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We provide conditions on a shift parameter and number of basic prolate spheroidal 
wave functions with a fixed bandwidth and time concentrated to a fixed duration 
such that the shifts of the basic prolates form a frame or a Riesz basis for the 
Paley–Wiener space consisting of all square integrable functions with the given 
bandlimit.
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1. Introduction

A considerable literature has been developed on the subject of principal and finitely generated shift 
invariant spaces V (Ψ) = span{ψn(· −k) : n = 1, . . . , N ; k ∈ Z}, including structural results [5,20,3] and more 
recent results addressing spaces with further invariance properties [1,11,26]. An equally substantial literature 
has been developed on the subject of Gabor systems G(g1, . . . , gN ; α, β) generated by time–frequency shifts 
e2πi�βt gn(t − αk) of a single or finite collection of generators, e.g., [7,8,4,10] with more recent applications 
outlined in [2,19]. A primary question is what properties of the generators gn and shift parameters α, β are 
consistent with the Gabor system forming a frame or Riesz basis for L2(R). We study here very specific 
shift invariant systems with properties that are in a sense intermediate to structural properties of finitely 
generated shift invariant spaces on the one hand and of Gabor systems on the other. Specifically, we are 
interested in frame and Riesz basis properties of systems generated by shifts of certain prolate spheroidal 
wave functions (prolates, for short). These are bandlimited functions that are the most concentrated to a 
fixed time interval in L2-norm. They are eigenfunctions of the operator that first truncates to a time interval 
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then truncates to a frequency interval, and they are ordered by decreasing magnitude of the eigenvalue. The 
famous “2ΩT” theorem states that, asymptotically, the number of independent unit norm eigenfunctions 
ϕn having eigenvalues λn close to one is the product of the bandwidth and the duration—the length of the 
time-concentration interval.

Denote by ϕn the nth prolate in this ordering, n = 0, 1, 2, . . . , bandlimited to [−Ω, Ω] and time-
concentrated in the interval [−1, 1] with associated eigenvalue λn. Fix α > 0. We first consider frame 
properties of families of shifts {

√
λn ϕn(· − 2kα) : n = 0, 1, 2, . . . , k ∈ Z} of 

√
λn-normalized prolates. The 

factor two is used here to emphasize that we are shifting by multiples of the duration. The prolates ϕn

form an orthonormal basis for the Paley–Wiener space PW2Ω of L2-functions bandlimited to [−Ω, Ω] as 
well as an orthogonal basis for L2[−1, 1], so it is mildly surprising that a collection of integer shifts of √
λn-normalized prolates might form a frame for the Paley–Wiener space. In fact, Theorems 2 and 4 show 

that they form a tight frame in certain cases and at least a near-tight frame in others.
When considering shifts of the first N prolates ϕ0, . . . , ϕN−1, it is possible to obtain frames for the 

Paley–Wiener space with or without normalizing by 
√
λn. The first main result in this regard, Theorem 10, 

essentially states that the family forms a frame for PW2Ω if N ≥ 2Ωα, but that the family is incomplete 
in PW2Ω if N < 2Ωα. However, the frame bounds are less concretely quantified in this case. The proof 
of Theorem 10 illustrates why the family {ϕn(· − αk)}N−1

n=0, k∈Z
is redundant or overcomplete if N > 2Ωα. 

When N = 2Ωα ∈ N it is possible that the family {ϕn(· − αk)}N−1
n=0, k∈Z

actually forms a Riesz basis for 
PW2Ω and the second main result, Theorem 12, shows that this is indeed the case. Notationally we have 
absorbed the duration into the shift factor α in Theorems 10 and 12, considering shifts ϕ(· − αk) rather 
than ϕ(· − 2αk) as in the renormalized frames, in order to minimize notational burden in Sections 4 and 5.

When the prolate shifts {ϕn(t −αk)}N−1
n=0, k∈Z

form a frame or Riesz basis for PW2Ω , the time–frequency 
shifts {e4πi�Ωtϕn(t − αk)}N−1

n=0, k,�∈Z
form a corresponding frame or Riesz basis for L2(R) with the same 

bounds simply because for 	 �= 	′, 〈e4πi�Ωtϕn(t −αk), e4πi�′Ωtϕn(t −αk′)〉 = 0 since the modulated prolates 
are frequency-supported on disjoint intervals. This fact does not contradict the Balian–Low theorem, e.g., [8]
because tϕn(t) /∈ L2(R), e.g., [22, Eq. 1.10]. Analogues of Gabor frames generated by prolates were studied 
in the context of joint time–frequency cutoffs by Dörfler and Romero [6].

