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Abstract

The aim of this article is to present a time–frequency theory for orthogonal polynomials on the
interval [−1, 1] that runs parallel to the time–frequency analysis of bandlimited functions developed
by Landau, Pollak and Slepian. For this purpose, the spectral decomposition of a particular compact
time–frequency operator is studied. This decomposition and its eigenvalues are closely related to the
theory of orthogonal polynomials. Results from both theories, the theory of orthogonal polynomials and
the Landau–Pollak–Slepian theory, can be used to prove localization and approximation properties of
the corresponding eigenfunctions. Finally, an uncertainty principle is proven that reflects the limitation
of coupled time and frequency locatability.
c⃝ 2012 Elsevier Inc. All rights reserved.

Keywords: Orthogonal polynomials; Time–frequency analysis; Landau–Pollak–Slepian theory; Uncertainty principles

1. Introduction

In the beginning of the 1960s, Landau, Pollak and Slepian developed a remarkable theory
on the time–frequency analysis of band-limited functions. In a series of papers [23–25,37,38,40]
they studied the interplay between the two projection operators PA and PB defined on the Hilbert
space L2(R) for two intervals A, B ⊂ R by

PA f := χA f, PB f := χB f̂ , f ∈ L2(R).

E-mail address: erb@math.uni-luebeck.de.

0021-9045/$ - see front matter c⃝ 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2012.10.009

http://www.elsevier.com/locate/jat
http://dx.doi.org/10.1016/j.jat.2012.10.009
http://www.elsevier.com/locate/jat
mailto:erb@math.uni-luebeck.de
http://dx.doi.org/10.1016/j.jat.2012.10.009


W. Erb / Journal of Approximation Theory 166 (2013) 56–77 57

They analyzed the composition PB PA PB and its spectrum and found that the eigenfunctions
of the compact self-adjoint operator PB PA PB are well-known special functions: the prolate
spheroidal wave functions. Using these particular eigenfunctions as a basis for the band-limited
functions in L2(R) on the other hand, they were able to prove a series of interesting results
concerning the approximate concentration of functions in the time and the frequency domain,
as well as an uncertainty principle involving a lower bound for the angle between the vectors
PA f and PB f . An overview of these results can be found in the articles [22,39] and the book
[5, Section 2.9].

Later on, the Landau–Pollak–Slepian-theory was extended to a variety of different settings.
Among others, there exist analogies on the unit circle [39], on discrete groups [18] and on
symmetric spaces like the unit sphere [19,36]. Various generalizations of this theory can be
formulated, for instance by considering eigenfunctions of particular Sturm–Liouville differential
equations [42] or using reproducing kernel Hilbert spaces [43]. Particularly interesting for this
article is the fact that there exists also an extension of this theory to orthogonal polynomials
defined on subsets of the real line [32].

The aim of this paper is to present a time–frequency analysis for orthogonal polynomials on
the interval [−1, 1] that runs parallel to the Landau–Pollak–Slepian theory described in [32]. For
the frequency localization of a function f in the weighted L2-space L2([−1, 1], w) we will use,
as in [32], an operator Pm

n that projects the function f onto a finite dimensional polynomial space
Π m

n . However, in contrast to the theory outlined above, we will not use a projection operator PA
to describe the space localization of f . Instead, we will consider the multiplication operator Mx
defined by multiplying the function f with the variable x .

Compared to the projection operator PA, the usage of the multiplication operator Mx leads to a
time–frequency analysis in which the localization of f at the boundary points x = 1 and x = −1
of the interval [−1, 1] plays an important role. For a normalized function f ∈ L2([−1, 1], w),
the mean value ε( f ) = ⟨Mx f, f ⟩w is located in the interval (−1, 1). The closer ε( f ) gets to 1
or −1, the more the L2-mass of f is concentrated at x = 1 or x = −1, respectively. Therefore,
the mean value ε( f ) can be considered as a measure on how well the function f is localized at
the boundary points x = 1 or x = −1. Particularly this property of ε( f ) implies the possibility
to construct polynomials in Π m

n that are optimally localized at the boundary of [−1, 1] (see
[7,16,33]).

The principal examination object for the time–frequency analysis in this paper is the finite
dimensional self-adjoint operator Pm

n Mx Pm
n in combination with its eigenvalues xm

n,k, 1 ≤

k ≤ n − m + 1, and corresponding eigenfunctions ψm
n,k . One of the main advantages of

the operator Mx in place of PA is the fact that the spectral decomposition of Pm
n Mx Pm

n
is closely linked to the theory of orthogonal polynomials. This relation makes it possible
to use a very large repertoire of techniques and results from the theory of orthogonal
polynomials to analyze the properties of the spectral decomposition of Pm

n Mx Pm
n . In the

spectral Theorem 2.1, we will see that the eigenvalues of Pm
n Mx Pm

n are precisely the roots
of the associated orthogonal polynomials pn−m+1(x,m). Also the eigenfunctions can be stated
explicitly. In the case m = 0, they correspond to the fundamental polynomials of Lagrange
interpolation.

A second advantage of using the operator Mx consists in the fact that the value ε( f ) represents
also the expectation value of the L2-density f . The density f can be considered as localized
at the expected value ε( f ) if the variance var( f ) is small. Therefore, we can investigate the
localization properties of the eigenfunctions ψm

n,k of Pm
n Mx Pm

n by considering the variances
var(ψm

n,k). In order to show that the functionals var(ψm
n,k) are small when n is large, we will use
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results of Nevai, Zhang and Totik [29,30] on uniform subexponential growth. The major result in
this context is Theorem 3.6. It states that if the weight function w of the space L2([−1, 1], w) is
in a particular subclass of the Nevai class M(0, 1), then the variance of the eigenfunctions ψm

n,k
tends to zero as n → ∞.

In Section 4, we will analyze how the decomposition of a bandlimited function f ∈ Π m
n in the

single eigenfunctions ψm
n,k can be used to approximate functions that are localized at a point or a

subinterval of [−1, 1]. In this case, not all the eigenfunctions ψm
n,k are needed to approximate

the function f , but just those that are situated in the region in which f is concentrated.
In Theorems 4.1 and 4.3 we will give simple error estimates for such approximations if
the function f is localized in a certain area or at a particular point of the interval [−1, 1],
respectively.

Finally, we will prove an uncertainty relation for orthogonal polynomials involving the
operators Mx and Pm

n . This relation can be considered as an extension of the angular uncertainty
principle in the Landau–Pollak–Slepian theory. For a normalized function f ⊂ L2([−1, 1], w),
the determining quantities of the uncertainty relation are the norm ∥Pm

n f ∥w and again the mean
value ε( f ). The norm ∥Pm

n f ∥w gives a measure on how well the function f is concentrated in
the polynomial subspace Π m

n . On the other hand the value ε( f ) can be seen as a measure of the
localization of f at the boundary points x = −1 and x = 1. The main result in the last section
is Theorem 5.5 claiming that for a normalized function f ∈ L2([−1, 1], w) it is impossible that
∥Pm

n f ∥w and |ε( f )| are both close to 1. In particular, this result implies that if |ε( f )| is too close
to 1, f cannot be a polynomial in Π m

n .

