0
0.3 8.14070 — 1 9.27095 — 1 1.35165 4+ 0 1.57689 + 0
0.4 9.31948 — 1 1.03607 + 0 1.35103 + 0 1.30428 + 0
0.5 1.03044 + 0 1.11011 + 0 1.24626 + 0 9.31637 — 1
0.6 1.11351 + 0 1.15353 + 0 1.06660 + 0 5.70326 — 1
0.7 1.18341 + 0 1.16921 4+ 0 8.43474 — 1 2.91331 — 1
0.8 1.24157 4+ 0 1.15957 + 0O G.07845 — 1 1.17077 — 1
0.9 1.28896 + 0 1.12695 + 0 3.86969 — 1 3.19741 — 2
1.0 1.32627 + 0 1.07383 + O 2.01532 — 1 3.00159 — 3
1.1 1.35406 + O 1.00285 4+ 0 6.38588 — 2 —1.09501 — 3
1.2 1.37278 + 0 9.16840 — 1 —2.24980 — 2 4.23236 — 4
1.3 1.38285 + 0 8.18791 — 1 —6.18395 — 2 6.58696 — 4
1.4 1.38464 + O 7.11797 — 1 —6.43066 — 2 —2.21883 — 4
1.5 1.37853 + 0 5.98995 — 1 —4.32142 — 2 —5.95391 — 4
1.6 1.36480 4 0 4.83499 — 1 —1.22744 — 2 —1.21194 — 4
1.7 1.34410 + 0 3.68328 — 1 1.68342 — 2 4.20886 — 4
1.8 1.31655 4+ 0 2.56332 — 1 3.61314 — 2 3.79808 — 4
1.9 1.28264 4+ 0 1 — 1 4.20554 — 2 —8.00341 — 5

.50130
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TasrLE II — Continued

x c=1 c=12 c=3 ¢ =10

2.0 1.24281 + 0 5.20429 — 2 3.52268 — 2 —3.67577 4
2.1 1.19748 + 0 —3.59472 2 1.94309 — 2 —2.42458 — 4
2.2 1.14713 + 0 —1.12245 — 1 1.30129 — 4 1.44876 — 4
2.3 1.09221 + 0O —1.75666 — 1 —1.71274 — 2 3.08117 — 4
2.4 1.03322 + 0 —2.25459 — 1 —2.80628 — 2 1.76068 — 4
2.5 9.70655 — 1 —2.61300 — 1 —3.05323 — 2 —1.11428 — 4
2.6 9.05010 — 1 —2.83289 — 1 —2.47697 — 2 —3.05239 — 4
2.7 8.36800 — 1 —2.91927 — 1 —1.30522 — 2 —6.14275 — 5
2.8 7.66537 — 1 —2.88082 — 1 1.07933 — 3 1.53741 — 4
2.9 6.94735 — 1 —2.72956 — 1 1.382756 — 2 6.59394 — 5
3.0 6.21906 — 1 —2.48005 — 1 2.20781 — 2 1.15331 — 4

N=0 n=1

X c=1 =2 c=25 ¢ =10

0.1 7.57682 — 1 7.49125 — 1 7.561850 — 1 1.11517 + 0
0.2 1.00189 + 0 9.78062 — 1 8.84348 — 1 9.64136 — 1
0.3 1.08562 + 0 1.03485 + 0O 7.51864 — 1 2.39045 — 1
0.4 1.02660 + 0 9.38690 — 1 4.08540 — 1 —6.68891 — 1
0.5 8.24694 — 1 6.94825 — 1 —7.50154 — 2 —1.35733 + 0O
0.6 4.76162 — 1 3.08610 — 1 —6.10130 — 1 —1.58691 + 0
0.7 —2.20084 — 2 —2.11235 — 1 —1.10302 4+ 0 —1.36404 + 0
0.8 —6.75867 — 1 —8.51754 — 1 —1.47075 4+ 0 —8.87374 — 1
0.9 —1.48414 + 0 —1.595671 + 0 —1.656550 + 0 —4.07419 — 1
1.0 —2.44790 + 0O —2.41297 + 0 —1.63388 + 0 —9.25172 — 2
1.1 —3.565666 + 0 —3.30607 + 0 —1.41956 + 0 2.63841 — 2
1.2 —4.83382 + 0 —4.22107 4+ 0 —1.05901 4+ 0O 2.11679 — 2
1.3 —06.24769 + 0 —5.13836 + 0O —6.20954 — 1 —1.29202 — 2
1.4 —7.80051 + 0 —6.02868 + 0 —1.82563 — 1 —2.10428 — 2
1.5 —90.48401 + 0 —6.86308 + 0 1.85537 — 1 —2.91179 — 3
1.6 —1.12884 + 1 —7.61390 + 0 4.31871 — 1 1.47146 — 2
1.7 —1.32026 + 1 —8.25574 + 0 5.32280 — 1 1.36618 — 2
1.8 —1.52139 + 1 —8.76628 + 0 4.92313 — 1 —1.33175 — 3
1.9 —1.73086 + 1 —9.12711 + 0 3.43349 — 1 —1.28433 — 2
2.0 —1.94720 + 1 —9.32424 + 0 1.34214 — 1 —9.24495 — 3
2.1 —2.16882 + 1 —0.34869 + 0 —8.02848 — 2 2.21756 — 3
2.2 —2.39406 + 1 —9.19674 + 0 —2.51019 — 1 1.0993¢ — 2
2.3 —2.62120 + 1 —8.87007 + 0 —3.44099 — 1 7.19680 — 3
2.4 —2.84846 + 1 —8.37588 4 0 —3.46476 — 1 —2.21224 — 3
2.5 —3.07405 + 1 —7.72616 + 0 —2.66729 — 1 —6.65003 — 3
2.6 —3.29612 + 1 —6.93789 + 0 —1.31077 — 1 —7.12403 — 3
2.7 —3.51286 + 1 —6.03209 + O 2.39279 — 2 8.00041 — 4
2.8 —3.72245 + 1 —5.03334 + 0O 1.60443 — 1 8.27644 — 3
2.9 —3.92310 + 1 —3.96899 + 0 2.48208 — 1 1.58822 — 3
3.0 —4.11308 + 1 —2.86785 + 0 2.70200 — 1 —1.20582 — 3

