
J Fourier Anal Appl
DOI 10.1007/s00041-012-9257-y

Letter to the Editor: On the Numerical Evaluation
of Bandpass Prolates

Jeffrey A. Hogan · Joseph D. Lakey

Received: 21 September 2012 / Revised: 26 October 2012
© Springer Science+Business Media New York 2013

Abstract This letter provides a technique for numerical evaluation of certain eigen-
functions of the integral kernel operator corresponding to time truncation of a square-
integrable function to a finite interval, followed by frequency limiting to frequencies
in an annular band.
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This note provides a technique for numerical evaluation of certain bandpass prolate
functions. These functions are eigenfunctions of the integral kernel operator corre-
sponding to time truncation of a function in L2(R) to a finite interval—[−1,1] in
this work—followed by frequency limiting to frequencies |ω| ∈ [c′, c]. The time- and
bandpass-limiting operator was mentioned in the groundbreaking work of Slepian
and Pollack [12] and studied more recently for example by Sengupta et al. [11] and
by Khare [8]. As in the work of Sengupta et al., our technique utilizes the expansion
of such eigenfunctions in standard prolates for the full band. The main contribution
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here is an expression for the coefficients of the bandpass functions in terms of certain
partial inner products of the full-band prolates.

Prolate spheroidal wave functions, or prolates for short, on the interval [−1,1] are
eigenfunctions of the prolate differential operator,

Pcϕn(t) = χnϕn(t); Pc = d

dt

(
t2 − 1

) d

dt
+ c2t2. (1)

Such functions extend to elements of L2(R). Prolates are also eigenfunctions of the
integral operator

(Fcf )(t) =
∫ 1

−1
eicstf (s)ds = Q̂f (−ct) (2)

in which Q is the operation of multiplication by the characteristic function of [−1,1]
and f̂ denotes the Fourier transform normalized as integration against the kernel
e−ist .

Denote by Pc the operator that sends f ∈ L2(R) to (f̂ 1[−c,c])∨ where ψ∨ denotes
the inverse Fourier transform of ψ . Here 1[−c,c] is the characteristic function of the in-
terval [−c, c]. Since the differential operator Pc commutes with the compact integral
operator PcQ, these operators share their eigenfunctions. The eigenvalues of PcQ

are non-degenerate. Let λ0(c) > λ1(c) > · · · be the eigenvalues of PcQ arranged in
decreasing order and ϕc

n be the eigenfunction corresponding to λn(c). The fact that
ϕc

n is an eigenfunction of the operator Fc of (2) and some other basic properties imply
that

Dcϕ̂c
n = in√

λn

Qϕc
n (3)

where Dc is the unitary dilation (Dcf )(t) = √
cf (ct), c > 0. When L2(R)-

normalized, the prolates {ϕc
n} form an orthonormal basis for PWc , the closed subspace

of L2(R) of functions bandlimited to [−c, c], as well as a complete, orthogonal set
in L2[−1,1] with λn(c) = ∫ 1

−1 |ϕc
n|2. As such, any f ∈ PWc can be expanded in the

form f = ∑∞
n=0 αnϕ

c
n with ‖f ‖2

L2(R)
= ∑

α2
n and

∫ 1
−1 |f |2 = ∑

λnα
2
n. The prolates

are real-valued and ϕc
n is even (odd) if n is even (odd).

Given 0 < c′ < c denote by PWc′,c the orthogonal complement of PWc′ inside
PWc , that is, the closed subspace of L2(R) of functions whose Fourier transforms
f̂ (ξ) are supported in c′ ≤ |ξ | ≤ c, and by Pc′c the orthogonal projection onto PWc′c.

Denote by R = R(c′, c) the matrix with entries Rjk = ik−j√
λj λk

∫ c′/c
−c′/c ϕc

k(ξ)ϕc
j (ξ)dξ .

The matrix R is real symmetric, a consequence of the parity properties of the ϕc
n.

Also let Λ = Λ(c) be the diagonal matrix with nth diagonal entry λn(c).

Proposition 1 If ψ = ∑
αnϕ

c
n ∈ PWc then

Pc′cQψ =
∑

k

αkλk

(
ϕc

k −
∑

j

Rjkϕ
c
j

)
.
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In particular, if ψ = ∑
αnϕ

c
n is an eigenfunction of Pc′cQ with eigenvalue λ then

λαn = λnαn −
∑

k

λkαkRnk i.e. λα = (I − R)Λα
(
α = {αn}∞n=0

)
.