2. The spectral decomposition of the operator Pm
n Mx Pm

n

We consider the Hilbert space L2([−1, 1], w) with the inner product

⟨ f, g⟩w :=

 1

−1
f (x)g(x)w(x)dx,

and a positive weight function w having finite moments
 1
−1 xnw(x)dx, n ∈ N. By {pl}

∞

l=0, we
denote the family of polynomials pl of degree l that are orthonormal on [−1, 1] with respect
to the inner product ⟨·, ·⟩w. Further, we assume that the polynomials pl are normalized such
that the coefficient of the monomial x l is positive. Then, the family {pl}

∞

l=0 defines a complete
orthonormal set in the Hilbert space L2([−1, 1], w) (cf. [41, Section 2.2]). By Πn , we denote
the polynomial space spanned by the polynomials pl up to degree n, and by Π m

n the polynomial
wavelet space spanned by the polynomials pl ,m ≤ l ≤ n.

For a normalized function f ∈ L2([−1, 1], w), ∥ f ∥w = 1, we define the mean value ε( f )
and the variance var( f ) by

ε( f ) :=

 1

−1
x | f (x)|2w(x)dx, (1)

var( f ) :=

 1

−1
(x − ε( f ))2| f (x)|2w(x)dx =

 1

−1
x2

| f (x)|2w(x)dx − ε( f )2. (2)

We are now going to introduce a time–frequency analysis for functions f ∈ L2([−1, 1], w)

based on the following two operators:
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(Mx f )(x) := x f (x), (3)

(Pm
n f )(x) :=

n
l=m

⟨ f, pl⟩w pl(x). (4)

If m = 0, we write Pn instead of P0
n . The multiplication operator Mx as well as the orthogonal

projection Pm
n onto Π m

n are both self-adjoint and bounded operators on the Hilbert space
L2([−1, 1], w). Therefore, also the composition

Pm
n Mx Pm

n (5)

is a bounded and self-adjoint operator on L2([−1, 1], w). Moreover, since Pm
n is compact,

Pm
n Mx Pm

n is also a compact operator. Hence, by the Hilbert–Schmidt theorem the spectrum
of the operator Pm

n Mx Pm
n is discrete (it is even finite) and the eigenfunctions form an

orthogonal basis of L2([−1, 1], w) (cf. [34, Theorem VI.16]). The subsequent Theorem 2.1
will illustrate that the eigenvalues and eigenfunctions of Pm

n Mx Pm
n are well-known in the

literature.
For a description of the spectral decomposition of Pm

n Mx Pm
n , we need first of all the notion

of associated polynomials. We know that the orthonormal polynomials pl satisfy the three-term
recurrence relation (cf. [17, Section 1.3.2])

bl+1 pl+1(x) = (x − al)pl(x)− bl pl−1(x), l = 0, 1, 2, 3, . . . (6)

p−1(x) = 0, p0(x) =
1
b0
,

with coefficients al ∈ R and bl > 0. For m ∈ N, the associated polynomials pl(x,m) on
the interval [−1, 1] are then defined by the shifted recurrence relation (see [17, Section 1.3.4],
[21, Section 2.10])

bm+l+1 pl+1(x,m) = (x − am+l) pl(x,m)− bm+l pl−1(x,m), l = 0, 1, 2, . . . , (7)

p−1(x,m) = 0, p0(x,m) = 1.

For m = 0, we have the identity, pl(x, 0) = b0 pl(x). The polynomials pl(x) and pl(x,m) can
be described with help of the symmetric Jacobi matrix Jm

n , 0 ≤ m ≤ n, defined by

Jm
n =



am bm+1 0 0 · · · 0
bm+1 am+1 bm+2 0 · · · 0

0 bm+2 am+2 bm+3
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 bn−1 an−1 bn
0 · · · · · · 0 bn an


. (8)

If m = 0, we write Jn instead of J0
n . Then, in view of the three-term recurrence formulas (7), the

polynomials pl and pl(x,m) can be written as (cf. [21, Theorem 2.2.4])

pl(x) =
1

b0b1 · · · bl
det(x1l − Jl−1), (9)

pl(x,m) =
1

bm+1bm+2 · · · bm+l
det(x1l − Jm

m+l−1), (10)
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where 1l denotes the l-dimensional identity matrix. We can now explicitly state the spectral
decomposition of the operator Pm

n Mx Pm
n .

Theorem 2.1. The operator Pm
n Mx Pm

n on L2([−1, 1], w) has the spectral decomposition

Pm
n Mx Pm

n f =

n−m+1
k=1

xm
n,k⟨ f, ψm

n,k⟩wψ
m
n,k . (11)

For m ≥ 1, the eigenvalues xm
n,k denote the n − m + 1 roots of the associated polynomial

pn−m+1(x,m) and the eigenfunctions ψm
n,k have the explicit form

ψm
n,k(x) = κm

n,k

bn+1 pn+1(x)pn−m(xm
n,k,m)+ bm pm−1(x)

x − xm
n,k

, (12)

with the normalizing constant

κm
n,k :=

 n
l=m

pl−m(x
m
n,k,m)2

−
1
2

. (13)

For m = 0, the eigenvalues xn,k correspond to the n + 1 roots of the polynomial pn+1(x) and
the eigenfunctions ψn,k correspond, up to a normalizing factor, to the fundamental polynomials
of Lagrange interpolation, i.e.

ψn,k(x) = κn,k pn(xn,k)bn+1
pn+1(x)

x − xn,k
, (14)

where

κn,k :=

 n
l=0

pl(xn,k)
2
−

1
2

. (15)

Proof. We consider the projection Pm
n f of the function f onto the subspace Π m

n in terms of
the expansion Pm

n f =
n

l=m cl pl with the coefficients cl = ⟨ f, pl⟩w. Using the three term
recurrence relation (7) it is straightforward to show (see [7, Lemma 2.7]) that the mean value
ε(Pm

n f ) of Pm
n f can be written as

⟨Pm
n Mx Pm

n f, f ⟩w = ⟨Mx Pm
n f, Pm

n f ⟩w = ε(Pm
n f ) = cH Jm

n c, (16)

where cH denotes the conjugate transpose of the vector c = (cm, . . . , cn)
T . Thus, the eigenvalues

of Pm
n Mx Pm

n in Π m
n ⊂ L2([−1, 1], w) correspond to the eigenvalues of the Jacobi matrix Jm

n . On
the other hand, by Eq. (10) the eigenvalues of Jm

n are exactly the roots xm
n,k, k = 1, . . . , n−m +1,

of the associated polynomial pn−m+1(x,m). The eigenvector ck corresponding to the root xm
n,k

is simple and can be computed via the three-term recursion formula (7) as

ck =

1, p1(x

m
n,k,m), . . . , pn−m(x

m
n,k,m)

T
. (17)

The corresponding normalized eigenfunction ψm
n,k of Pm

n Mx Pm
n can then be written as

ψm
n,k(x) = κm

n,k

n
l=m

pl−m(x
m
n,k,m)pl(x), (18)
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with the normalizing constant κm
n,k given in (13). By an alteration of the classical Christoffel–

Darboux formula (see [7, Lemma 3.1]), the eigenfunctions ψm
n,k for m ≥ 1 have the explicit

form

ψm
n,k(x) = κm

n,k

bn+1 pn+1(x)pn−m(xm
n,k,m)+ bm pm−1(x)

x − xm
n,k

.