N=0 n=12

x c=1 c=12 c=3 c =10

0.1 9.39351 — 1 9.35161 — 1 8.84844 — 1 9.05937 —
0.2 1.08208 + 0 1.06262 + 0 9.01678 — 1 5.16232
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N=0 n=212

x c=1 c =2 c=3 c =10

0.3 8.66349 — 1 8.22287 — 1 5.05390 — 1 —3.42126 — 1
0.4 3.64401 — 1 2.06652 — 1 —1.35886 — 1 —9.82679 — 1
0.5 —3.05506 — 1 —3.80032 — 1 —7.81957 — 1 —8.93819 — 1
0.6 —9.56032 — 1 —1.00914 4+ 0 —1.16120 + 0 —7.44970 — 2
0.7 —1.32240 4 0O —1.31928 + 0O —1.03567 + 0 9.85253 — 1
0.8 —1.05832 4 0 —0.83017 — 1 —2.64525 — 1 1.65961 + 0
0.9 2.65717 — 1 3.74968 — 1 1.15147 + 0 1.60911 + 0O
1.0 3.16217 4+ 0 3.16046 + 0 3.05638 + 0 9.70106 — 1
1.1 8.22453 + 0 7.79020 + 0 5.16083 + 0 2.03097 — 1
1.2 1.61238 + 1 1.46703 + 1 7.09600 4 0 —2.55403 — 1
1.3 2.76035 + 1 2.41735 + 1 8.48753 + 0 —2.68864 — 1
1.4 4.34731 4+ 1 3.66166 + 1 9.03580 + 0 —2.22585 — 2
1.5 6.46001 + 1 5.22386 + 1 8.58154 4+ 0 1.83653 — 1
1.6 9.19010 + 1 7.11812 + 1 7.14579 + 0 1.76198 — 1
1.7 1.26331 + 2 9.34716 4+ 1 4.93120 + 0 9.12279 — 3
1.8 1.68874 + 2 1.19010 + 2 2.28768 + 0 —1.36988 — 1
1.9 2.20527 + 2 1.47564 + 2 —3.55354 — 1 —1.39402 1
2.0 2.82201 + 2 1.78767 + 2 —2.57167 + 0 —1.18170 — 2
2.1 3.551556 + 2 2.12083 + 2 —4.02160 + 0O 1.05884 — 1
2.2 4.40084 + 2 2.46904 + 2 —4.51700 + 0O 1.18832 — 1
2.3 5.38002 + 2 2.82468 + 2 —4.056482 + 0 1.72440 — 2
2.4 6.49779 + 2 3.17933 + 2 —2.81239 + 0 —8.73616 — 2
2.5 7.76218 + 2 3.52375 + 2 —1.10632 + 0 —7.36407 — 2
2.6 9.18038 + 2 3.84832 + 2 6.76004 — 1 —2.63630 — 2
2.9 1.07586 + 3 4.14324 4+ 2 2.16111 + O 3.13871 — 2
2.8 1.25021 + 3 4.39892 4+ 2 3.05658 4 0 9.47047 — 2
2.9 1.44146 + 3 4.60641 + 2 3.21902 4+ 0 7.91312 — 3
3.0 1.64988 + 3 4.75731 + 2 2.66304 + 0O —5.44166 — 2

N=0 n=3

x c=1 c=2 c=3 c =10

0.1 1.04335 + 0 1.03904 + 0O 1.0039 + 0 8.16002 — 1
0.2 9.41806 — 1 9.22225 — 1 7.82101 — 1 2.80879 — 1
0.3 2.91804 — 1 2.54987 — 1 1.09411 — 2 —5.85742 — 1
0.4 —5.66603 — 1 —6.04220 — 1 —8.10616 — 1 —9.01249 — 1
0.5 —1.16122 + 0 —1.17035 + 0O —1.15387 + 0O —2.96465 — 1
0.6 —1.04537 + 0 —1.00493 + 0O —6.55690 — 1 7.15663 — 1
0.7 —6.944056 — 2 3.87818 — 3 5.00576 — 1 1.12898 + 0O
0.8 1.23639 + O 1.27745 + 0O 1.45426 + 0O 2.99477 — 1
0.9 1.17030 + O 1.12044 + 0O 6.85066 — 1 —1.44767 4+ 0
1.0 —3.74163 + 0 —3.74119 + 0O —3.72277 + 0 —2.98825 + 0
1.1 —1.94508 + 1 —1.86263 + 1 —1.36118 + 1 —3.236564 + 0
1.2 —5.51898 + 1 —5.13331 + 1 —3.01767 + 1 —1.98417 + 0
1.3 —1.24365 + 2 —1.12506 + 2 —5.34231 + 1 —6.65948 — 2
1.4 —2.45530 4 2 —2.15895 + 2 —8.18229 + 1 1.27315 + 0
1.5 —4.43417 + 2 —3.78480 + 2 —1.12269 + 2 1.31011 + 0O
1.6 —7.50023 + 2 —6.20420 + 2 —1.40431 + 2 3.14866 — 1
1.7 —1.20572 + 3 —9.64812 + 2 —1.61419 + 2 —7.44769 — 1
1.8 —1.86039 + 3 —1.43724 + 3 —1.70733 + 2 —1.00264 + 0
1.9 —2.77451 + 3 —2.065613 + 3 —1.65204 + 2 —4.10716 — 1
2.0 —4.02027 4 3 —2.87683 + 3 —1.43828 4 2 4.24001 — 1
2.1 —5.68257 + 3 —3.90062 + 3 —1.08200 + 2 8.04224 — 1
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TaBLE 11 — Continued