The remainder of the paper is organized as follows. In Section 2 we review necessary background properties 
of prolate spheroidal wave functions. Section 3 establishes frame properties of the families Fα = {

√
λn ϕn(· −

2α	) : n ≥ 0, 	 ∈ Z}, including Theorems 2 and 4, which provide explicit frame bounds for the Paley–Wiener 
space PW2Ω . Section 4 shows that the unrenormalized families {ϕn(· − α	) : n = 0, . . . , N − 1, 	 ∈ Z} of 
shifts of the first N prolates form frames for PW2Ω under the condition that there is at least one prolate 
shift per unit time–bandwidth (Theorem 10), and in Section 5 it is shown that they form a Riesz basis for 
PW2Ω if there is precisely one prolate shift per unit time–bandwidth (Theorem 12).

2. Background on prolate spheroidal wave functions and frames

Much of the mathematical foundation of time and band limiting was laid out in a series of papers written 
by combinations of Landau, Slepian and Pollak [24,14,15,21,23] appearing in the Bell System Technical 
Journal in the early 1960s. For T > 0, the time-limiting operator QT corresponds to multiplying f ∈ L2(R)
by 1[−T,T ], the characteristic function of the interval [−T, T ]. Let PΩ denote the bandlimiting operator PΩ =
F−1QΩ/2F with (Ff)(ξ) =

∫∞
−∞ f(t) e−2πitξ dt denoting the Fourier transform. The duration–bandwidth 

product is 2ΩT . The operator PΩQT is compact and self-adjoint on the Hilbert space PWΩ = PΩ(L2(R)). 
The operators Q = Q1 and Pc/π commute with the differential operator

Pc = d (
t2 − 1

) d + c2t2 (1)
dt dt
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whose eigenfunctions are called prolate spheroidal wave functions. Their properties were studied as early as 
the nineteenth century (e.g., [18], cf., [25]) in the context of mathematical physics. We call the corresponding 
eigenfunctions of PΩQT (T, Ω)-prolates, or just prolates. They are usually indexed by listing the eigenvalues 
λn, n = 0, 1, 2, . . . of PΩQT in decreasing order. The (T, Ω)-prolates are dilates by 1/T of (1, TΩ)-prolates 
which are eigenfunctions of PπΩT . Thus, up to a unitary dilation, the (T, Ω) prolates just depend on the 
duration–bandwidth product 2TΩ. The (1, Ω)-prolates ϕn = ϕΩ

n have interesting properties. They form an 
orthonormal basis for PWΩ with L2-inner product. They also form an orthogonal basis for L2[−1, 1] with ∫ 1
−1 |ϕn|2 = λn when ‖ϕn‖L2(R) = 1. As such, any f ∈ PWΩ can be expanded in the form f =

∑∞
n=0 αn ϕ

Ω
n

with ‖f‖2
L2(R) =

∑
α2
n and 

∫ 1
−1 |f |2 =

∑
λnα

2
n. The prolates are real-valued and ϕΩ

n is even (odd) if n is even 

(odd). The nth prolate ϕn has n zeros on [−1, 1]. The ϕn are eigenfunctions of f 	→
√

2/ΩDΩ/2F−1Qf , 
where (Daf)(t) =

√
af(at), with eigenvalues μn = in

√
2λn(Ω)/Ω. One has the very useful consequence 

that their Fourier transforms are just cutoffs of dilates of ϕn: for a (1, Ω)-prolate,

ϕ̂n

(
Ω

2 ξ

)
= (−i)n

√
2

Ωλn
Qϕn(ξ). (2)

Landau and Widom’s 2ΩT theorem [16] states that PΩQT has approximately 2ΩT eigenvalues close to one, 
with a logarithmic plunge from eigenvalues close to one to very small eigenvalues. Specifically, if N(Ω, T, α)
denotes the number of eigenvalues of PΩQT larger than α ∈ (0, 1) then

N(Ω, T, α) = 2ΩT + log(2ΩT ) log
(

1 − α

α

)
+ o

(
log(ΩT )

)
. (3)

When α = 1/2 one also has �2ΩT � + 1 ≥ N(Ω, T, 1/2) ≥ �2ΩT � − 1, see [13,12].
In Section 4 we will make use of the Markov property of the (1, Ω)-prolates (e.g., [12, Theorem 2.1.16 

and Lemma 2.1.2]): For each N , the first N prolates form a Chebyshev system for [−1, 1]. We will use this 
fact in the following form.