For m = 0, we get directly by the Christoffel–Darboux formula (see [3, Chapter 1, Theorem 4.5])
that

ψn,k(x) = κn,kbn+1
pn(xn,k)pn+1(x)

x − xn,k
. �

Remark 2.2. In the literature, the spectral Theorem 2.1 is well-known for the case m = 0 (cf.
[1, Lemma 8.4] and [35, Proposition 1.3.1]). For the more general case m ≥ 0, an equivalent
representation of Theorem 2.1 is the eigenvalue decomposition Jm

n ck = xm
n,kck of the matrix Jm

n
(see [17, Section 1.3]). To the best of the authors knowledge, the explicit formulas (12) of the
eigenfunctions ψm

n,k,m ≥ 1, can be considered as novel.

Remark 2.3. The eigenfunctions {ψm
n,k}

n−m+1
k=1 of the operator Pm

n Mx Pm
n form an orthonormal

basis of the polynomial space Π m
n . Hence, we can expand polynomials P ∈ Π m

n as

P(x) =

n−m+1
k=1

⟨P, ψm
n,k⟩wψ

m
n,k(x).

In the case m = 0 the functions ψn,k correspond to the fundamental polynomials of Lagrange
interpolation and can be described through the Christoffel–Darboux kernel (see [27, (1.1.9)]
and formula (18)). The functions ψn,k are used in [12,13] as particular orthogonal scaling
functions in a wavelet decomposition of a function f ∈ L2([−1, 1], w). If m ≥ 1, the
construction of the wavelet basis functions in these two papers differs however from the
eigenfunctions ψm

n,k considered in this article. For a general overview on polynomial frames
and polynomial wavelet decompositions. we further refer to the articles [11,28] and the book
[27].

Remark 2.4. It was specified in the introduction that the mean value ε( f ) can be interpreted
as a measure on how localized the function f is on the boundary points x = 1 and x = −1
of [−1, 1]. In the following, we will say that a function f is localized at x = 1 or x = −1 if
the mean value ε( f ) approaches 1 or −1, respectively. For a polynomial P ∈ Π m

n , the mean
value ε(P) can be written as ε(P) = ⟨Pm

n Mx Pm
n P, P⟩w. Precisely this mean value ε(P) was

used in [6,7] to construct polynomials in Πn and Π m
n that are optimally space localized at the

boundary points x = 1 and x = −1 of the interval [−1, 1]. These optimal polynomials are
exactly the eigenfunctions ψm

n,max and ψm
n,min in Theorem 2.1 corresponding to the largest and

the smallest eigenvalue of the operator Pm
n Mx Pm

n . By (16), we have for the largest eigenvalue of
Pm

n Mx Pm
n the relation

xm
n,max = max

P∈Π m
n ,∥P∥w=1

⟨Pm
n Mx Pm

n P, P⟩w = max
cH c=1

cH Jm
n c.
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This characterization is thoroughly used in [16] to get estimates for the largest zero of orthogonal
polynomials.

Taking a step further, we can also consider the orthogonal complement Π m
n ⊖ span{ψm

n,max} of
ψm

n,max in Π m
n . Then, the spectral Theorem 2.1 says that the polynomial in Π m

n ⊖ span{ψm
n,max}

that is best localized at x = 1 is the eigenfunction ψm
n,max−1 corresponding to the second

largest eigenvalue xm
n,max−1 of Pm

n Mx Pm
n . Hence, repeating this argumentation, Theorem 2.1

produces a chain of elementary orthonormal basis functions ψm
n,k in which the k-th element is

worse concentrated at x = 1 than the (k + 1)-th element ψm
n,k+1 but better than the (k − 1)-th

element ψm
n,k−1. The measure of the corresponding localization is given by the mean value

ε(ψm
n,k) = xm

n,k .

Example 2.5. We consider the orthonormal Chebyshev polynomials tn of first kind defined by
(see [17, pp. 28–29])

t0(cos t) =
1

√
π
, tn(cos t) =


2
π

cos(nt), n ≥ 1, cos t = x .

The roots of the Chebyshev polynomials tn+1 are given by xn,k =cos 2n−2k+3
2n+2 π, k =1, . . . , n +1

(see [41, (6.3.5)]). The normalized associated polynomials tn(x,m),m ≥ 1, correspond to the
Chebyshev polynomials un of the second kind given by (see [17, pp. 28–29])

un(cos t) =
sin(n + 1)t

sin t
, n ≥ 0.

The zeros of the polynomial un−m+1 are given by xm
n,k = cos n−m+2−k

n−m+2 π, k = 1, . . . , n − m + 1.
Hence, by the formulas (12) and (14) we get for the eigenfunctions ψm

n,k the following explicit
representation

ψn,k(cos t) =
κn,k

π

cos n(2n−2k+3)π
2n+2 cos(n + 1)t

cos t − cos 2n−2k+3
2n+2 π

,

ψm
n,k(cos t) =

κm
n,k

√
2π

(−1)n−m−k+1 cos(n + 1)t + cos(m − 1)t

cos t − cos n−m+2−k
n−m+2 π

, m ≥ 1.

The constants κn,k can be computed explicitly and are given as (see [27, Formula (1.1.17)])

(κn,k)
−2

=
2n + 1 + u2n(xn,k)

2π
.

Some of the eigenfunctions ψm
n,k are illustrated in Fig. 1.

3. The localization of the eigenfunctions of Pm
n Mx Pm

n

In this section, we are going to investigate localization properties of the eigenfunctions
ψm

n,k . First of all, we know from [7, Lemma 2.7] that the mean value ε(P) of a polynomial
P(x) =

n
l=m cl pl(x) can be written as ε(P) = cH Jm

n c, where c = (cm, cm+1, . . . , cn)
T . A

similar characterization can be found for the variance var(P).