N=0 n=3
c=1 c=12 c=3 ¢ =10
2.2 —7.85998 + 3 —5.16340 4+ 3 —6.24706 + 1 4.53980 — 1
2.3 —1.06656 + 4 —6.68939 + 3 —1.27832 + 1 —2.40332 — 1
2.4 —1.42276 + 4 —8.49881 + 3 3.37407 + 1 —6.90334 — 1
2.5 —1.86002 + 4 —1.06060 + 4 7.02754 4+ 1 —3.30234 — 1
2.6 —2.42135 + 4 —1.30186 + 4 9.15596 + 1 1.36373 — 1
2.7 —3.09743 4+ 4 —1.57357 4 4 9.49226 4+ 1 2.58923 — 1
2.8 —3.91665 + 4 —1.87469 + 4 8.08334 + 1 4.73302 — 1
2.9 —4.89962 + 4 —2.20322 + 4 5.29160 4+ 1 —7.99752 — 3
3.0 —6.06911 + 4 —2.55591 + 4 1.70562 + 1 —4.71948 — 1
N=1 n=20
c=1 c=12 c=3 ¢ =10
0.1 6.67799 — 2 7.82376 — 2 1.75066 — 1 3.92683 — 1
0.2 1.88413 — 1 2.19147 — 1 4.70668 — 1 9.77061 — 1
0.3 3.44707 — 1 3.96102 — 1 7.93680 — 1 1.44397 + 0
0.4 5.27637 — 1 5.96043 — 1 1.08116 + 0 1.62479 + 0
0.5 7.31901 — 1 8.08692 — 1 1.28498 + O 1.49159 + 0
0.6 9.53337 — 1 1.02496 + 0 1.37488 + 0 1.13769 + 0
0.7 1.18837 + 0 1.23656 + 0 1.34097 + 0 7.13592 — 1
0.8 1.43380 + 0 1.43586 + O 1.19359 + 0 3.52400 — 1
0.9 1.68661 + 0 1.616056 + 0O 9.60016 — 1 1.21545 — 1
1.0 1.94398 + O 1.77112 + 0 6.78651 — 1 1.73276 — 2
1.1 2.20321 + 0 1.89606 + O 3.91685 — 1 —6.46094 — 3
1.2 2.46172 + 0 1.98689 + 0O 1.37762 — 1 —6.17021 — 4
1.3 2.71702 + 0 2.04079 4 0 —5.42516 — 2 4.36117 — 3
1.4 2.96675 + 0 2.05612 + 0 —1.691563 — 1 1.77204 — 3
1.5 3.20863 + 0 2.03244 + 0O —2.065631 — 1 —2.50040 — 3
1.6 3.44053 4 0 1.97051 + 0O —1.79111 — 1 —2.92887 — 3
1.7 3.66041 + 0 1.87221 4+ 0 —1.08794 — 1 5.03281 — 5
1.8 3.86640 4 0 1.74049 + 0 —2.14572 — 2 2.47164 — 3
1.9 4.05675 + 0 1.57927 + 0 5.860056 — 2 1.94403 — 3
2.0 4.,22984 + 0 1.39322 4+ 0 1.12680 — 1 —5.40072 — 4
2.1 4.38426 + 0 1.18771 + 0 1.31527 — 1 —2.13282 — 3
2.2 4.51871 + 0O 9.68543 — 1 1.15060 — 1 —1.41516 — 3
2.3 4.63210 4 0 7.41814 — 1 7.15483 — 2 6.26047 — 4
2.4 4.72350 + 0 5.13706 — 1 1.46127 — 2 1.92158 — 3
2.5 4.79216 + 0 2.90272 — 1 —4.05001 — 2 7.95172 — 4
2.6 4.83763 4+ 0 7.72847 — 2 —8.05860 — 2 —6.86022 — 4
2.7 4.85923 4+ 0 —1.19954 — 1 —9.73081 — 2 —7.63503 — 4
2.8 4.85708 + 0 —2.96762 — 1 —8.86612 — 2 —9.86627 — 4
2.9 4.83107 + 0 —4.49226 — 1 —5.89386 — 2 1.47764 — 4
3.0 4.78140 4+ 0 —5.74265 — 1 —1.69513 — 2 1.50302 — 3
N=1n=1
c=1 c=2 c=3 ¢ =10
0.1 1.78797 — 1 1.86209 — 1 2.26456 4.69201 — 1
0.2 4.81623 — 1 4.08465 — 1 5.77313 1.013% + 0
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TasLe II — Continued