Proposition 1. Fix Ω > 0, β > 0 and τ ∈ R. Let ϕn denote the nth (1, Ω) prolate and let t0 < · · · < tN−1
denote the lattice points in (τ + βZ) ∩ [−1, 1). Then there exists c > 0 depending on β but independent of τ
such that | detΦ| ≥ c, where Φ is the matrix with (n, k)th entry Φnk = ϕn(tk).

For the sake of completeness we include here the definitions of frames and Riesz bases, e.g., [9]. Let H
be an infinite dimensional, separable Hilbert space. A family {f1, f2, . . .} is a frame for H if there exist 
constants 0 < A ≤ B < ∞ such that for any f ∈ H one has

A‖f‖2
H ≤

∑
n

∣∣〈f, fn〉∣∣2 ≤ B‖f‖2
H.

A sequence {gn} is a Riesz basis for its closed span in H if there exist constants 0 < c ≤ C < ∞ such that 
for any sequence c1, c2, . . . in 	2(N) one has

c

∞∑
n=1

|cn|2 ≤
∥∥∥∑ cngn

∥∥∥
H

≤ C

∞∑
n=1

|cn|2.

3. Frames of normalized shifts using all prolates

Throughout what follows we will assume that Ω > 0 is fixed and let ϕn be the nth (1, 2Ω)-prolate 
bandlimited to [−Ω, Ω] and time-concentrated on [−1, 1] with ‖ϕn‖L2(R) = 1. Thus P2ΩQ ϕn = λnϕn
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and ‖Qϕn‖2 = λn. We denote by ψn the renormalized prolate ψn(t) =
√
λn ϕn(t), by ψn,2α� the shift 

τ2α�ψn(t) = ψn(t − 2α	) and, for fixed α > 0, Fα = {ψn,2α� : 	 ∈ Z, n ≥ 0}. The purpose of this section is 
to show that if α ≤ 1 then Fα forms a frame for PW2Ω and, at least for certain values of α, it forms a tight 
frame.

Theorem 2. For α ≤ 1 fixed, Fα = {ψn,2α� : 	 ∈ Z, n ≥ 0} forms a frame for PW2Ω with lower frame bound 
A ≥ �1/α� and upper frame bound B ≤ �1/α�.

Corollary 3. If 1/α ∈ N then Fα forms a tight frame for PW2Ω with frame bound A = B = 1/α. In 
particular, F = F1 forms a Parseval frame for PW2Ω.

Recall that a Parseval frame is one such that ‖f‖2 =
∑

|〈f, fn〉|2.

Proof. Let f ∈ PW2Ω . Then with τsf(t) = f(t −s), after a change of variable and using the self-adjointness 
of P2Ω and Q one has

∑
n

∑
�

∣∣〈f, ψn,2α�〉
∣∣2 =

∑
n

∑
�

∞∫
−∞

∞∫
−∞

τ−2α�f(t)τ−2α�f(s)λnϕn(t)ϕn(s) dtds

=
∑
�

∞∫
−∞

τ−2α�f(t)
∑
n

〈τ−2α�f, ϕn〉P2ΩQϕn(t) dt

=
∑
�

〈τ−2α�f, P2ΩQτ−2α�f〉 =
∑
�

‖Qτ−2α�f‖2

=
∑
�

1∫
−1

∣∣f(t + 2α	)
∣∣2 dt =

∑
�

2α�+1∫
2α�−1

∣∣f(t)
∣∣2 dt

=
∑
�

∞∫
−∞

1[−1,1](t− 2α	)
∣∣f(t)

∣∣2 dt

=
∞∫

−∞

(∑
�

1[−1,1](t− 2α	)
)∣∣f(t)

∣∣2 dt.

