Letter to the Editor: On the Numerical Evaluation of Bandpass Prolates

Jeffrey A. Hogan · Joseph D. Lakey

Received: 21 September 2012 / Revised: 26 October 2012 © Springer Science+Business Media New York 2013

Abstract This letter provides a technique for numerical evaluation of certain eigenfunctions of the integral kernel operator corresponding to time truncation of a squareintegrable function to a finite interval, followed by frequency limiting to frequencies in an annular band.

Keywords Prolate spheroidal wave function · Bandpass prolate · Time and band limiting · Legendre polynomials

Mathematics Subject Classification (2000) 94A12 · 94A20 · 42C10 · 65T99

This note provides a technique for numerical evaluation of certain *bandpass prolate* functions. These functions are eigenfunctions of the integral kernel operator corresponding to time truncation of a function in $L^2(\mathbb{R})$ to a finite interval—[−1, 1] in this work—followed by frequency limiting to frequencies $|\omega| \in [c', c]$. The time- and bandpass-limiting operator was mentioned in the groundbreaking work of Slepian and Pollack [\[12](#page-7-0)] and studied more recently for example by Sengupta et al. [\[11\]](#page-7-1) and by Khare [[8\]](#page-6-0). As in the work of Sengupta et al., our technique utilizes the expansion of such eigenfunctions in *standard prolates* for the full band. The main contribution

J.A. Hogan

School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia

e-mail: jeff.hogan@newcastle.edu.au

J.D. Lakey (\boxtimes) Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88003-8001, USA e-mail: jlakey@nmsu.edu

Communicated by Hans G. Feichtinger.

here is an expression for the coefficients of the bandpass functions in terms of certain *partial inner products* of the full-band prolates.

Prolate spheroidal wave functions, or prolates for short, on the interval [−1*,* 1] are eigenfunctions of the prolate differential operator,

$$
\mathcal{P}_c \varphi_n(t) = \chi_n \varphi_n(t); \quad \mathcal{P}_c = \frac{\mathrm{d}}{\mathrm{d}t} \left(t^2 - 1\right) \frac{\mathrm{d}}{\mathrm{d}t} + c^2 t^2. \tag{1}
$$

Such functions extend to elements of $L^2(\mathbb{R})$. Prolates are also eigenfunctions of the integral operator

$$
(F_c f)(t) = \int_{-1}^{1} e^{icst} f(s) ds = \widehat{Qf}(-ct)
$$
 (2)

in which *Q* is the operation of multiplication by the characteristic function of [−1*,* 1] and \hat{f} denotes the Fourier transform normalized as integration against the kernel e−i*st* .

Denote by *P_c* the operator that sends $f \in L^2(\mathbb{R})$ to $(\hat{f} \mathbb{1}_{[-c,c]})^{\vee}$ where ψ^{\vee} denotes the inverse Fourier transform of ψ . Here $\mathbb{1}_{[-c,c]}$ is the characteristic function of the interval $[-c, c]$. Since the differential operator \mathcal{P}_c commutes with the compact integral operator P_cQ , these operators share their eigenfunctions. The eigenvalues of P_cQ are non-degenerate. Let $\lambda_0(c) > \lambda_1(c) > \cdots$ be the eigenvalues of P_cQ arranged in decreasing order and φ_n^c be the eigenfunction corresponding to $\lambda_n(c)$. The fact that φ_n^c is an eigenfunction of the operator F_c of ([2\)](#page-1-0) and some other basic properties imply that

$$
D_c \widehat{\varphi}_n^c = \frac{i^n}{\sqrt{\lambda_n}} Q \varphi_n^c \tag{3}
$$

where D_c is the unitary dilation $(D_c f)(t) = \sqrt{c} f(ct)$, $c > 0$. When $L^2(\mathbb{R})$ normalized, the prolates $\{\varphi_n^c\}$ form an orthonormal basis for PW_c, the closed subspace of $L^2(\mathbb{R})$ of functions bandlimited to $[-c, c]$, as well as a complete, orthogonal set in $L^2[-1, 1]$ with $\lambda_n(c) = \int_{-1}^1 |\varphi_n^c|^2$. As such, any $f \in PW_c$ can be expanded in the form $f = \sum_{n=0}^{\infty} \alpha_n \varphi_n^c$ with $||f||^2_{L^2(\mathbb{R})} = \sum \alpha_n^2$ and $\int_{-1}^1 |f|^2 = \sum \lambda_n \alpha_n^2$. The prolates are real-valued and φ_n^c is even (odd) if *n* is even (odd).