x c =1 c=1 c=35 c =10

0.3 8.11322 — 1 8.30625 — 1 8.81124 — 1 1.10226 4+ 0
0.4 1.09167 + 0O 1.09943 + 0 1.01214 + 0 5.69582 — 1
0.5 1.24498 + 0 1.22371 + 0 8.87650 — 1 —3.54754 — 1
0.6 1.19004 + 0 1.12484 + 0 4.82831 — 1 —1.21477 + O
0.7 8.42479 — 1 7.29666 — 1 —1.63619 — 1 —1.61645 + 0
0.8 1.15744 — 1 —2.61055 — 2 —9.56512 — 1 —1.44879 + 0
0.9 —1.07772 + 0 —1.19460 4 0 —1.76308 4+ O —9.06520 — 1
1.0 —2.82516 + 0 —2.81285 + 0 —2.43994 + 0 —3.26420 — 1
1.1 —5.21224 + 0 —4.90037 + 0 —2.86233 + 0 3.12685 — 2
1.2 —8.32175 + 0 —7.45742 + 0 —2.94990 + 0 1.08983 — 1
1.3 —1.22323 + 1 —1.04640 + 1 —2.68284 + 0 2.38728 — 2
1.4 —1.70172 4+ 1 —1.38798 + 1 —2.10636 + 0 —6.19490 — 2
1.5 —2.27431 + 1 —1.7644 4+ 1 —1.32097 + 0 —06.25964 — 2
1.6 —2.94693 + 1 —2.16792 + 1 —4.62707 — 1 —1.89305 — 4
1.7 —3.72461 + 1 —2.58893 + 1 3.24280 — 1 5.11365 — 2
1.8 —4.61145 + 1 —3.01663 + 1 9.15552 — 1 4.39191 — 2
1.9 =5.61051 + 1 —3.43921 + 1 1.22972 + 0 —3.52397 — 3
2.0 —6.72374 + 1 —3.8H24 + 1 1.24232 + 0 —3.87077 — 2
2.1 —7.95192 + 1 —4.21912 4+ 1 9.87598 — 1 —3.49613 — 2
2.2 —9.20459 + 1 —4.55151 + 1 5.48435 — 1 2.81473 — 3
2.3 —1.07501 + 2 —4.82978 + 1 3.67863 — 2 3.00193 — 2
2.4 —1.23154 + 2 —5.04353 + 1 —4.30799 — 1 3.14921 — 2
2.5 —1.30863 + 2 —5.18371 + 1 —7.57370 — 1 —6.17863 — 4
2.6 —1.57573 + 2 —5.24330 + 1 —8.84163 — 1 —2.95268 — 2
2.9 —1.76214 + 2 —5.21739 + 1 —8.00250 — 1 —1.28822 — 2
2.8 —1.95708 + 2 —5.10350 + 1 —5.41499 — 1 —1.34150 — 3
2.9 —2.15961 + 2 —4.90184 + 1 —1.79916G 1 6.07715 = 3
3.0 —2.36871 + 2 —4.,61486 + 1 1.95783 — 1 2.63666 — 2

N=1 n=1
c =1 c=12 c=3 c=10

0.1 3.17572 = 1 3.23375 — 1 3.58452 — 1 4.61327 — 1
0.2 7.80038 — 1 7.98456 — 1 8.45034 — 1 8.844056 — 1
0.3 1.13929 + 0 1.13924 4+ 0 1.10027 + 0 6.93201 — 1
0.4 1.16268 + 0 1.13700 + 0O 9.00831 — 1 —8.13386 — 2
0.5 7.46367 — 1 (6.88194 — 1 2.60402 — 1 —8.60192 — 1
0.6 —06.41935 — 2 —1.40156 — 1 —6.18349 — 1 —9.72081 — 1
0.7 —9.90830 — 1 —1.04501 + 0 —1.27959 + O —2.01002 — 1
0.8 —1.44413 + 0 —1.42980 4+ 0 —1.15587 + 0 1.02436 + 0
0.9 —4.43333 — 1 —3.60476 — 1 2.92752 — 1 1.92471 + 0
1.0 3.46336 4+ 0 3.46067 4+ 0 3.41429 + 0 1.94059 + 0
1.1 1.22761 + 1 1.16998 + 1 8.22613 + 0 1.12202 + 0
1.2 2.86165 4+ 1 2.63729 + 1 1.43419 + 1 5.54149 — 2
1.3 5.57952 + 1 4.98022 + 1 200872 + 1 —5.92374 — 1
1.4 0.78715 + 1 S.45483 4+ 1 271147 + 1 —5.45072 — 1
1.5 1.59706 + 2 1.33319 + 2 3.15008 + 1 —5.23392 - 2
1.6 246004 + 2 1.98856 + 2 3.34313 + 1 3.78477 — 1
1.7 3.66308 + 2 2.83810 4+ 2 3.20166 + 1 4.06284 — 1
1.8 5.25100 + 2 3.90597 + 2 2.72501 + 1 7.68751 — 2
1.9 731713 + 2 5.21256 4 2 1.96583 + 1 —2.68863 — 1
2.0 9 + 2 6.77206 4+ 2 1.02468 + 1 —3.08683 — 1