Lemma 3.1. For a normalized polynomial P(x) =
n

l=m cl pl(x), we have the following
characterization of the variance var(P):
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Fig. 1. Some eigenfunctions ψm
n,k of the operator Pm

n Mx Pm
n for the Chebyshev polynomials of first kind.

var(P) = cH
[Jn]

2c + b2
n|cn|

2
− (cH Jnc)2, if P ∈ Πn,

var(P) = cH
[Jm

n ]
2c + b2

m |cm |
2
+ b2

n+1|cn|
2
− (cH Jm

n c)2, if P ∈ Π m
n , m ≥ 1,

with the coefficient vectors c = (cm, . . . , cn)
T .
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Proof. For m ≥ 1, we denote by pm
n (x) the vector (pm(x), . . . , pn(x))H . Then, using the three-

term recurrence formula (7) and the orthonormality relation of the polynomials pl , we get for
P(x) =

n
l=m cl pl(x) ∈ Π m

n , ∥P∥w = 1:

var(P) =

 1

−1

 n
l=m

cl xpl(x)


2

w(x)dx − ε( f )2

=

 1

−1

 n
l=m

cl

bl+1 pl+1(x)+ al pl(x)+ bl pl−1(x)


2

w(x)dx − ε( f )2

=

 1

−1
cH Jm

n pn
m(x) · pn

m(x)
H Jm

n cw(x)dx + b2
m |cm |

2
+ b2

n+1|cn|
2
− ε( f )2

= cH Jm
n

 1

−1
pi (x)p j (x)w(x)dx

m

i, j=1

Jm
n c

+ b2
m |cm |

2
+ b2

n+1|cn|
2
− (cH Jm

n c)2

= cH
[Jm

n ]
2c + b2

m |cm |
2
+ b2

n+1|cn|
2
− (cH Jm

n c)2.

For m = 0, the statement follows analogously but without the term b2
m |cm |

2. �

Now, we get the following formulas for the expectation value and the variance of the
eigenfunctions ψm

n,k .

Lemma 3.2. For the normalized eigenfunction ψm
n,k, 1 ≤ k ≤ n − m + 1, corresponding to the

eigenvalue xm
n,k , we have

ε(ψn,k) = xn,k, var(ψn,k) = b2
n+1

pn(xn,k)
2

n
l=0

pl(xn,k)2
, (19)

ε(ψm
n,k) = xm

n,k, var(ψm
n,k) =

b2
n+1 pn−m(xm

n,k,m)2 + b2
m

n−m
l=0

pl(xm
n,k,m)2

. (20)

Proof. The statements for the mean value ε(ψm
n,k) follow directly from the definition of the ψm

n,k
as eigenfunctions of the operator Pm

n Mx Pm
n .

For the variance var(ψm
n,k) of the normalized eigenfunction ψm

n,k,m ≥ 1, corresponding to the
eigenvalue xm

n,k and with the coefficient vector ck given in (17), we can derive from Lemma 3.1
that

var(ψm
n,i ) = cH

k [Jm
n ]

2ck + b2
m |cm,k |

2
+ b2

n+1|cn,k |
2
− (cH

k Jm
n ck)

2

= (xm
n,k)

2(cH
k ck)

2
+ b2

m |cm,k |
2
+ b2

n+1|cn,k |
2
− (xm

n,kcH
k ck)

2

= b2
m |cm,k |

2
+ b2

n+1|cn,k |
2.

Inserting the coefficients from (17), we get the above result. The same argumentation holds also
for m = 0. �
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Remark 3.3. For the case m = 0, the formula (19) for the variance of ψn,k is a special case of a
variance formula of the Christoffel–Darboux kernel considered in the proof of [1, Theorem 2.2].

If we want the eigenfunction ψm
n,k to be localized at the expectation value xm

n,k , the variance
of ψm

n,k should be small, especially if n − m gets large. The question whether the variance in
(19) gets small when n is large is linked to a condition known as subexponential growth (see
[1,30]). In particular, if the orthonormalization measure w(x)dx is an element of the Nevai class
M(0, 1), i.e. if the coefficients of the recurrence formula (6) attain the limits limn→∞ an = 0 and
limn→∞ bn =

1
2 , it is proven in [30] that var(ψn,k) tends to zero as n → ∞. If we restrict the

measure w(x)dx to a particular subclass of M(0, 1), we can also show in the more general case
m ≥ 0 that the variances in Lemma 3.2 tend to zero as n → ∞.

Definition 3.4. By M∗(0, 1), we denote the set of all measures µ with the following properties:

1. µ is in the Nevai class M(0, 1), i.e. limn→∞ an = 0 and limn→∞ bn =
1
2 ,

2. supp µ = [−1, 1],
3.


∞

n=0 |an| + |bn −
1
2 | < ∞,

where an and bn are the coefficients of the three-term recurrence relation (7) corresponding to
the measure µ.

Examples of weight functions lying in the Nevai subclass M∗(0, 1) are, for instance, the
Jacobi weight functions (see [29, pp. 79–81]).

For a measureµ and the corresponding family of orthonormal polynomials (pl)l∈N, we denote
by µm the orthonormalizing measure of the associated polynomials pl(x,m). In particular, the
measure µm is normalized such that µm([−1, 1]) = 1. For a measure µ in the Nevai subclass
M∗(0, 1), we get the following result.

Lemma 3.5. If µ ∈ M∗(0, 1), then also µm ∈ M∗(0, 1). Moreover, the measures µm,m ≥ 1,
are all absolutely continuous on [−1, 1], i.e. dµm = wmdx.

Proof. Since the coefficients of the three-term recurrence relation (7) of the associated
polynomials pl(x,m) are defined by shifting the corresponding coefficients of the polynomials
pl , the conditions (1) and (3) of Definition 3.4 are obviously satisfied by the measure µm . The
true interval of orthogonality of the sequence of associated polynomials pl(x,m) is included in
the true interval of orthogonality of the original polynomials pl(x) (see [3, Corollary on p. 87]).
Therefore, supp µm ⊂ supp µ = [−1, 1]. Since µm ∈ M(0, 1) is in the Nevai class, also
[−1, 1] ⊂ supp µm holds (cf. [29, Chapter 3.3, Lemma 6]) and, thus, also the property (2) is
satisfied.

To prove the absolute continuity of µm we use a result of Nevai [29, Chapter 7, Theorem 40].
This result implies that if µ ∈ M∗(0, 1), then the measure µ consists of an absolutely continuous
part w(x)dx on [−1, 1] and a point mass aδ−1 + bδ1 on the boundary of [−1, 1]. Hence, it
remains to show that for the associated measures µm,m ≥ 1 the discrete part vanishes. It is
enough if we give the proof for the left hand boundary x = −1. In this case, a = 0 is equivalent
to the divergence of the sum


∞

l=0 pl(−1,m)2 (cf. [15, Theorem 2.1]). By a technique involving
chain sequences, Chihara [4, Formula (2.18)] proved that there is a constant Cm such that

|pn(−1,m + 1)|2 ≥ Cm |pn+1(−1,m)|2. (21)

Hence, by a standard induction argument it follows that


∞

l=0 pl(−1,m)2,m ≥ 1 diverges,
if


∞

l=0 pl(−1, 1)2 diverges. So, to complete the proof we have to show the divergence of
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∞

l=0 pl(−1, 1)2. If µ is continuous at x = −1, then


∞

l=0 pl(−1)2 diverges, and by (21) also
∞

l=0 pl(−1, 1)2 diverges. If µ has a point mass at x = −1, then by another result of Chihara
[2, Theorem 3], the measure µ1 cannot have a point mass at x = −1. Hence, in this case the sum

∞

l=0 pl(−1, 1)2 also diverges. �

Theorem 3.6. If the weight function w is in the class M∗(0, 1), then

lim
n→∞

var(ψn,k) = 0, lim
n→∞

var(ψm
n,k) = 0, m ∈ N,

uniformly for all k.