Given $0 < c' < c$ denote by PW_{c',c} the orthogonal complement of PW_{c'} inside PW_c, that is, the closed subspace of $L^2(\mathbb{R})$ of functions whose Fourier transforms $\widehat{f}(\xi)$ are supported in $c' \le |\xi| \le c$, and by $P_{c'c}$ the orthogonal projection onto PW_{c'c}. Denote by $R = R(c', c)$ the matrix with entries $R_{jk} = \frac{i^{k-j}}{\sqrt{\lambda_j \lambda_k}} \int_{-c'/c}^{c'/c} \varphi_k^c(\xi) \varphi_j^c(\xi) d\xi$. The matrix *R* is real symmetric, a consequence of the parity properties of the φ_n^c . Also let $\Lambda = \Lambda(c)$ be the diagonal matrix with *n*th diagonal entry $\lambda_n(c)$.

Proposition 1 *If* $\psi = \sum \alpha_n \varphi_n^c \in PW_c$ *then*

$$
P_{c'c}Q\psi = \sum_{k} \alpha_k \lambda_k \bigg(\varphi_k^c - \sum_j R_{jk}\varphi_j^c\bigg).
$$

Birkhäuser

In particular, if $\psi = \sum \alpha_n \varphi_n^c$ *is an eigenfunction of* $P_{c'c}Q$ *with eigenvalue* λ *then*

$$
\lambda \alpha_n = \lambda_n \alpha_n - \sum_k \lambda_k \alpha_k R_{nk} \quad i.e. \quad \lambda \alpha = (I - R) \Lambda \alpha \quad (\alpha = {\alpha_n}_{n=0}^{\infty}).
$$

The discrete eigenvectors α of the matrix $(I - R)$ give rise to eigenfunctions of *P_{c'c}Q* and the eigenvalue λ measures the concentration of ψ in [−1, 1] just as in the case of standard prolates. The proof will be given in Appendix [B.](#page-5-0)

1 Finite Dimensional Approximations of Bandpass Prolates

Our numerical approximations require two main ingredients. The first is a finite dimensional approximation of the matrix *R* that gives rise to the eigenfunctions of $P_{c'c}Q$. The latter can be expressed as the integral operator

$$
(P_{c'c}Q)(f)(t) = \int_{-1}^{1} \frac{\sin c(t-s) - \sin c'(t-s)}{\pi(t-s)} f(s) ds
$$

=
$$
\frac{2}{\pi} \int_{-1}^{1} \frac{\sin a(t-s) \cos b(t-s)}{t-s} f(s) ds
$$

where $a = (c - c')/2$, $b = (c + c')/2$ and with P_cQ corresponding to the limiting case $c' = 0$. The other ingredient is a method to approximate the elements of such a finite dimensional matrix. One can estimate the partial inner product entries of a finite rank approximation of *R* if one has in turn estimates of the corresponding eigenvalues *χn* of \mathcal{P}_c and the values of the prolates φ_n^c . Specifically, let $\chi_n = \chi_n(c)$ be such that $\mathcal{P}_c\varphi_n^c = \chi_n(c)\varphi_n^c$. The following identity is known as Byerly's identity [[4,](#page-6-1) Chap. 5] in the limiting case $c = 0$ (in which case the prolates collapse to the normalized Legendre polynomials: $\phi_n^0 = \sqrt{n+1/2}P_n$). The proof for the prolate case is similar and is given in Appendix [A](#page-5-1).