The discrete eigenvectors α of the matrix (I − R)Λ give rise to eigenfunctions of
Pc′cQ and the eigenvalue λ measures the concentration of ψ in [−1,1] just as in the
case of standard prolates. The proof will be given in Appendix B.

1 Finite Dimensional Approximations of Bandpass Prolates

Our numerical approximations require two main ingredients. The first is a finite di-
mensional approximation of the matrix R that gives rise to the eigenfunctions of
Pc′cQ. The latter can be expressed as the integral operator

(Pc′cQ)(f )(t) =
∫ 1

−1

sin c(t − s) − sin c′(t − s)

π(t − s)
f (s)ds

= 2

π

∫ 1

−1

sina(t − s) cosb(t − s)

t − s
f (s)ds

where a = (c − c′)/2, b = (c + c′)/2 and with PcQ corresponding to the limiting
case c′ = 0. The other ingredient is a method to approximate the elements of such a
finite dimensional matrix. One can estimate the partial inner product entries of a finite
rank approximation of R if one has in turn estimates of the corresponding eigenvalues
χn of Pc and the values of the prolates ϕc

n. Specifically, let χn = χn(c) be such that
Pcϕ

c
n = χn(c)ϕ

c
n. The following identity is known as Byerly’s identity [4, Chap. 5]

in the limiting case c = 0 (in which case the prolates collapse to the normalized
Legendre polynomials: φ0

n = √
n + 1/2Pn). The proof for the prolate case is similar

and is given in Appendix A.

Proposition 2 If n 	= m then, with χn as in (1) and −1 ≤ a ≤ b ≤ 1,

(χn − χm)

∫ b

a

ϕn(t)ϕm(t)dt = (
t2 − 1

)(dϕn

dt
ϕm(t) − dϕm

dt
ϕn(t)

) ∣∣∣∣

b

a

.

The partial norm squares
∫ b

a
ϕ2

n(t)dt can be computed via Legendre polynomial
expansions as outlined below.

In order to produce a finite dimensional approximation of the matrix (I − R)Λ,
first one notes that I − R is a bounded operator since R corresponds, in the prolate
basis, to the projection from PWc onto PWc′ . The matrix Λ is understood through
the famous 2ΩT theorem of Landau and Widom [10] and other work of Landau et
al., e.g., [9] shows that there are approximately N ≈ 2c/π eigenvalues of PcQ that
are close to one and that the other eigenvalues decay to zero rapidly—faster than
exponential in n, e.g., [6, p. 21]. The factor 2c/π is the product of the length of
the time-concentration and frequency-concentration intervals when using the unitary
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Fig. 1 (a) plots the approximate norm of Pc′cQ (dashed) and the norm of Pc−c′Q (solid) against c′/c
with c = 5π/2. The norm of Pc′cQ here is approximated numerically by the norm of the truncated version

of the matrix (I −R)Λ in Prop. 1. (b) plots the coefficients 〈ψc′,c
0 , ϕc

n〉 of the symmetric bandpass prolate

ψ
c′,c
0 having the largest energy concentration in [−1,1] versus c′/c. The symbols are assigned as follows:

◦ ∼ ϕc
0, · ∼ ϕc

2, × ∼ ϕc
4, � ∼ ϕc

6 and � ∼ ϕc
8

version of the Fourier transform (integration against e−2π iξ t ). As a consequence of
the 2ΩT theorem, there are at most essentially 2c/π + log(2c/π) log((1 − α)/α) +
o(log(c)) eigenvalues of PcQ larger than any fixed α > 0. If c is large, then the initial
eigenvalues of PcQ are close to 1 and, therefore, close to one another. Eigenfunction
estimates based on the integral equation are then inaccurate. In addition, the rapid
decay of the eigenvalues also leads to a loss of accuracy in estimating eigenfunctions
ϕc

n for large n. Similar limitations apply to the operator Pc′cQ.
For small values of c, the prolates ϕc

n can be approximated on [−1,1] by sums
of Legendre polynomials up to an appropriate order. The method for doing so re-
lies on the prolate differential equation. In the case c = 0 the solutions of (1) are
the Legendre polynomials on [−1,1]. The coefficients βnk of the prolate expansion
ϕc