Proof. By Lemma 3.5, the measures wm(x)dx lie in the subclass M∗(0, 1), hence also in the
Nevai class M(0, 1). Therefore, by a result of Nevai, Totik and Zhang [30, Theorem 2.1] we
have

lim
n→∞

sup
x∈[−1,1]

|pn(x,m)|2

n
l=0

|pl(x,m)|2
= 0.

Further, by Lemma 3.5 the associated measures dµm(x) = wm(x)dx,m ≥ 1, are absolutely
continuous on [−1, 1]. Hence, by [15, II, Theorem 2.1], also

lim
n→∞

1
n

l=0
|pl(x,m)|2

= 0

uniformly on [−1, 1]. Therefore, the results of Lemma 3.2 imply that the variances var(ψn,k) and
var(ψm

n,k) converge to zero (independently of the choice of k) as n tends to infinity. �

Example 3.7. For some particular weight functions w, it is possible to determine the rate of
convergence of the variance var(ψn,k) in Theorem 3.6. For instance, if the weight w is a
generalized Jacobi weight, i.e. if supp w = [−1, 1] and

w(x) =

r
i=1

(x − ti )
γi , −1 = t1 < t2 < · · · < tr−1 < tr = 1, γi > −1,

then the rate of convergence can be determined as (see [29, Theorems 9.31 and 6.3.28])

var(ψn,k) = b2
n+1

pn(xn,k)
2

n
l=0

pl(xn,k)2
∼


1 − x2

n,k

n
, 1 ≤ k ≤ n + 1.

So, for generalized Jacobi weights, the convergence of limn→∞ var(ψn,k) towards zero is at least
linear. The convergence rate is even faster, if we choose k such that xn,k is among the N (N ∈ N
fixed) smallest or largest roots of pn+1(x).

4. Approximation of localized functions

In this paragraph, we are going to investigate how the decomposition of a bandlimited function
f ∈ Π m

n in the eigenfunctions ψm
n,k can be used to approximate functions that are well-localized

at a point or a subinterval of [−1, 1]. In this case, not all of the eigenfunctions ψm
n,k are needed
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for a good approximation of the function f . We will show that mainly only those eigenfunctions
are needed that are located themselves in the region in which f is concentrated.

From now on we assume that the weight functionw lies in the Nevai subclass M∗(0, 1). Then,
for the Hilbert space

L2([−1, 1], w)⊖ Πm−1 := span{pl : l ≥ m}

we can introduce an isometric isomorphism Sm by

Sm : L2([−1, 1], w)⊖ Πm−1 → L2([−1, 1], wm),

(Sm pl)(x) := pl−m(x,m), l ≥ m. (22)

If the functions φn−m,k, 1 ≤ k ≤ n − m + 1 denote the eigenfunctions of the operator
Pn−m Mx Pn−m on the Hilbert space L2([−1, 1], wm), we can deduce from (18) that

Smψ
m
n,k(x) = φn−m,k(x)

holds. Further, for ϵm > 0 we say that a continuous function f ∈ L2([−1, 1], w) ⊖ Πm−1 is
ϵm-concentrated on an interval A ⊂ [−1, 1] if

[−1,1]\A
|Sm f (x)|2wm(x)dx ≤ ϵ2

m∥ f ∥
2
w.

An ϵm-concentrated function f can be approximated as follows.

Theorem 4.1. Let f ∈ L2([−1, 1], w) ⊖ Πm−1 be continuous and ϵm-concentrated on the
subinterval A ⊂ [−1, 1]. Then,

lim
n→∞

 f −


k: xm

n,k∈A

⟨ f, ψm
n,k⟩wψ

m
n,k


w

≤ ϵm∥ f ∥w. (23)

If A = [cosα, cosβ], the number of eigenvalues xm
n,k in A is asymptotically given as

lim
n→∞

#{k : xm
n,k ∈ A}

(n − m)
=
α − β

π
.

Proof. We use the isomorphism Sm to shift the error term from the Hilbert space
L2([−1, 1], w)⊖ Πm−1 onto L2([−1, 1], wm): f −


k: xm

n,k∈A

⟨ f, ψm
n,k⟩wψ

m
n,k


w

=

Sm f −


k: xm

n,k∈A

⟨Sm f, φn−m,k⟩wmφn−m,k


wm

. (24)

For an arbitrary N ∈ N, we can assume without restriction that n is large enough such that
N < n − m. By PN =

N
k=0⟨Sm f, pk(·,m)⟩w pk(·,m), we denote the best approximation of

Sm f in the subspace ΠN of L2([−1, 1], wm), and by

EN (Sm f, wm) = inf
P∈ΠN

∥Sm f − P∥wm = ∥Sm f − PN ∥wm
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the corresponding error term. Now, using (24) and the triangle inequality twice, we get
 f −


k:xm

n,k∈A

⟨ f, ψm
n,k⟩wψ

m
n,k


w

−

PN −


k: xm

n,k∈A

⟨PN , φn−m,k⟩wmφn−m,k


wm


≤

Sm f − PN +


k: xm

n,k∈A

⟨PN − Sm f, φn−m,k⟩wmφn−m,k


wm

≤ 2EN (Sm f, wm). (25)

From the spectral Theorem 2.1, we know that the eigenfunctions φn−m,k are, up to a normalizing
factor, the fundamental polynomials of Lagrange interpolation with respect to the nodes xm

n,k, 1 ≤

k ≤ n − m + 1. In particular, since PN ∈ ΠN ⊂ Πn−m , we have (cf. [41, Section 3.4])

⟨PN , φn−m,k⟩wm = κm
n,k PN (x

m
n,k).

Hence, if we define the bounded function g on [−1, 1] by

g(x) :=


PN (x) if x ∈ [−1, 1] \ A,
0 if x ∈ A,

then the sum
k:xm

n,k∈[−1,1]\A

PN (x
m
n,k)κ

m
n,kφn−m,k

corresponds precisely to the Lagrange interpolant of g at the nodes xm
n,k, 1 ≤ k ≤ n − m + 1.

Therefore, by the Erdős–Turán Theorem (the original result can be found in [9], in our case
we need [15, Chapter 3, Theorem 2.5] with the parameters An = Bn = 0) we get in the limit
n → ∞:

lim
n→∞

PN −


k: xm

n,k∈A

⟨PN , φn−m,k⟩wmφn−m,k


2

wm

= lim
n→∞




k: xm
n,k∈[−1,1]\A

⟨PN , φn−m,k⟩wmφn−m,k


2

wm

=

 1

−1
g(x)2wm(x)dx =


[−1,1]\A

PN (x)
2wm(x)dx . (26)

Also by the triangle inequality the following estimate holds:


[−1,1]\A
PN (x)

2wm(x)dx

 1
2

−


[−1,1]\A

Sm f (x)2wm(x)dx

 1
2


≤ EN (Sm f, wm). (27)
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Combining (25)–(27), we can conclude for n → ∞:

lim
n→∞


 f −


k:xm

n,k∈A

⟨ f, ψm
n,k⟩wψ

m
n,k


w

−


[−1,1]\A

Sm f (x)2wm(x)dx

 1
2


≤ lim

n→∞


 f −


k: xm

n,k∈A

⟨ f, ψm
n,k⟩wψ

m
n,k


w

−

PN −


k: xm

n,k∈A

⟨PN , φn−m,k⟩wmφn−m,k


wm


+ lim

n→∞


PN −


k: xm

n,k∈A

⟨PN , φn−m,k⟩wmφn−m,k


wm

−


[−1,1]\A

PN (x)
2wm(x)dx

 1
2


+ lim

n→∞




[−1,1]\A
PN (x)

2wm(x)dx

 1
2

−


[−1,1]\A

Sm f (x)2wm(x)dx

 1
2


≤ 3EN (Sm f, wm).