We used the fact that f ∈ PW2Ω in the fourth identity. For any t, the sequence {t − 2α	}�∈Z forms a lattice 
having at least �1/α� points in [−1, 1) and at most �1/α� points in [−1, 1). Thus the last integral is bounded 
below by �1/α�‖f‖2 and above by �1/α�‖f‖2 and the result follows. �

The normalization of the functions ψn is not intuitive. The functions ϕn form an orthonormal basis for 
PW2Ω and ϕn/

√
λn form an orthonormal basis for L2[−1, 1]. Giving ψn L2(R)-norm 

√
λn insures that high 

order terms do not add too much energy to the coefficient sum when f is shifted into a region in which ϕn

is more concentrated. The inequalities

�1/α�‖f‖2 ≤
∑
n

∑
�

∣∣〈f, ψn,2α�〉
∣∣2 ≤ �1/α�‖f‖2

do not preclude the possibility of the functions {ψn,2α�} forming a tight frame for some cases when 1/α /∈ N. 
In the remainder of this section we study frames of the form Fα or Fα, N = {ψn,2α� : n = 0, . . . , N−1, 	 ∈ Z}
when α is such that 1/(4Ωα) ∈ N. Theorem 4 shows that Fα forms a tight frame in this case, just as it 
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does when 1/α ∈ N; however, the proof when 1/(4Ωα) ∈ N (and 1/α /∈ N) requires fundamentally different 
techniques.

Theorem 4. If 1/α = 4mΩ for some m ∈ N then Fα = {ψn,2α�} forms a tight frame for PW2Ω with frame 
bound A = B = 4mΩ.

The theorem requires two auxiliary facts.

Proposition 5. For α = 1/4Ω and any N ∈ N one has

∑
�

N−1∑
n=0

∣∣〈f, ψn,2α�〉
∣∣2 = 2

Ω∫
−Ω

∣∣f̂(ξ)
∣∣2 N−1∑

n=0

1
λn

∣∣∣∣ψn

(
ξ

Ω

)∣∣∣∣2 dξ.

Observe that 
∑N−1

n=0 |ψn(ξ/Ω)|2/λn =
∑N−1

n=0 |ϕn(ξ/Ω)|2. The tight frame bound in Theorem 4 relies on 
the fact that the latter sum tends to a constant on [−Ω, Ω] when N → ∞.

Lemma 6. For the (1, 2Ω)-prolates ϕn, on [−1, 1] one has 
∑∞

n=0 |ϕn(t)|2 = 2Ω in the sense of both L2 and 
uniform convergence on [−1, 1].

When m = 1 the frame bound in Theorem 4 is 4Ω, which is equal to the duration–bandwidth product 
for the (1, 2Ω)-prolates ϕn. The uniformity of the limit in Lemma 6 suggests that shifts of ψ0, . . . , ψN−1
also can form a frame, albeit no longer tight, for PW2Ω .

Corollary 7. For α = 1/(2Ω), Fα,N = {ψn,2α� : n = 0, . . . , N − 1, 	 ∈ Z} forms a frame for PW2Ω whose 
lower and upper frame bounds AN and BN satisfy

2 inf
|ξ|≤1

N−1∑
n=0

1
λn

∣∣ψn(ξ)
∣∣2 ≤ AN ; BN ≤ 2 sup

|ξ|≤1

N−1∑
n=0

1
λn

∣∣ψn(ξ)
∣∣2.

When N = 1 the lower frame bound holds because ϕ0 is nonvanishing on [−1, 1], though small near ±1. 
One can use exactly the same argument used in proving Proposition 5 to establish corresponding frame 
bounds generated by the first N (unrenormalized) shifted prolates ϕn(· − 	/(2Ω)).

Corollary 8. For N fixed the (1, 2Ω) shifted prolates {ϕn(· − 	/(2Ω)) : n = 0, . . . , N − 1, 	 ∈ Z} form a 
frame for PW2Ω whose lower and upper frame bounds A′

N and B′
N satisfy

2 inf
|ξ|≤1

N−1∑
n=0

1
λn

∣∣ϕn(ξ)
∣∣2 ≤ A′

N ; B′
N ≤ 2 sup

|ξ|≤1

N−1∑
n=0

1
λn

∣∣ϕn(ξ)
∣∣2.