Proposition 2 *If* $n \neq m$ *then, with* χ_n *as in* ([1\)](#page-1-1) *and* $-1 \leq a \leq b \leq 1$,

$$
(\chi_n - \chi_m) \int_a^b \varphi_n(t) \varphi_m(t) dt = (t^2 - 1) \left(\frac{d\varphi_n}{dt} \varphi_m(t) - \frac{d\varphi_m}{dt} \varphi_n(t) \right) \Big|_a^b.
$$

The partial norm squares $\int_a^b \varphi_n^2(t) dt$ can be computed via Legendre polynomial expansions as outlined below.

In order to produce a finite dimensional approximation of the matrix $(I - R) \Lambda$, first one notes that $I - R$ is a bounded operator since R corresponds, in the prolate basis, to the projection from PW_c onto PW_c[']. The matrix Λ is understood through the famous 2*ΩT* theorem of Landau and Widom [[10\]](#page-7-2) and other work of Landau et al., e.g., [\[9](#page-6-2)] shows that there are approximately $N \approx 2c/\pi$ eigenvalues of P_cQ that are close to one and that the other eigenvalues decay to zero rapidly—faster than exponential in *n*, e.g., [\[6](#page-6-3), p. 21]. The factor $2c/\pi$ is the product of the length of the time-concentration and frequency-concentration intervals when using the unitary

Fig. 1 (a) plots the approximate norm of $P_{c'c}Q$ (*dashed*) and the norm of $P_{c-c'}Q$ (*solid*) against c'/c with $c = 5\pi/2$. The norm of $P_{c/c}Q$ here is approximated numerically by the norm of the truncated version of the matrix $(I - R) \Lambda$ in Prop. [1.](#page-1-2) (**b**) plots the coefficients $\langle \psi_0^{c', c}, \varphi_n^c \rangle$ of the symmetric bandpass prolate $\psi_0^{c',c}$ having the largest energy concentration in [−1, 1] versus *c*'/*c*. The symbols are assigned as follows: $\phi \sim \varphi_0^c, \quad \sim \varphi_2^c, \quad \times \sim \varphi_4^c, \quad \Delta \sim \varphi_6^c \text{ and } \Box \sim \varphi_8^c$

version of the Fourier transform (integration against e−2*π*i*ξt*). As a consequence of the 2*ΩT* theorem, there are at most essentially $2c/\pi + \log(2c/\pi)\log((1-\alpha)/\alpha)$ + $o(log(c))$ eigenvalues of P_cQ larger than any fixed $\alpha > 0$. If *c* is large, then the initial eigenvalues of *PcQ* are close to 1 and, therefore, close to one another. Eigenfunction estimates based on the integral equation are then inaccurate. In addition, the rapid decay of the eigenvalues also leads to a loss of accuracy in estimating eigenfunctions φ_n^c for large *n*. Similar limitations apply to the operator $P_{c'c}Q$.

For small values of *c*, the prolates φ_n^c can be approximated on [−1, 1] by sums of Legendre polynomials up to an appropriate order. The method for doing so relies on the prolate differential equation. In the case $c = 0$ the solutions of [\(1](#page-1-1)) are the Legendre polynomials on $[-1, 1]$. The coefficients β_{nk} of the prolate expansion $\varphi_n^c = \sum_{n=0}^{\infty} \beta_{nk} P_k$ in which P_k is the *k*th Legendre polynomial can be *solved* efficiently by finding the eigenvector–eigenvalue decomposition of a certain *tridiagonal matrix*. This variant of Bouwkamp's method [[1\]](#page-6-4) was considered independently by Xiao et al., [\[13](#page-7-3)] and Boyd [[2,](#page-6-5) [3](#page-6-6)] who also considered what truncation dimension would provide accurate expansions, and by Sengupta et al. [[11\]](#page-7-1) in obtaining eigenvalue estimates for the bandpass problem. In particular, Boyd [\[3](#page-6-6)] suggested that if *c* is not too large ($c \le c^*(N) \approx \pi(N + 1/2)/2$) then the prolates φ_n^c and their eigenvalues *χn* are approximated up to order *N* with negligible error by truncating this tridiagonal matrix to the first N_{tr} rows and columns, taking $N_{tr} \approx 2N + 30$. We use the same truncation dimension to estimate the matrix *R*, as justified by the 2*ΩT* theorem.