Since N was chosen arbitrarily, we finally get

lim
n→∞


 f −


k: xm

n,k∈A

⟨ f, ψm
n,k⟩wψ

m
n,k


w

−


[−1,1]\A

Sm f (x)2wm(x)dx

 1
2

 = 0.

Inequality (23) now follows from the fact that f is ϵm-concentrated on A.
Since the weight function w is in the class M∗(0, 1), Lemma 3.5 ensures that also the

associated weight functions wm are in M∗(0, 1). This implies supp wm = [−1, 1] and, by
[29, Theorem 7.29], that the restricted support of wm on [−1, 1] has measure 2. Therefore, by a
well-known result of Erdős and Turán (see [8,10])wm(x)dx is an arc-sine measure which implies
the second statement of Theorem 4.1. �

Remark 4.2. The second statement in Theorem 4.1 is not a new result and intended here
only as an additional information on the asymptotic number of eigenfunctions involved in the
approximation process. It is a special case of a general property that for a large class of orthogonal
polynomials the asymptotic distribution of the zeros is given by the arc-sine measure. For weights
as the functions wm this was proven by Erdős and Turán in [10]. Far more general conditions
leading to the arc-sine property are elaborated in [8]. In particular, it can be shown that every
measure in the Nevai class M(0, 1) has this property (see [29, Theorem 5.3]).

If a polynomial P ∈ Π m
n is localized at the end points x = −1 or x = 1, or if P has a small

variance var(P), we obtain the following error estimates.
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Theorem 4.3. Let a > 0 and I− and I+ denote the intervals I− = [−1,−1 + a] and
I+ = [1 − a, 1]. If P ∈ Π m

n , ∥P∥w = 1, is localized at the boundary points of [−1, 1], we
have the following error bounds:P −


xm

n,k∈I−

⟨P, ψm
n,k⟩wψ

m
n,k


2

w

≤
1 + ε(P)

a
, (28)

P −


xm

n,k∈I+

⟨P, ψm
n,k⟩wψ

m
n,k


2

w

≤
1 − ε(P)

a
. (29)

Further, if I = [ε(P)− a, ε(P)+ a] ⊆ [−1, 1], we get the following error estimate:P −


xm

n,k∈I

⟨P, ψm
n,k⟩wψ

m
n,k


2

w

≤
var(P)

a2 . (30)

Proof. For P ∈ Π m
n , we haveP −


k: xm

n,k∈I−

⟨P, ψm
n,k⟩wψ

m
n,k


2

w

=


k: xm

n,k∈[−1,1]\I−

|⟨P, ψm
n,k⟩w|

2.

≤
1
a


k: xm

n,k∈[−1,1]\I−

|⟨P, ψm
n,k⟩w|

2(1 + xm
n,k)

≤
1
a

n−m+1
k=1

|⟨P, ψm
n,k⟩w|

2(1 + xm
n,k).

Since ∥P∥
2
w =

n−m+1
k=1 |⟨P, ψm

n,k⟩w|
2

= 1 and
n−m+1

k=1 xm
n,k |⟨P, ψm

n,k⟩w|
2

= ε(P), we get the
stated bound (28). In a similar fashion, the bound (29) can be proven. To prove (30), we proceed
also in a similar way.P −


k: xm

n,k∈I

⟨P, ψm
n,k⟩wψ

m
n,k


2

w

=


k: xm

n,k∈[−1,1]\I

|⟨P, ψm
n,k⟩w|

2

≤
1

a2


k: xm

n,k∈[−1,1]\I

|⟨P, ψm
n,k⟩w|

2(ε(P)− xm
n,k)

2

≤
1

a2

n−m+1
k=1

|⟨P, ψm
n,k⟩w|

2(ε(P)− xm
n,k)

2

=
1

a2

n−m+1
k=1

|⟨P, ψm
n,k⟩w|

2((xm
n,k)

2
− ε(P)2)

≤
var(P)

a2 . �



W. Erb / Journal of Approximation Theory 166 (2013) 56–77 71

Fig. 2. Graphical presentation of the domains A, B1, B2,C1 and C2.

Remark 4.4. Given a normalized polynomial P ∈ Π m
n , we consider the discrete density function

ρ by

ρ(x) =


(⟨P, ψm

n,k⟩w)
2 if x = xm

n,k, k = 1, . . . , n − m + 1,
0 otherwise.

Then, we can interpret the results of Theorem 4.3 as versions of the Markov and the Chebyshev
inequality for a ρ-distributed random variable (cf. [31, p. 114]).

5. An uncertainty principle for the operators Mx and Pm
n

We are now going to discuss an uncertainty principle related to the operators Mx and
Pm

n . In particular, we will discuss the trade off between the space localization of f at the
boundary points x = 1 and x = −1 of [−1, 1] and the frequency localization of f in the
polynomial subspace Π m

n . The obtained results are very similar to the uncertainty principle
stated in the theory of Landau, Pollak and Slepian (see [14,23]). However, the fact that Mx
is not a projection operator will lead to coarser statements and in some extent to differences
in the proofs compared to the original setting. A detailed proof of the uncertainty principle
in the Landau–Pollak–Slepian theory can be found in [5, Chapter 2.9] and [23]. An abstract
version of the Landau–Pollak–Slepian uncertainty principle involving two arbitrary projection
operators on a Hilbert space can be found in [20, Part 1, Chapter 3]. An extension of the
Landau–Pollak–Slepian uncertainty to more general weight functions is given in [26].

The main results of this section are summarized in Theorem 5.5 and illustrated in Fig. 2. The
proof of the statements in Theorem 5.5 is split into four lemmas. We define

πm
n f := ∥Pm

n f ∥
2
w =

n
k=m

|⟨ f, pk⟩w|
2

and start with the first auxiliary result.

Lemma 5.1. Let f, ∥ f ∥w = 1, be a fixed normalized function. Then, for every 0 ≤ β ≤ πm
n ( f )

there exists a normalized function g, ∥g∥w = 1, such that ε(g) = ε( f ) and πm
n (g) = β.