Recovery from frame coefficients is most effective when the frame is tight or, at least, snug, that is, 
(B −A)/(B +A) is small. Since 

∫ 1
−1

∑N−1
n=0

1
λn

|ϕn(ξ)|2 = N , the average value of 
∑N−1

n=0
1
λn

|ϕn(ξ)|2 is N/2. 
The function 

∑N−1
n=0

1
λn

|ϕn(ξ)|2 is plotted for a fixed Ω and different values of N in Fig. 1.
We proceed now in proving Theorem 4 assuming Proposition 5 and Lemma 6, which will be proved 

subsequently.

Proof of Theorem 4. By Lemma 6 and Plancherel’s theorem, the quantity 
∫ Ω

−Ω
|f̂(ξ)|2

∑N−1
n=0 |ϕn( ξ

Ω )|2 dξ
converges to 2Ω‖f‖2 as N → ∞ so that, by Proposition 5 it also follows that 

∑N−1 ∑ |〈f, ψn,2α�〉|2
n=0 �
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Fig. 1. Plot of ∑N−1
n=0 |ϕn(ξ)|2/λn for N = 3, 5, 7, 9 and Ω = 2, so there about 8 eigenvalues larger than 1/2. The tightest frame 

bounds correspond to N = 7, 9. The lower frame bound is on the order 10−5 when N = 3 and 6 × 10−3 when N = 5.

converges to 4Ω‖f‖2 as N → ∞ when α = 1/(4Ω). The case m = 1 then follows once the proposition and 
lemma are proved. For the general case m ≥ 1, with α = 1/(4mΩ) one can write

N−1∑
n=0

∑
�

∣∣〈f, ψn,2α�〉
∣∣2

=
m−1∑
k=0

N−1∑
n=0

∑
�

∣∣∣∣〈f, √λnϕn

(
· − 	

2Ω − k

2mΩ

)〉∣∣∣∣2

=
m−1∑
k=0

N−1∑
n=0

∑
�

∣∣∣∣〈f(· + k

2mΩ

)
,
√

λnϕn

(
· − 	

2Ω

)〉∣∣∣∣2

→
m−1∑
k=0

4Ω
∥∥∥∥f(· + k

2mΩ

)∥∥∥∥2

= 4mΩ‖f‖2. �

As a side note, the tight frame bound 4mΩ extends to the case in which the shifts of the ψn by multiples 
of 2α = 1/(2mΩ) are replaced by their shifts by a union of m arbitrary but fixed translates of the lattice 
Z/(2Ω).

Proof of Proposition 5. As before we assume that the prolates ϕn are (1, 2Ω) prolates, that is, they are 
bandlimited to [−Ω, Ω]. Using the Fourier property (2) of the prolates and Plancherel’s theorem we have

∑
�

N−1∑
n=0

∣∣∣∣〈f, √λnϕn

(
· − 	

2Ω

)〉∣∣∣∣2 =
∑
�

N−1∑
n=0

λn

∣∣〈f̂ , eπi� ·/Ωϕ̂n(·)
〉∣∣2

=
∑
�

N−1∑
n=0

λn

∣∣∣∣
Ω∫

−Ω

f̂(ξ) e−πi�ξ/Ωϕ̂n(ξ) dξ
∣∣∣∣2

= 2Ω
N−1∑
n=0

λn

Ω∫
−Ω

∣∣f̂(ξ) ϕ̂n(ξ)
∣∣2 dξ

= 2Ω
Ω∫ ∣∣f̂(ξ)

∣∣2 N−1∑
n=0

λn

∣∣ϕ̂n(ξ)
∣∣2 dξ
−Ω
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= 2Ω
Ω∫

−Ω

∣∣f̂(ξ)
∣∣2 N−1∑

n=0
λn

∣∣∣∣ 1√
Ωλn

ϕn

(
ξ

Ω

)∣∣∣∣2 dξ

= 2
Ω∫

−Ω

∣∣f̂(ξ)
∣∣2 N−1∑

n=0

∣∣∣∣ϕn

(
ξ

Ω

)∣∣∣∣2 dξ

= 2
Ω∫

−Ω

∣∣f̂(ξ)
∣∣2 N−1∑

n=0

1
λn

∣∣∣∣ψn

(
ξ

Ω

)∣∣∣∣2 dξ. �

It remains to prove Lemma 6.

Proof of Lemma 6. The eigenvalue property of the (1, 2Ω) prolates is

λnϕn(t) =
1∫

−1

sin(2πΩ(t− s))
π(t− s) ϕn(s) ds.