95363
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TaBLE II — Continued

N=1n=2
x ¢c=1 c=12 c=135 ¢ =10
2.1 1.32612 + 3 8.59566 + 2 4.17984¢ — 1 —9.67834 — 2
2.2 1.73484 + 3 1.06812 + 3 —8.32684 + 0 1.95130 — 1
2.3 2.23316 + 3 1.30213 + 3 —1.46613 + 1 2.563304 — 1
2.4 2.83336 + 3 1.55981 + 3 —1.76896 + 1 1.16918 — 1
2.5 3.54832 + 3 1.83831 + 3 —1.71224 + 1 —9.81521 — 2
2.6 4.30138 4 3 2.13379 + 3 —1.33267 + 1 —2.49959 — 1
2.7 5.37625 + 3 2.44140 + 3 —7.25156 + 0 —5.82649 — 2
2.8 (G.51688 + 3 2.755638 + 3 —2.34462 — 1 9.65074 — 2
2.9 7.82726 + 3 3.06921 + 3 6.27542 + 0 5.32562 — 2
3.0 9.32135 + 3 3.37554 + 3 1.10027 + 1 1.36992 — 1
N=1n=3
x c=1 c=12 c=35 c=10
0.1 4.70292 — 1 4.74792 — 1 5.03663 — 1 5.60663 — 1
0.2 1.03640 + 0 1.03944 + 0 1.05094 + 0 9.562500 — 1
0.3 1.15261 + 0 1.13873 + 0 1.02612 + 0 4.75116 — 1
0.4 5.87008 — 1 5.49119 — 1 2.80849 — 1 —5.20321 — 1
0.5 —4.34815 — 1 —4.78043 — 1 —7.80431 — 1 —1.03082 + 0
0.6 —1.225567 + 0 —1.23658 + 0 —1.23879 + 0 —3.74929 — 1
0.7 —0.49593 — 1 —0.03408 — 1 —5.28507 — 1 8.87232 — 1
0.8 5.95761 — 1 6.56832 — 1 1.04428 + 0 1.26903 + 0
0.9 1.58393 + 0 1.56393 + 0 1.350056 + 0 —3.80514 — 1
1.0 =3.99973 + 0 —3.99876 + 0 —3.98415 4+ 0 —3.66768 + 0
1.1 —2.94218 + 1 —2.82067 4+ 1 —2.13760 + 1 —6.638056 + 0
1.2 —9.93028 + 1 —9.31025 4+ 1 —5.82850 + 1 —7.12958 + 0
1.3 —2.54877 + 2 —2.33198 + 2 —1.21470 + 2 —4.48170 + 0
1.4 —5.60612 + 2 —5.00166 + 2 —2.14807 + 2 —1.91044 — 1
1.5 —1.11157 + 3 —9.66261 + 2 —3.37164 + 2 3.09018 + 0
1.6 —2.04369 + 3 —1.72812 4 3 —4.80966 + 2 3.47603 + 0
1.7 —3.54344 + 3 —2.91000 + 3 —6.31861 + 2 1.24407 4+ 0
1.8 —5.86049 + 3 —4.66630 + 3 —7.70049 + 2 —1.54042 4 0
1.9 —9.32112 + 3 —7.18302 + 3 —8.72930 + 2 —2.73125 + 0
2.0 —1.43431 + 4 —1.06778 + 4 —9.19104 4 2 —1.43583 + 0
2.1 —2.14517 + 4 —1.53984 + 4 —8.92696 + 2 7.02031 — 1
2.2 —3.12971 + 4 —2.16194 4+ 4 —7.87269 + 2 2.1484 4+ 0
2.3 —4.46725 + 4 —2.96368 + 4 —6.08384 + 2 1.44329 + 0
2.4 —6.25326 + 4 —3.97614 + 4 —3.74068 + 2 —1.90745 — 1
2.5 —8.60136 + 4 —5.23076 + 4 —1.12896 + 2 —1.17683 + 0
2.6 —1.16452 4+ 5 —6.75841 + 4 1.40286 + 2 —1.61055 + 0
2.7 —1.55406 + 5 —8.58796 + 4 3.50030 + 2 —7.92157 — 2
2.8 —2.04672 + 5 —1.07450 4+ 5 4.86619 4+ 2 1.29119 + 0
2.9 —2.66305 + 5 —1.32504 + 5 5.32282 + 2 3.73378 — 1
3.0 —3.42633 + 5 —1.61182 + 5 4.83375 + 2 4.32692 — 1
N=2 n=0
x c=1 c=12 c=35 c=10
0.1 8.11214 — 3 9.30928 — 3 2.21477 — 2 8.00048 2
0.2 4.58035 — 2 5.22724 — 2 1.20067 — 1 4.01321 1
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TasLE II — Continued

3049

N=2 n=0

x c=1 c=12 c=3 ¢ =10

0.3 1.25827 — 1 1.42274 — 1 3.07992 — 1 9.01985 — 1
0.4 2.57171 — 1 2.87029 — 1 5.71015 — 1 1.38094 + 0O
0.5 4.46741 — 1 4.90296 — 1 8.72575 — 1 1.62971 + 0
0.6 6.99877 — 1 7.5234 — 1 1.16320 + 0 1.54032 + 0O
0.7 1.02059 + 0O 1.07049 + 0 1.39112 + O 1.19392 + 0O
0.8 1.41171 + 0 1.43889 + 0 1.51294 + 0 7.25292 — 1
0.9 1.87493 + 0O 1.84932 + 0 1.50259 + 0 3.16554 — 1
1.0 2.41089 + 0 2.29129 + 0O 1.35656 + 0 6.79148 — 2
1.1 3.01924 4+ 0 2.75254 + 0 1.09462 + 0 —2.02873 — 2
1.2 3.69863 + 0 3.2194 + 0 7.56039 — 1 —1.46045 — 2
1.3 4.44678 + 0O 3.67758 + 0 3.91913 — 1 1.04085 — 2
1.4 5.26054 + 0 4.11222 + 0 5.55434 — 2 1.52034 — 2
1.5 6.13588 + 0 4.50887 + O —2.07467 — 1 1.20918 — 3
1.6 7.06802 + 0 4.85377 + 0 —3.67156 — 1 —1.11917 — 2
1.7 8.05139 + 0 5.13443 4+ 0 —4.13815 — 1 —9.67213 — 3
1.8 9.07977 + 0 5.34008 + 0 —3.58514 — 1 1.55354 — 3
1.9 1.01463 + 1 5.46205 4+ 0 —2.20434 — 1 9.62330 — 3
2.0 1.12436 + 1 5.49406 + 0 —6.51947 — 2 6.50298 — 3
2.1 1.23637 + 1 5.43250 + 0 9.35338 — 2 —2.03792 — 3
2.2 1.34985 + 1 5.27657 + 0O 2.12220 — 1 —8.19124 — 3
2.3 1.46391 + 1 5.02833 + 0 2.68832 — 1 —5.06774 — 3
2.4 1.57769 + 1 4.69273 + 0 2.57171 — 1 1.94735 — 3
2.5 1.69026 + 1 4.27721 + 0O 1.86697 — 1 4.94507 — 3
2.6 1.80072 + 1 3.79179 4+ 0O 7.90086 — 2 5.04030 — 3
2.7 1.90816 + 1 3.24856 + 0 —3.78706 — 2 —7.03146 — 4
2.8 2.01167 + 1 2.66139 + 0 —-1.36199 — 1 —6.15562 — 3
2.9 2.11036 + 1 2.04550 + 0 —1.94874 — 1 —1.13042 — 3
3.0 2.20337 4+ 1 1.41675 + 0 —2.03218 — 1 1.09442 — 3