Proof. We choose k > l > n +1 big enough such that the three largest eigenvalues x1, x2 and x3
of the Jacobi matrix Jl

k are larger than ε( f ). This is possible since the weight function w lies in
the class M∗(0, 1) and Lemma 3.5 ensures that also the associated measure wl(x)dx ∈ M∗(0, 1)
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is absolutely continuous on [−1, 1]. Let ψ1, ψ2 and ψ3 denote the corresponding eigenfunctions
in Π k

l . Further, we define V as the 3-dimensional vector space spanned by ψ1, ψ2, and ψ3,
and PV as the orthogonal projection operator from L2([−1, 1], w) onto V . Now, we take ψ
as a normalized vector in V that is orthogonal to the plane spanned by the vectors PV f and
PV Mx f . Then, ε(ψ) ≥ ε( f ) and ⟨Mx f, ψ⟩w = 0, ⟨ f, ψ⟩w = 0. In the same way, we construct
a normalized vector ϕ ∈ Π k

l with ε(ϕ) ≤ ε( f ) and ⟨x f, ϕ⟩w = ⟨ f, ϕ⟩w = 0. Now, since ε( f ) is
a continuous functional, by the intermediate value theorem we can find a normalized polynomial
φ ∈ Π k

l with ε(φ) = α and ⟨Mx f, φ⟩w = ⟨ f, φ⟩w = 0. Then, we define

g(x) :=
√

1 − λ f (x)+
√
λφ(x), λ ∈ [0, 1].

In this way we get a normalized function g with ∥g∥w = 1, πm
n (g) = (1 − λ)πm

n ( f ) and

ε(g) = 1 − λε( f )+ λε(φ) = ε( f ). �

By xm
n,min and xm

n,max, we denote the smallest and the largest root of the associated polynomial
pn−m+1(x,m). Then, we have the following as a second auxiliary result.

Lemma 5.2. If xm
n,min ≤ ε( f ) ≤ xm

n,max, then πm
n ( f ) can attain all values in the interval [0, 1].

Proof. We denote by ψm
n,max and ψm

n,min the normalized eigenfunctions corresponding to the
eigenvalues xm

n,max and xm
n,min, respectively. Now, for xm

n,min ≤ α ≤ xm
n,max, we define the function

f by

f =


α − xm

n,min

xm
n,max − xm

n,min

 1
2

ψm
n,max +


xm

n,max − α

xm
n,max − xm

n,min

 1
2

ψm
n,min.

Then, πm
n ( f ) = ∥ f ∥w = 1 and

ε( f ) =
α − xm

n,min

xm
n,max − xm

n,min
xm

n,max +
xm

n,max − α

xm
n,max − xm

n,min
xm

n,min = α.

Now, Lemma 5.1 implies the statement. �

Lemma 5.3. If xm
n,max ≤ ε( f ) < 1, then πm

n ( f ) can attain all values in the range 0 ≤

πm
n ( f ) < 1−ε( f )

1−xm
n,max

. If −1 < ε( f ) ≤ xm
n,min, then πm

n ( f ) can attain all values in the range

0 ≤ πm
n ( f ) < 1+ε( f )

1+xm
n,min

.

Proof. We will prove the statement only for the interval [xm
n,max, 1), the statement for

(−1, xm
n,max] follows by an analogous argumentation. Since w(x)dx ∈ M∗(0, 1), we can

choose as in Lemma 5.1 k > l > n + 1 large enough such that 1 − x l
k,max < ϵ for an

arbitrary ϵ > 0. Then, for the eigenfunction ψ l
k,max ∈ Π l

k we have πm
n (ψ

l
k,max) = 0 and

1 > ε(ψ l
k,max) = x l

k,max > 1 − ϵ. Now, we define

g(x) =
√
λψm

n,max(x)+
√

1 − λψ l
k,max(x), λ ∈ [0, 1].

Then,

1 − λ(1 − xm
n,max) > ε(g) = λxm

n,max + (1 − λ)x l
k,max > 1 − ϵ − λ(1 − xm

n,max − ϵ)

> 1 − ϵ − λ(1 − xm
n,max),



W. Erb / Journal of Approximation Theory 166 (2013) 56–77 73

and πm
n (g) = λ. Therefore, we get for πm

n (g):

1 − ε(g)

1 − xm
n,max

> πm
n (g) >

1 − ε(g)− ϵ

1 − xm
n,max

.

Since ϵ > 0 can be chosen arbitrarily small, we get the desired result from Lemma 5.1. �

Up until now, we showed that most points (ε( f ), πm
n ( f )) in the rectangle (−1, 1) × [0, 1]

can be attained for f ∈ L2([−1, 1], w). However, the next Lemma 5.4 demonstrates that tuples
(ε( f ), πm

n ( f )) in the upper left and right corners of (−1, 1)× [0, 1] are not allowed.

Lemma 5.4. If xm
n,max ≤ ε( f ) < 1, the values of πm

n ( f ) are restricted by

πm
n ( f )

1
2

≤
(ε( f )+ 1)

3
2 (xm

n,max + 1)
1
2 + var( f )

1
2 (var( f )+ (1 + ε( f ))(ε( f )− xm

n,max))
1
2

var( f )+ (ε( f )+ 1)2
. (31)

For −1 < ε( f ) ≤ xm
n,min, the values of πm

n ( f ) are bounded by

πm
n ( f )

1
2

≤
(1 − ε( f ))

3
2 (1 − xm

n,min)
1
2 + var( f )

1
2 (var( f )+ (1 − ε( f ))(ε( f )− xm

n,min))
1
2

var( f )+ (1 − ε( f ))2
. (32)

A simpler but less accurate upper bound for πm
n ( f ) is given by

πm
n ( f ) ≤

1
2

+
1
2


ε( f )xm

n,max + (1 − ε( f )2)
1
2 (1 − (xm

n,max)
2)

1
2


(33)

and

πm
n ( f ) ≤

1
2

+
1
2


ε( f )xm

n,min + (1 − ε( f )2)
1
2 (1 − (xm

n,min)
2)

1
2


, (34)

for ε( f ) in the intervals [xm
n,max, 1) and (−1, xm

n,min], respectively.

Proof. We will just prove the inequalities (31) and (33). Inequalities (32) and (34) follow up to
some minor modifications with the same argumentation. Since for πm

n ( f ) = 0 both (31) and
(33) are satisfied, we will from now on assume that πm

n ( f ) > 0. Further, we will use the operator
M x+1

2
on L2([−1, 1], w) defined by M x+1

2
f (x) :=

1+x
2 f (x).