Since the functions ϕn/
√
λn form an orthonormal basis for L2[−1, 1], one has

∞∑
n=0

∣∣ϕn(t)
∣∣2 =

∑
n

1
λn

( 1∫
−1

sin(2πΩ(t− s))
π(t− s) ϕn(s) ds

)
ϕn(t)

=
∑
n

〈
sin(2πΩ(t− ·))

π(t− ·) ,
Qϕn√
λn

〉
Qϕn√
λn

= sin(2πΩ(t− s))
π(t− s)

∣∣∣∣
t=s

= 2Ω

where the series converges in L2([−1, 1]). In addition, the functions ϕn(t) are continuous on [−1, 1] so the 
partial sums 

∑N−1
n=0 |ϕn(t)|2 form a sequence of continuous functions monotone increasing in N . By [12, 

(2.22), p. 59] one has ϕ2
n(t) ≤ C nλn and then by [12, Lemma 1.2.11], λn ≤ Ce−n so 

∑∞
n=N |ϕn(t)|2 → 0

uniformly as N → ∞. Hence the sum converges uniformly on [−1, 1] to the constant limit. �
4. Prolate shift frames with low redundancy

The normalized prolate shift families Fα above are highly redundant systems. In this section we consider 
families of translates of the first N prolates ϕ0, . . . , ϕN−1 having L2(R)-norm one by integer multiples of 
a factor α > 0 such that neither 2/α nor 1/(2Ωα) is necessarily an integer. We seek conditions such that 
the family of shifted prolates {ϕn(t −αk)}N−1

n=0, k∈Z
forms a frame for PW2Ω . For notational convenience we 

have absorbed the duration factor two into the shift factor α here. As before we assume that the prolates 
are bandlimited to [−Ω, Ω] and essentially time-limited to [−1, 1] so that the duration–bandwidth product 
is 4Ω. We will see that it is sufficient, in general, that N ≥ 2Ωα, meaning that there is at least one prolate 
shift per unit time–duration–bandwidth. In contrast to the high redundancy case, the frame bounds here 
depend on the norm of a certain positive definite matrix. Estimated bounds are not as concrete as in the 
high redundancy case.

To get quickly to the role of this matrix, the proof of the following lemma, which follows the lines of that 
of Proposition 5, is left to the end of this section.

Lemma 9. Given α > 0 and the (1, 2Ω)-prolates ϕ0, . . . , ϕN−1, for f ∈ PW2Ω,



28 J.A. Hogan, J.D. Lakey / Appl. Comput. Harmon. Anal. 39 (2015) 21–32
N−1∑
n=0

∑
k∈Z

∣∣〈f, ϕn(· − αk)
〉∣∣2

=
N−1∑
n=0

1
λnαΩ

1/α∫
0

∣∣∣∣∣
�2Ωα�−1∑

�=0

f̂(ξ + 	/α−Ω)ϕn

(
ξ + 	/α

Ω
− 1

)∣∣∣∣∣
2

dξ. (4)

The vector {f̂(ξ + 	/α − Ω)}D−1
�=0 with D = �2Ωα� can be regarded as an arbitrary CD-valued function 

�s(ξ) = {s�(ξ)}D−1
�=0 with components in L2[0, 1/α), with the caveat that the last component of �s(ξ) is zero 

if ξ > (1 − γ)/α. We seek uniform bounds

A
∥∥�s(ξ)∥∥2

CD ≤
N−1∑
n=0

1
λnαΩ

∣∣∣∣∣
D−1∑
�=0

s�(ξ)ϕn

(
ξ + 	/α

Ω
− 1

)∣∣∣∣∣
2

≤ B
∥∥�s(ξ)∥∥2

CD , (5)

that is, with A and B independent of ξ. This is equivalent to the matrices

Mk,�(ξ) =
N−1∑
n=0

1
λnαΩ

ϕn

(
ξ + k/α

Ω
− 1

)
ϕn

(
ξ + 	/α

Ω
− 1

)
, 0 ≤ k, 	 < D = �2Ωα�, 0 ≤ ξ < 1/α (6)

having spectra bounded below uniformly by A > 0.
The matrix M(ξ) is positive semidefinite since M =