n = ∑∞
n=0 βnkPk in which Pk is the kth Legendre polynomial can be solved effi-

ciently by finding the eigenvector–eigenvalue decomposition of a certain tridiagonal
matrix. This variant of Bouwkamp’s method [1] was considered independently by
Xiao et al., [13] and Boyd [2, 3] who also considered what truncation dimension
would provide accurate expansions, and by Sengupta et al. [11] in obtaining eigen-
value estimates for the bandpass problem. In particular, Boyd [3] suggested that if c is
not too large (c ≤ c∗(N) ≈ π(N + 1/2)/2) then the prolates ϕc

n and their eigenvalues
χn are approximated up to order N with negligible error by truncating this tridiago-
nal matrix to the first Ntr rows and columns, taking Ntr ≈ 2N + 30. We use the same
truncation dimension to estimate the matrix R, as justified by the 2ΩT theorem.

In the remainder of this note we provide a few figures to illustrate the approxima-
tions just mentioned. Figure 1(a) compares the norm of the time- and band-limiting
operator Pc−c′Q with the norm of Pc′cQ = (Pc − Pc′)Q. Here c = 5π/2. It was
proved by Donoho and Stark [5] that if PΣ denotes the operator of frequency lim-
iting to a set Σ of finite measure then, provided the measure is sufficiently small
(less than 0.88) one has the operator norm inequality ‖PΣQ‖ ≤ ‖P|Σ |Q‖ with |Σ |
the measure of Σ . Figure 1(a) quantifies the difference between the two norms when
Σ = [−c, c] \ [−c′, c′].
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Fig. 2 Plots of bandpass prolates ψc′c
0 for c = 5π/2. These plots show the symmetric bandpass prolates

having largest energy concentration to [−1,1]. Each curve corresponds to a fixed value of the parameter
c′/c ranging from 0.02 to 0.98 in increments of 0.02. The thick curves correspond to the starting value
c′/c = 0.02—the curve with the highest peak—and the value c′/c = 0.8. The amplitudes tend to zero as
c′/c → 1, see Fig. 1(a)

When restricted to [−1,1], the bandpass prolate ψc′c having the largest eigen-
value is essentially a sum of low order prolates ϕc

n for small c′/c. The coefficients
in these linear combinations vary continuously with c′/c, with the general trend that
energy moves from coefficients ϕc

n for smaller n to coefficients for larger n ≤ 4c/π

as c′ ↑ c. In Fig. 1(b) we take c = 5π/2 so that, as indicated by the 2ΩT theorem, ϕc
n

has negligible energy in [−1,1] for n ≥ 10. The coefficients in Fig. 1(b) correspond
to eigenvectors α of an approximate truncation of (I −R)Λ. The prolates used in ap-
proximating R were obtained by the method outlined in Boyd [2] with N = 5 = 2c/π

and Ntr = 2N + 30 = 40. Likewise, R was truncated to size Ntr. As is well known,
the nth prolate ϕc

n has n zeros in [−1,1] (e.g., [6, p. 18]) so, roughly speaking, the
center frequency of ϕc

n increases with n. Thus the coefficient trend is consistent with
the observation that the energy is localized in higher frequencies as c′ ↑ c, since Pc′c
localizes the Fourier transform to [−c, c] \ [−c′, c′]. This behavior is illustrated in
Fig. 2, where we plot the bandpass prolate, which we denote by ψc′c

0 , having the
largest fraction of its energy in [−1,1] among all symmetric bandpass prolates. Only
for very small values of c′ does the ϕc

0 term become dominant and thus ψc′c
0 ≈ ϕc

0. In
our case, this happens for c′/c < 0.0005 (not shown).

It should be mentioned that ψc′c
0 is not always the most concentrated among all

bandpass prolates: for some values of c′, the most concentrated odd bandpass pro-
late (not shown) appears to have slightly more energy in [−1,1] than ψc′c

0 does—
consistent with Slepian and Pollak’s observation [12] of degeneracies in Pc′cQ for
certain values of c′ and c. The notation ψc′c

0 then does not necessarily indicate the
most concentrated bandpass prolate as it does in the case c′ = 0, but rather it denotes
a continuous deformation of the full-band prolate ϕc