For a normalized function f ∈ L2([−1, 1], w) the two functions g1 =

M x+1
2

f

∥M x+1
2

f ∥w
and

g2 =
Pm

n f
∥Pm

n f ∥w
are also normalized. Now, the sum of the angular distances between the vectors g1

and f , and g2 and f is larger than the angular distance between g1 and g2, i.e.

arccos Re⟨g1, f ⟩w + arccos Re⟨g2, f ⟩w ≥ arccos Re⟨g1, g2⟩w. (35)
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We define the positive selfadjoint operator M
1
2
x+1

2
by M

1
2
x+1

2
:= M

x+1
2

. Then, for the term

Re⟨g1, g2⟩w, we can find an upper bound using the Cauchy–Schwarz-inequality and Theo-
rem 2.1:

Re⟨g1, g2⟩w ≤ |⟨g1, g2⟩w| =

M x+1
2

f, Pm
n f


w

M x+1
2

f

w

∥Pm
n f ∥w

=

M
1
2
x+1

2
f,M

1
2
x+1

2
Pm

n f


w

M x+1
2

f

w

∥Pm
n f ∥w

≤


M x+1

2
f, f


w


M x+1

2
Pm

n f, Pm
n f


wM x+1

2
f

w

∥Pm
n f ∥w

≤


M x+1

2
f, f


w


xm

n,max+1
2


⟨Pm

n f, Pm
n f ⟩wM x+1

2
f

w

∥Pm
n f ∥w

=


M x+1

2
f, f


w


xm

n,max+1
2M x+1

2
f

w

.

Now, if we rewrite the expressions ⟨M x+1
2

f, f ⟩w and ∥M x+1
2

f ∥w in terms of ε( f ) and var( f ),
we get

Re⟨g1, g2⟩w ≤


(ε( f )+ 1)(xm

n,max + 1)
var( f )+ (ε( f )+ 1)2

,

Re⟨g1, f ⟩w =
ε( f )+ 1

var( f )+ (ε( f )+ 1)2
,

Re⟨g2, f ⟩w =

πm

n f .

Inserting this into inequality (35), we obtain

arccos
ε( f )+ 1

var( f )+ (ε( f )+ 1)2
+ arccos


πm

n f

≥ arccos


(ε( f )+ 1)(xm

n,max + 1)
var( f )+ (ε( f )+ 1)2

. (36)

Applying the cosine addition formula, this inequality can be rewritten as


πm

n f ≤
(ε( f )+ 1)

3
2

(xm

n,max + 1)

var( f )+ (ε( f )+ 1)2
+


1 −

(ε( f )+ 1)2

var( f )+ (ε( f )+ 1)2

 1
2

×


1 −

(ε( f )+ 1)(xm
n,max + 1)

var( f )+ (ε( f )+ 1)2

 1
2

=
(ε( f )+ 1)

3
2 (xm

n,max + 1)
1
2 + var( f )

1
2 (var( f )+ (1 + ε( f ))(ε( f )− xm

n,max))
1
2

var( f )+ (ε( f )+ 1)2
.
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Hence, inequality (31) is shown. To prove inequality (33), we consider inequality (36). For
0 < a ≤ b ≤ 1, the function arccos bt − arccos at is a decreasing function of the variable

t ∈ [−
1
b ,

1
b ]. Therefore, if we set a =


xm

n,max+1
2 ≤ b =


ε( f )+1

2 < 1 and

t =


2(ε( f )+ 1)

var( f )+ (ε( f )+ 1)2

 1
2

=



M x+1

2
f, f


w

M x+1
2

f,M x+1
2

f

w


1
2

≥ 1,

we get in inequality (36) the upper bound

arccos

ε( f )+ 1

2

 1
2

+ arccos

πm

n f ≥ arccos


xm
n,max + 1

2

 1
2

,

or equivalently
πm

n f ≤
1
2


(ε( f )+ 1)

1
2 (xm

n,max + 1)
1
2 + (1 − ε( f ))

1
2 (1 − xm

n,max)
1
2


. (37)

Taking the square of both sides in (37), we obtain precisely inequality (33). �

Now, we introduce the functions γ1(x) and γ2(x) by

γ1(x) : [xm
n,max, 1) → R : γ1(x) :=

1
2

+
1
2


xxm

n,max + (1 − x2)
1
2 (1 − (xm

n,max)
2)

1
2


,

γ2(x) : (−1, xm
n,min) → R : γ2(x) :=

1
2

+
1
2


xxm

n,min + (1 − x2)
1
2 (1 − (xm

n,min)
2)

1
2


and the following subdomains of the rectangle (−1, 1)× [0, 1] (see Fig. 2):

A :=


(x, y) ∈ (−1, 1)× [0, 1] : y <

1 − x

1 − xm
n,max

, y <
1 + x

1 + xm
n,min


∪ {(xm

n,max, 1), (xm
n,min, 1)},

B1 :=


(x, y) ∈ (xm

n,max, 1)× [0, 1] : y ≥
1 − x

1 − xm
n,max

, y ≤ γ1(x)


,

B2 :=


(x, y) ∈ (−1, xm

n,min)× [0, 1] : y ≥
1 + x

1 + xm
n,min

, y ≤ γ2(x)


,

C1 := {(x, y) ∈ (xm
n,max, 1)× [0, 1] : y > γ1(x)},

C2 := {(x, y) ∈ (−1, xm
n,min)× [0, 1] : y > γ2(x)}.

Finally, we can summarize the results of Lemmas 5.1–5.4 as follows.

Theorem 5.5. For normalized functions f ∈ L2([−1, 1], w), all the points (ε( f ), πm
n ( f )) in

the domain A can be attained. All points (ε( f ), πm
n ( f )) in the corners C1 and C2 cannot be

attained.

Remark 5.6. Theorem 5.5 and its proof based on the lemmas formulated before are highly
inspired by the uncertainty relation of the original Landau–Pollak–Slepian theory as described
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in [5, Chapter 2.9], [20, Part 1, Chapter 3] and [23]. Lemma 5.1 reproduces statement F in
[20, Part 1, Section 3.1, p. 95]. However, since Mx is not a projection operator, the proof is
altered considerably. Lemma 5.3 is an adaption of Case 2 in the proof of [23, Theorem 2]. The
idea for the proof of Lemma 5.4 is taken from [20, Part 1, Section 3.1E, p. 95]and the proof of
Case 3 in [23, Theorem 2]. Due to the fact, that Mx is not a projection operator also here the
proof differs from the original one. Moreover, the resulting inequalities cannot be shown to be
sharp. Bounds from below are given in Lemma 5.3, but it is not yet clear to which extent points
(ε( f ), πm

n ( f )) can be attained in the domains B1 and B2.
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[8] P. Erdős, G. Freud, On orthogonal polynomials with regularly distributed zeros, Proc. Lond. Math. Soc. (3) 29 (3)

(1974) 521–537.
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[10] P. Erdős, P. Turán, On interpolation. III: interpolatory theory of polynomials, Ann. of Math. (2) 41 (3) (1940)

510–553.
[11] F. Filbir, H.N. Mhaskar, J. Prestin, On a filter for exponentially localized kernels based on Jacobi polynomials,

J. Approx. Theory 160 (1–2) (2009) 256–280.
[12] B. Fischer, J. Prestin, Wavelets based on orthogonal polynomials, Math. Comp. 66 (220) (1997) 1593–1618.
[13] B. Fischer, W. Themistoclakis, Orthogonal polynomial wavelets, Numer. Algorithms 30 (1) (2002) 37–58.
[14] G.B. Folland, A. Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl. 3 (3) (1997)

207–233.
[15] G. Freud, Orthogonale Polynome, Birkhäuser Verlag, Basel und Stuttgart, 1969.
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