N=2 n=1

x c=1 c=12 c=35 ¢ =10

0.1 3.01525 — 2 3.18266 — 2 4.36114 — 2 1.10168 — 1
0.2 1.63412 — 1 1.71721 — 1 2.27802 — 1 5.00403 — 1
0.3 4.17562 — 1 4.35481 — 1 5.462156 — 1 9.75159 — 1
0.4 7.63468 — 1 7.87547 — 1 9.08386 — 1 1.10096 + 0
0.5 1.12468 + 0 1.14274 + 0 1.16775 + 0 6.371390 — 1
3.6 1.37439 + 0 1.3673¢ + O 1.16137 + 0 —2.87308 — 1
0.7 1.33202 + 0 1.28261 4+ 0 7.56169 — 1 —1.22293 + 0
0.8 7.66020 — 1 6.71043 — 1 —1.09012 — 1 —1.69212 4+ 0
0.9 —6.15776 — 1 —7.14755 — 1 —1.39595 + 0 —1.50113 + 0
1.0 —3.15683 + 0 —3.14077 4+ O —2.96182 + 0 —8.45332 — 1
1.1 —7.25498 4+ 0O —6.87847 4+ 0 —4.57844 4+ 0 —1.47679 — 1
1.2 —1.33501 + 1 —1.21904 4+ 1 —5.97349 + 0 2.35668 — 1
1.3 —2.19659 + 1 —1.93150 + 1 —6.88402 + 0 2.24248 — 1
1.4 —3.36151 + 1 —2.84518 + 1 —7.11308 + 0 3.10851 — 3
1.5 —4.88847 + 1 —3.97466 + 1 —6.57336 + 0 —1.65861 — 1
1.6 —6.83847 + 1 —5.32791 4+ 1 —5.31243 + 0 —1.46461 — 1
1.7 —9.27502 + 1 —6.90514 + 1 —3.50808 + 0 2.53438 — 3
1.8 —1.22634 + 2 —8.69800 + 1 —1.43922 + 0 1.23063 — 1
1.9 —1.58698 + 2 —1.06891 + 2 5.66677 — 1 1.16626 — 1
2.0 —2.01606 + 2 —1.28518 + 2 2.19548 + 0 3.46739 — 3
2.1 —2.52012 + 2 —1.51503 + 2 3.20680 + 0 —9.50870 — 2
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TasLE II — Coniinued

N=2 n=1
x c=1 c=12 c=3 ¢=10
2.2 —3.105556 + 2 —1.75404 4 2 3.47937 + 0 —1.00215 — 1
2.3 —3.77844 + 2 —1.99703 + 2 3.03214 4+ 0 —=1.01271 — 2
2.4 —4.54453 + 2 —2.23824 + 2 2.01698 + 0 7.86142 — 2
2.5 —5.40910 + 2 —2.47136 + 2 6.84586 — 1 6.25620 — 2
2.6 —6.37687 + 2 —2.68987 + 2 —6.69192 — 1 1.86542 — 2
2.7 —7.45191 + 2 —2.88715 + 2 —1.76387 + 0 —2.83514 — 2
2.8 —8.63756 + 2 —3.05673 + 2 —2.39029 4+ 0 —8.09642 — 2
2.9 —9.93633 + 2 —3.19263 + 2 —2.45263 + 0 —6.05693 — 3
3.0 —1.13498 + 3 —3.28023 + 2 —1.97549 + 0 4.94337 — 2

N=2 n=2
x ¢c=1 c=12 c=3 c =10
0.1 6.92988 — 2 7.12673 — 2 8.51196 — 2 1.31062 — 1
0.2 3.52496 — 1 3.60980 — 1 4.18221 — 1 5.67604 — 1
0.3 8.01544 — 1 8.14659 — 1 8.93117 — 1 9.45356 — 1
0.4 1.20746 + 0 1.21237 + 0 1.21221 + 0 7.67342 — 1
0.5 1.27474 + 0 1.25311 + 0 1.05256 + 0O —3.76902 — 2
0.6 7.57995 — 1 7.02242 — 1 2.84685 — 1 —0.13196 — 1
0.7 —3.27092 — 1 —3.04312 — 1 —8.22806 — 1 —1.05173 + 0
0.8 —1.41364 4+ 0O —1.43709 + 0 —1.49256 + 0 —7.12440 — 2
0.9 —1.01239 + 0 —9.55456 — 1 —4.82515 — 1 1.57998 + 0
1.0 3.74003 + 0 3.73507 + 0O 3.69332 + 0O 2.86776 4+ 0
1.1 1.76108 + 1 1.68770 4+ 1 1.23963 + 1 2.91426 4 0
1.2 4.78738 + 1 4.45904 + 1 2.64247 + 1 1.66265 + 0
1.3 1.04979 + 2 9.51393 + 1 4.56130 + 1 —6.78936 — 2
1.4 2.03280 + 2 1.79119 + 2 6.85921 4+ 1 —1.18788 + 0
1.5 3.61809 + 2 3.09537 + 2 9.27854 + 1 —1.12986 + 0
1.6 6.05086 + 2 5.01768 + 2 1.14715 + 2 —2.05881 — 1
1.7 9.63954 + 2 7.73367 + 2 1.30638 + 2 7.08003 — 1
1.8 1.47641 + 3 1.14368 + 3 1.36797 + 2 8.79453 — 1
1.9 2.18846 4+ 3 1.63343 + 3 1.31147 + 2 3.17527 — 1
2.0 3.15489 + 3 2.26396 + 3 1.12984 + 2 —4.11104 — 1
2.1 4.44006 + 3 3.05647 + 3 8.37540 + 1 —7.13268 — 1
2.2 6.11858 + 3 4.03107 + 3 4.68923 4 1 —3.71699 — 1
2.3 8.27598 + 3 5.20576 + 3 7.34200 + 0 2,40288 — 1
2.4 1.10092 + 4 6.59547 + 3 —2.92519 + 1 6.17233 — 1
2.5 1.44270 + 4 8.21064 + 3 —5.75607 + 1 2.78319 — 1
2.6 1.86502 + 4 1.005656 + 4 —7.35509 + 1 —1.46009 — 1
2.7 2.38122 + 4 1.21320 + 4 —7.52754 + 1 —2.33031 — 1
2.8 3.00582 + 4 1.44287 + 4 —6.32751 + 1 —4.05877 — 1
2.9 3.75458 + 4 1.69309 + 4 —4.05587 4+ 1 1.20902 — 2
3.0 4.64442 + 4 1.96136 + 4 —1.18748 + 1 4.27288 — 1