In the remainder of this note we provide a few figures to illustrate the approximations just mentioned. Figure $1(a)$ $1(a)$ compares the norm of the time- and band-limiting operator $P_{c-c'}Q$ with the norm of $P_{c'c}Q = (P_c - P_{c'})Q$. Here $c = \frac{5\pi}{2}$. It was proved by Donoho and Stark $[5]$ $[5]$ that if P_Σ denotes the operator of frequency limiting to a set Σ of finite measure then, provided the measure is sufficiently small (less than 0.88) one has the operator norm inequality $||P_{\Sigma}Q|| \leq ||P_{\Sigma}|Q||$ with $|\Sigma|$ the measure of Σ . Figure [1](#page-3-0)(a) quantifies the difference between the two norms when $\Sigma = [-c, c] \setminus [-c', c']$.

Fig. 2 Plots of bandpass prolates $\psi_0^{c'c}$ for $c = \frac{5\pi}{2}$. These plots show the symmetric bandpass prolates having largest energy concentration to [−1*,* 1]. Each curve corresponds to a fixed value of the parameter *c /c* ranging from 0*.*02 to 0*.*98 in increments of 0*.*02. The *thick curves* correspond to the starting value $c'/c = 0.02$ —the curve with the highest peak—and the value $c'/c = 0.8$. The amplitudes tend to zero as $c'/c \rightarrow 1$ $c'/c \rightarrow 1$, see Fig. 1(a)

When restricted to [-1, 1], the bandpass prolate $\psi^{c'c}$ having the largest eigenvalue is essentially a sum of low order prolates φ_n^c for small c'/c . The coefficients in these linear combinations vary continuously with c'/c , with the general trend that energy moves from coefficients φ_n^c for smaller *n* to coefficients for larger $n \leq 4c/\pi$ as *c'* \uparrow *c*. In Fig. [1](#page-3-0)(b) we take $c = 5\pi/2$ so that, as indicated by the 2*ΩT* theorem, φ_n^c has negligible energy in $[-1, 1]$ for $n \ge 10$. The coefficients in Fig. [1\(](#page-3-0)b) correspond to eigenvectors α of an approximate truncation of $(I - R)$ Λ. The prolates used in approximating *R* were obtained by the method outlined in Boyd [[2\]](#page-6-5) with $N = 5 = 2c/\pi$ and $N_{tr} = 2N + 30 = 40$. Likewise, *R* was truncated to size N_{tr} . As is well known, the *n*th prolate φ_n^c has *n* zeros in [−1, 1] (e.g., [\[6](#page-6-3), p. 18]) so, roughly speaking, the center frequency of φ_n^c increases with *n*. Thus the coefficient trend is consistent with the observation that the energy is localized in higher frequencies as $c' \uparrow c$, since $P_{c'c}$ localizes the Fourier transform to $[-c, c] \setminus [-c', c']$. This behavior is illustrated in Fig. [2](#page-4-0), where we plot the bandpass prolate, which we denote by $\psi_0^{c'c}$, having the largest fraction of its energy in [−1*,* 1] among all *symmetric* bandpass prolates. Only for very small values of *c*^{*'*} does the φ_0^c term become dominant and thus $\psi_0^{c'c} \approx \varphi_0^c$. In our case, this happens for $c'/c < 0.0005$ (not shown).

It should be mentioned that $\psi_0^{c'c}$ is not always the most concentrated among all bandpass prolates: for some values of *c* , the most concentrated *odd* bandpass prolate (not shown) appears to have slightly more energy in [−1, 1] than $\psi_0^{c'c}$ does consistent with Slepian and Pollak's observation $[12]$ $[12]$ of degeneracies in $P_{c'c}Q$ for certain values of c' and c. The notation $\psi_0^{c'c}$ then does not necessarily indicate the most concentrated bandpass prolate as it does in the case $c' = 0$, but rather it denotes a continuous deformation of the full-band prolate φ_0^c in the parameter *c'*.