0 in the parameter c′.
Khare [8] also considered the problem of numerical evaluation of bandpass pro-

lates, focusing instead on the role of the interpolating function (sinc multiplied by
a suitably dilated cosine) and establishing that the bandpass prolate samples form a
discrete eigenvector of the matrix of partial integrals on [−1,1] of shifts of the inter-
polating kernel, cf. also Hogan et al., [7]. Khare did not investigate dependence on
c′/c.
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Appendix A: Proof of Proposition 2

One has

χn

∫ 1

x

ϕn(t)ϕm(t)dt =
∫ 1

x

(
d

dt

(
t2 − 1

) d

dt
+ c2t2

)
ϕn(t)ϕm(t)dt

= (
t2 − 1

)dϕn

dt
ϕm(t)

∣∣∣
∣

1

x

+c2
∫ 1

x

t2ϕn(t)ϕm(t)dt

−
∫ 1

x

(
t2 − 1

)dϕn

dt

dϕm

dt
dt.

Interchanging the roles of n and m one has

χm

∫ 1

x

ϕn(t)ϕm(t)dt =
∫ 1

x

(
d

dt

(
t2 − 1

) d

dt
+ c2t2

)
ϕm(t)ϕn(t)dt

= (
t2 − 1

)dϕm

dt
ϕn(t)

∣∣∣∣

1

x

+c2
∫ 1

x

t2ϕn(t)ϕm(t)dt

−
∫ 1

x

(
t2 − 1

)dϕm

dt

dϕn

dt
dt.

Subtracting the two results in the identity

(χn − χm)

∫ 1

x

ϕn(t)ϕm(t)dt = (
t2 − 1

)(dϕn

dt
ϕm(t) − dϕm

dt
ϕn(t)

) ∣∣∣∣

1

x

.

Appendix B: Proof of Proposition 1

Suppose that ψ = ∑
αnϕ

c
n with ϕc

n L2(R)-normalized. Then

Pc′cQψ =
∑

k

αk(Pc − Pc′)Qϕc
k =

∑

k

αkλkϕ
c
k −

∑

k

αkPc′Qϕc
k

=
∑

k

αkλkϕ
c
k −

∑

k

αk

∑

j

〈
Pc′Qϕc

k,ϕ
c
j

〉
ϕc

j

where in the last line we use the fact that {ϕc
j } is complete in PWc and PWc′ ⊂ PWc.

Use of the Plancherel identity, Eq. (3), the eigenfunction property of the prolates and
the property PcPc′ = Pc′Pc = Pc′ , shows that the quantity 〈Pc′Qϕc

k,ϕ
c
j 〉 in the last

line of the formula above may be written as

〈
Pc′Qϕc

k,ϕ
c
j

〉 = 〈
P ′

cQϕc
k,Pcϕ

c
j

〉 = 〈
PcPc′Qϕc

k,ϕ
c
j

〉

= 〈
Pc′PcQϕc

k,ϕ
c
j

〉 = λk

〈
Pc′ϕc

k,ϕ
c
j

〉
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= λk

∫ c′

−c′
ϕ̂c

k(ξ)ϕ̂c
j (ξ)dξ

= λkc

∫ c′/c

−c′/c
ϕ̂c

k(cξ)ϕ̂c
j (cξ)dξ

= λk

ik−j

√
λkλj

∫ c′/c

−c′/c
ϕc

k(t)ϕ
c
j (t)dt = λkRjk.

That is, for ψ = ∑
k αkϕ

c
k one has

Pc′cQψ =
∑

k

αkλk

(
ϕc

k −
∑

j

Rjkϕ
c
j

)
.

Thus if Pc′cQψ = λψ then

λαj = λjαj −
∑

k

λkαkRjk

or, equivalently, λα = (I − R)Λα with α = {αk}.
Notice that if α ∈ �2(Z+) and fα ∈ L2[−1,1] is defined by fα(t) = ∑

k
ik√
λk

αkϕ
c
k

then

〈Rα,α〉 =
∫ c′/c

−c′/c

∣
∣fα(t)

∣
∣2 dt

and, since R is self adjoint,

‖I − R‖ = sup
α:‖α‖=1

〈
(I − R)α,α

〉 = sup
α

∫

c′/c≤|t |≤1

∣
∣fα(t)

∣
∣2 dt.
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