∑
n Mn with Mn = 1

λnαΩ
Φn(ξ)ΦT

n (ξ) where Φn is the 

vector with kth coordinate ϕn( ξ+k/α
Ω − 1), (0 ≤ k < D). That �xTM(ξ)�x = 0 then requires that �xTMn�x = 0

for each n. This is equivalent to ΦT
n (ξ)�x = 0 for each n = 0, . . . , N − 1. That is, �x must be orthogonal to 

each of the vectors ΦT
n (ξ). Thus �x must be in the kernel of the matrix whose nth row is ΦT

n , 0 ≤ n < N .
Consider a matrix W (ξ) whose rows are ΦT

n (ξ). That is, the (n, 	)th entry of W is ϕn( ξ+�/α
Ω − 1), 

0 ≤ 	 < D. The matrix has D columns. Its last column is zero if ξ > (1 − γ)/α.
If W has fewer than D rows then there is a unit vector �s(ξ) in CD that is orthogonal to each of the rows 

of W . In this case the left hand inequality in (5) fails. Thus we need to use N ≥ D prolates. On the other 
hand, if W has D rows then the Chebyshev condition (see Proposition 1) implies that W is nonsingular 
for ξ ≤ (1 − γ)/α: the Chebyshev condition applies to the arguments of ϕn lying in the full interval [−1, 1]
and ξ = (1 − γ)/α corresponds to the argument of ϕn equal to one. By continuity of the determinant and 
compactness of [0, (1 − γ)/α], the determinant is bounded away from zero for ξ ∈ [0, (1 − γ)/α]. On the 
other hand, if 1 − γ ≤ αξ ≤ 1 then the minor consisting of the first D − 1 rows and columns of W is 
nonsingular and the determinant of this minor is likewise bounded away from zero on [(1 − γ)/α, 1/α]. 
Since the matrix M(ξ) in (6) varies continuously with ξ we can conclude that its spectrum is bounded 
below uniformly on [0, (1 − γ)/α] while the spectrum of the submatrix corresponding to 0 ≤ k, 	 < D − 1
is bounded below uniformly on [(1 − γ)/α, 1/α]. Together this implies that the left hand inequality in (5)
holds uniformly in ξ with the caveat that the last coordinate of �s is zero when ξ > (1 − γ)/α. The right 
hand inequality is a simple consequence of the continuity of the prolate functions. These facts show that 
the functions {ϕn(· − αk)}N−1

n=0,k∈Z
form a frame for PW2Ω provided that N ≥ �2Ωα�.

Theorem 10. Let ϕn denote the nth prolate bandlimited to [−Ω, Ω] and time-concentrated in [−1, 1]. If 
N ≥ �2Ωα� then the functions {ϕn(· − αk)}N−1

n=0,k∈Z
form a frame for PW2Ω. That is, there exist constants 

0 < A ≤ B < ∞ such that for any f ∈ PW2Ω one has

A‖f‖2
L2 ≤

N−1∑
n=0

∑
k∈Z

∣∣〈f, ϕn(· − αk)
〉∣∣2 ≤ B‖f‖2

L2 .

Conversely, if N < �2Ωα� then the lower frame bound fails.
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Fig. 2. Plots of matrix norm ‖M(ξ)‖ (top) and 1/‖M−1(ξ)‖ (bottom) in (6). In each figure, Ω = 2 so the duration–bandwidth 
product is 8, and the horizontal axis is indexed by the subset [0, 1/αΩ] of [−1, 1] corresponding to the argument of the prolate. 
In the leftmost figure we take α = 1 and N = 4 so that D = 2Ωα = 8 as well, and the corresponding prolate shifts form a Riesz 
basis. In this case, the numerical lower bound for 1/‖M−1‖ is on the order of 10−4. In the middle figure, α = 2 and N = 8 and, 
again, the prolate shifts form a Riesz basis but in this case the frame bounds are much closer. In the right figure, α = 1 and N = 8
so the prolate shifts form a frame with redundancy two.

Several remarks are in order. First, the proof relies crucially on the Chebyshev property of the prolates 
and, in particular, on the ordering of the prolates by magnitude of their eigenvalues. Secondly, using more 
than the minimum number N = �2Ωα� of prolates still results in a frame since the quantity �s T (ξ)M(ξ)�s(ξ)
in (5) only increases when we add more terms to the sum over n. Third, when 2Ωα ∈ N it is possible 
that the α-shifts of the first 2Ωα prolates can form a Riesz basis for PW2Ω . This will be investigated in 
the next section. Finally, the lower frame bound in Theorem 10 is determined by the lower bound of the 
spectra of the matrices M(ξ) in (6). This bound is computable numerically, see Fig. 2. However, there is no 
known straightforward method to obtain effective analytical bounds. In particular, it is not obvious which 
combinations of N and α yield the snuggest possible frame bounds when N/α is fixed.