Khare [\[8](#page-6-0)] also considered the problem of numerical evaluation of bandpass prolates, focusing instead on the role of the interpolating function (sinc multiplied by a suitably dilated cosine) and establishing that the bandpass prolate samples form a discrete eigenvector of the matrix of partial integrals on [−1*,* 1] of shifts of the interpolating kernel, cf. also Hogan et al., [\[7](#page-6-8)]. Khare did not investigate dependence on *c /c*.

Appendix A: Proof of Proposition [2](#page-2-0)

One has

$$
\chi_n \int_x^1 \varphi_n(t) \varphi_m(t) dt = \int_x^1 \left(\frac{d}{dt} (t^2 - 1) \frac{d}{dt} + c^2 t^2 \right) \varphi_n(t) \varphi_m(t) dt
$$

= $(t^2 - 1) \frac{d\varphi_n}{dt} \varphi_m(t) \Big|_x^1 + c^2 \int_x^1 t^2 \varphi_n(t) \varphi_m(t) dt$
- $\int_x^1 (t^2 - 1) \frac{d\varphi_n}{dt} \frac{d\varphi_m}{dt} dt.$

Interchanging the roles of *n* and *m* one has

$$
\chi_m \int_x^1 \varphi_n(t) \varphi_m(t) dt = \int_x^1 \left(\frac{d}{dt} (t^2 - 1) \frac{d}{dt} + c^2 t^2 \right) \varphi_m(t) \varphi_n(t) dt
$$

= $(t^2 - 1) \frac{d\varphi_m}{dt} \varphi_n(t) \Big|_x^1 + c^2 \int_x^1 t^2 \varphi_n(t) \varphi_m(t) dt$
- $\int_x^1 (t^2 - 1) \frac{d\varphi_m}{dt} \frac{d\varphi_n}{dt} dt.$

Subtracting the two results in the identity

$$
(\chi_n - \chi_m) \int_x^1 \varphi_n(t) \varphi_m(t) dt = (t^2 - 1) \left(\frac{d\varphi_n}{dt} \varphi_m(t) - \frac{d\varphi_m}{dt} \varphi_n(t) \right) \Big|_x^1.
$$

Appendix B: Proof of Proposition [1](#page-1-2)

Suppose that $\psi = \sum \alpha_n \varphi_n^c$ with $\varphi_n^c L^2(\mathbb{R})$ -normalized. Then

$$
P_{c'c}Q\psi = \sum_{k} \alpha_k (P_c - P_{c'})Q\varphi_k^c = \sum_{k} \alpha_k \lambda_k \varphi_k^c - \sum_{k} \alpha_k P_{c'}Q\varphi_k^c
$$

$$
= \sum_{k} \alpha_k \lambda_k \varphi_k^c - \sum_{k} \alpha_k \sum_{j} \langle P_{c'}Q\varphi_k^c, \varphi_j^c \rangle \varphi_j^c
$$

where in the last line we use the fact that ${\varphi_j^c}$ is complete in PW_{*c*} and PW_{*c'*} \subset PW_{*c*}. Use of the Plancherel identity, Eq. ([3\)](#page-1-3), the eigenfunction property of the prolates and the property $P_c P_{c'} = P_{c'} P_c = P_{c'}$, shows that the quantity $\langle P_{c'} Q \varphi_k^c, \varphi_j^c \rangle$ in the last line of the formula above may be written as

$$
\langle P_{c'}Q\varphi_k^c, \varphi_j^c \rangle = \langle P_c'Q\varphi_k^c, P_c\varphi_j^c \rangle = \langle P_c P_{c'}Q\varphi_k^c, \varphi_j^c \rangle
$$

=
$$
\langle P_{c'}P_cQ\varphi_k^c, \varphi_j^c \rangle = \lambda_k \langle P_{c'}\varphi_k^c, \varphi_j^c \rangle
$$

Birkhäuser

$$
= \lambda_k \int_{-c'}^{c'} \widehat{\varphi_k^c}(\xi) \overline{\widehat{\varphi_j^c}}(\xi) d\xi
$$