N=2 n=3
x c=1 c=2 c=35 ¢c=10
0.1 1.26968 — 1 1.29109 — 1 1.44081 — 1 1.94166 — 1
0.2 5.91772 — 1 5.99200 — 1 6.48662 — 1 7.75163 — 1
0.3 1.13308 + 0 1.13787 + 0 1.15991 + 0 1.06828 + 0
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Tasre II — Continued

N=2 n=3

x c=1 c =12 c=3 ¢ =10

0.4 1.22242 + 0 1.20735 + 0 1.08268 + 0 4.42410 — 1
0.5 5.02125 — 1 4.61442 — 1 1.72834 — 1 —7.08002 — 1
0.6 —7.28650 — 1 —7.67417 — 1 —9.99672 — 1 —1.12281 + 0
0.7 —1.34994 + 0 —1.33047 + 0 —1.20442 4 O —6.35200 — 2
0.8 —1.55815 — 1 —0.78805 — 2 3.13440 — 1 1.38983 + 0
0.9 1.72855 + 0 1.73119 + 0 1.69507 + 0 6.83573 — 1
1.0 —4.24197 + 0 —4.23990 + 0 —4.22216 + 0 —4.05639 + 0
1.1 —4.29825 + 1 —4. 14973 + 1 —3.22663 + 1 —1.17483 + 1
1.2 —1.69966 + 2 —1.60436 + 2 —1.057656 + 2 —1.81766 + 1
1.3 —4.92189 + 2 —4.54612 + 2 —2.55016 + 2 —1.86221 + 1
1.4 —1.19761 + 3 —1.08177 + 3 —5.12603 + 2 —1.15388 + 1
1.5 —2.59483 + 3 —2.28070 + 3 —9.056339 + 2 —3.41475 — 1
1.6 —5.16494 + 3 —4.44652 + 3 —1.44608 + 3 8.52760 + 0
1.7 —0.62735 + 3 —8.07479 + 3 —2.123564 + 3 1.01259 + 1
1.8 —1.70216 + 4 —1.38880 + 4 —2.80670 + 3 4.31901 4+ 0O
1.9 —2.88067 + 4 —2.28281 + 4 —3.69313 + 3 —3.63918 + 0
2.0 —4.69805 + 4 —3.61016 + 4 —4.41450 + 3 —7.22580 + 0
2.1 —7.42193 + 4 —5.52126 + 4 —4.04883 + 3 —5.31249 + 0
2.2 —1.14040 + 5 —8.19885 + 4 —5.18833 + 3 8.57079 — 1
2.3 —1.70988 + 5 —1.18598 + 5 —5.05014 + 3 5.14940 + 0
2.4 —2.50841 + 5 —1.67557 + 5 —4.49592 + 3 5.60742 + 0
2.5 —3.60853 + 5 —2.31714 + 5 —3.54624 + 3 5.87060 — 1
2.6 —5.10006 + 5 —3.14232 + 5 —2.28432 + 3 —4.18090 + 0
2.7 —7.09289 + 5 —4.18531 + 5 —8.50402 + 2 —2.39443 + 0
2.8 —-0.72020 4+ 5 —5.48229 + 5 5.76599 + 2 —1.90159 + 0
2.9 —1.31415 + 6 —7.07072 + 5 1.80814 + 3 6.87950 — 1
3.0 + G —8.08762 + 5 2.67521 + 3 4.80391 + 0

—1.75464

I am indebted to Mrs. E. Sonnenblick for programming and carrying
out the computations reported here.

APPENDIX A

A Perturbation Scheme

We treat briefly the following problem. Eigenfunctions u, and eigen-
values A, of an operator L are assumed known. That is, we have

Lu, + N, = 0, n=2012 .... (114)

It is desired to find eigenfunctions ¢, and eigenvalues x., of the perturbed
equation

(L — M)y + x¢ = 0. (115)
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It is assumed that the w, satisfy the boundary condition to be imposed
on the ¢’s and that the u, are complete in some appropriate sense. We
proceed further in a purely formal manner.

Substitute the series

Yo = U + _El €Q; (116)
Xn = A + 2 €a; (117)
=1

into (115). Here in the notation we have suppressed the dependence of
the @; and a; on n. By equating to zero the coefficients of distinet powers
of ¢, we find

Lu, + M, = 0 (118)
LQ; + MQ; = MQ,_, — z_‘l, Qi (119)
j=1,2, ...

where we define Q, = u, .

Now it frequently happens that the operator M is such that Mwu, can
be expressed as a finite linear combination of the »’s with constant coef-
ficients. We assume this to be the case and write

=

i
M‘H.“ = n i’“‘ﬂ ia y
ZI’Y + (120)

n=20,1,2,....