\n
$$
= \lambda_k c \int_{-c'/c}^{c'/c} \widehat{\varphi_k^c}(c\xi) \overline{\widehat{\varphi_j^c}}(c\xi) d\xi
$$

\n
$$
= \lambda_k \frac{i^{k-j}}{\sqrt{\lambda_k \lambda_j}} \int_{-c'/c}^{c'/c} \varphi_k^c(t) \varphi_j^c(t) dt = \lambda_k R_{jk}.
$$

That is, for $\psi = \sum_{k} \alpha_k \varphi_k^c$ one has

$$
P_{c'c}Q\psi = \sum_{k} \alpha_{k} \lambda_{k} \bigg(\varphi_{k}^{c} - \sum_{j} R_{jk} \varphi_{j}^{c}\bigg).
$$

Thus if $P_{c'c} Q \psi = \lambda \psi$ then

$$
\lambda \alpha_j = \lambda_j \alpha_j - \sum_k \lambda_k \alpha_k R_{jk}
$$

or, equivalently, $λα = (I – R)Λα$ with $α = {α_k}$.

Notice that if $\alpha \in \ell^2(\mathbb{Z}_+)$ and $f_\alpha \in L^2[-1, 1]$ is defined by $f_\alpha(t) = \sum_k \frac{i^k}{\sqrt{\lambda_k}} \overline{\alpha_k} \varphi_k^c$ then

$$
\langle R\alpha, \alpha \rangle = \int_{-c'/c}^{c'/c} |f_{\alpha}(t)|^2 dt
$$

and, since *R* is self adjoint,

$$
||I - R|| = \sup_{\alpha : ||\alpha|| = 1} \langle (I - R)\alpha, \alpha \rangle = \sup_{\alpha} \int_{c'/c \leq |t| \leq 1} |f_{\alpha}(t)|^2 dt.
$$

References

- 1. Bouwkamp, C.J.: On spheroidal wave functions of order zero. J. Math. Phys. **26**, 79–92 (1947)
- 2. Boyd, J.P.: Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms. J. Comput. Phys. **199**, 688–716 (2004)
- 3. Boyd, J.P.: Algorithm 840: computation of grid points, quadrature weights and derivatives for spectral element methods using prolate spheroidal wave functions—prolate elements. ACM Trans. Math. Softw. **31**, 149–165 (2005)
- 4. Byerly, W.E.: An Elementary Treatise on Fourier's Series and Spherical, Cylindrical, and Ellipsoidal Harmonics: With Applications to Problems in Mathematical Physics. Dover Publications, New York (1959)
- 5. Donoho, D.L., Stark, P.B.: A note on rearrangements, spectral concentration, and the zero-order prolate spheroidal wavefunction. IEEE Trans. Inf. Theory **39**, 257–260 (1993)
- 6. Hogan, J.A., Lakey, J.D.: Duration and Bandwidth Limiting. Springer, New York (2012)
- 7. Hogan, J.A., Izu, S., Lakey, J.D.: Sampling approximations for time- and bandlimiting. Sampl. Theory Signal. Image Process. **9**, 91–117 (2010)
- 8. Khare, K.: Bandpass sampling and bandpass analogues of prolate spheroidal functions. Signal Process. **86**(7), 1550–1558 (2006)
- 9. Landau, H.J.: On the density of phase-space expansions. IEEE Trans. Inf. Theory **39**, 1152–1156 (1993)
- 10. Landau, H.J., Widom, H.: Eigenvalue distribution of time and frequency limiting. J. Math. Anal. Appl. **77**, 469–481 (1980)
- 11. SenGupta, I., Sun, B., Jiang, W., Chen, G., Mariani, M.C.: Concentration problems for bandpass filters in communication theory over disjoint frequency intervals and numerical solutions. J. Fourier Anal. Appl. **18**(1), 182–210 (2012)
- 12. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell Syst. Tech. J. **40**, 43–63 (1961)
- 13. Xiao, H., Rokhlin, V., Yarvin, N.: Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Probl. **17**, 805–838 (2001)