Here « is a positive integer, [ a nonnegative integer, and the superscript
i on v is not an exponent, but a label.
If the u, are linearly independent, formal solution of system (119)
is now straightforward. Set
il

QJ' = Z ‘4frjuri+ku

=l

A =0 (121)

i=12 ....
The A’s of course depend on n, but for simplicity we have suppressed
this fact in the notation. Again the superseript is a label, not an ex-

ponent, Substitute (121) and (120) into (119). Setting the coefficient
of 4, equal to zero in the resultant expression yields
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i
a; = E A_k"gl"rn—kuk, J=12 ... (122)

k=—1

Requiring the coefficient of 1, ;ma to vanish gives

) 1
i~k -1 k
Z a‘i.'f1 m - E A m—k  Yn4+(m—k)a
k=1 k=—1

m= —jl,—jl+1,..,06 =12 ....

(An-l-ma - hu)f{ mj
(123)

Here we have adopted the conventions

if either
| k| > jl, or ak < —n, or k=0 and j =12, ...
Al=1, A'=0 k#0,a =0

Equations (122) and (123) together with these conventions permit
successive determination of the a’s and A’s, The case | = 1 occurs fre-
quently. The first few coefficients for this case are given below where
we have set

By = ags — Ml

0
ty = Yu
-‘4 —11 = _h*a’Ynﬁ]
-A 11 = - h‘a’YJll
1 -1 =1 1
as = _[ha'Yn Yu+a + h—a'Yn Yu—a 1

AL = hosah_ays Youma
A = (hea) ™y [=7" 4 Yia |
A = () [= 7' 4 Yora)
As® = haaha¥n Yosa
as = (ha)¥a'vosa (=72 4 vus’) + (hea) ¥ Yuea (=70 + Yna')
AP = ha A1) = Yora') + @A) = vipaa A5
A = hooA_l (v — Yoea) + @A — Yuza A_s]
ay = :113')fn+nr—l + -‘l—lﬂ‘Yu—nl-

More generally for this case one finds
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] / ‘ =1
Asi’ = (—1)"1_[[ hika¥nt—tya s J=12 ...

i—1
i i1 o P
Apny’ = Asgn ‘Zlh'ﬂ'n[al — Ynika |, J=23 ...

=2

Ayigy’ = Ayig™" ; hita (124)
X a2 4 hisnyad¥osasna Yosta
+ (@ — Yozra) J;Zl haralay — vaira)],
J=23,4,....
APPENDIX B

Evaluation of an Integral

We establish here the formula (43). Let

1
Fya(x) = fu Jw () VayTy. (y)dy
(125)

1
= .[0 KN(.Ty) T.v.u(’.f)‘)d.'l

on using the notation of (21). Then
2@ o d e ] .
[.1, qr + 21’(?1: + (x x) | Fya(2)
1
- j; TraWy Ky (@y) + 20y’ () + (2° = ) Kn(ap)ldy o0

1
- jn. TyaI(=2"" =} + N* + 2

— ) Kylay) + 2xyKy' (xy)ldy

by (23). Here primes denote differentiation with respect to the argu-

ment indicated.
Now

d _ 72) dT'N,n(y) + (% - N2

— (1 i i

dy + x) -’N,u(‘y) = O
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with y given by (26). Multiply this equation by Ky(xy) and integrate
from zero to one. There results

0= [ Kot [»(1 - T + (! _yzN--I-x) T |

1
= fu Ty a(y) [% (1 - )‘K (aey) +( )AN(’CJ)]‘P’J

where we have integrated by parts and made use of the fact that
Ky(0) = 7%.(0) = 0. Carrying out the indicated differentiation, we
find

0

1
f“ Tw.aly) [(l — KN (xy) — 2xyKy' (xy)

- N° .
+ (4 i + x) Ix,\-(.ry):l dy (127)

— [ 7',\5.,(;})[(—.1‘232 — 14 N+ 2 = ) Ky(xy)

Il

+ 2ay Ky (xy)dy.

Equations (126) and (127) give

|:' a"+.) —+{ <N+2ra+.]—)(N+-fl+ )1j|rm1.(l)—()
dat dr 2 /

The only solution of this equation that vanishes for v = 0 is

J xransr (@)
F.\',n(-i) =k \/? .

Using (125), we then have

-IN I £ 1 R
I —4#(0 = fu (e N ayTx o (y)dy. (128)

- . . . N+2a+d
To determine &, we have only to compare the coefficients of x Fant

on both sides of (128). In this way we find
I -
28T (N 4 20 + 2)

( —1 ) ! fl N+2n+3
= Ty n ly.
INAIn] (A{ + n + l) al Jo Y N, (y)[ y

(129)
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The integral here can be evaluated by using (27), (28) and known
properties of the Jacobi polynomials. We have

1
j; yN+2n+}f[1Nln(y)dy

-1 1
_ (n + N) f D (VO (1 9
0

n
; —1 1
— g4t (n ": N) [1 (1 — "1 —w)"P,"" (wdu.

Now the coefficient of »" in (1 — %)" is (—1)" and the coefficient of
n s (N,0) . 2n + N n . -
u"in P, (u) is n 2" [Ref. 8, Vol. II, p. 169, Eq. (5)],

80

(1 —w)" = (=1)2~ P () + "E_l AP ()
" _(2n+N) " “ = s

n

It follows, then, that

1
f (1 — w1 — w)"P."™" (u)du
1

_1 uZn
(=D f (1 — )P, () P, () du

: (”” )

(_1) r12n+N+1
(2n+N)("n+N+1)

where we have used the orthogonality of the Jacobi polynomials and
the known normalization integral [see Ref. 5, page 68, Eq. (4.3.3), for
example]. Combining these results, (129) yields

b — n+ N\
t n

and together with (128) this establishes (43).
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