To complete the proof of Theorem 10 it remains to prove Lemma 9.

Proof of Lemma 9. By the Parseval identity, properties of Fourier transforms, and (2),

N−1∑
n=0

∑
k∈Z

∣∣〈f, ϕn(· − αk)
〉∣∣2 =

N−1∑
n=0

∑
k∈Z

∣∣〈f̂ , e2πiαkξϕ̂n(ξ)
〉∣∣2

=
N−1∑
n=0

∑
k∈Z

∣∣∣∣∣
Ω∫

−Ω

f̂(ξ) e−2πiαkξϕ̂n(ξ) dξ

∣∣∣∣∣
2

=
N−1∑
n=0

∑
k∈Z

∣∣∣∣∣
Ω∫

−Ω

f̂(ξ) e−2πiαkξ(−i)n
√

1
λnΩ

ϕn

(
ξ

Ω

)
dξ

∣∣∣∣∣
2

=
N−1∑
n=0

1
λnΩ

∑
k∈Z

∣∣∣∣∣
Ω∫

−Ω

f̂(ξ) e−2πiαkξϕn

(
ξ

Ω

)
dξ

∣∣∣∣∣
2

=
N−1∑
n=0

1
λnΩ

∑
k∈Z

∣∣∣∣∣
�2Ωα�−1∑

�=0

−Ω+(�+1)/α∫
−Ω+�/α

f̂(ξ) e−2πiαkξϕn

(
ξ

Ω

)
dξ

∣∣∣∣∣
2

=
N−1∑
n=0

1
λnΩ

∑
k∈Z

∣∣∣∣∣
�2Ωα�−1∑

�=0

1/α∫
f̂(ξ + 	/α−Ω) e−2πiαkξϕn

(
ξ + 	/α

Ω
− 1

)
dξ

∣∣∣∣∣
2

.

0
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When 2Ωα ∈ N the sum over 	 covers all values of ϕn running from −1 to 1. When 2Ωα /∈ N the integral 
corresponding to 	 = �2Ωα� − 1 has to be corrected. Setting γ = �2Ωα� − 2Ωα,

ξ + 	

α
−Ω = ξ + �2Ωα� − 1

α
−Ω = ξ + γ − 1

α
+ Ω > Ω

if ξ > (1 − γ)/α when 	 = �2Ωα� − 1. With this caveat, the sum

�2Ωα�−1∑
�=0

f̂(ξ + 	/α−Ω) e−2πiαkξϕn

(
ξ + 	/α

Ω
− 1

)

can be regarded as a function on [0, 1/α). For ξ ∈ [0, 1/α), the arguments of the terms in the sum run over 
disjoint subintervals of [−Ω, Ω]. When ξ ∈ [0, (1 − γ)/α) each term lies in the support [−Ω, Ω] of f̂ and 
there are potentially D = �2Ωα� nonzero terms in the sum. When ξ ∈ ((1 − γ)/α, 1/α) the last term is 
outside the support of f̂ so there are potentially D−1 nonzero terms. With this restriction in mind, the sum

∑
k∈Z

∣∣∣∣∣
�2Ωα�−1∑

�=0

1/α∫
0

f̂(ξ + 	/α−Ω) e−2πiαkξϕn

(
ξ + 	/α

Ω
− 1

)
dξ

∣∣∣∣∣
2

is the sum of squares of Fourier coefficients (up to a factor α) of the function

�2Ωα�−1∑
�=0

f̂(ξ + 	/α−Ω)ϕn

(
ξ + 	/α

Ω
− 1

)

and hence is equal to

1
α

1/α∫
0

∣∣∣∣∣
�2Ωα�−1∑

�=0

f̂(ξ + 	/α−Ω)ϕn

(
ξ + 	/α

Ω
− 1

)∣∣∣∣∣
2

dξ.

The identity (4) follows. This completes the proof of Lemma 9 and hence of Theorem 10. �
5. Critical sampling and prolate shift Riesz bases

The arguments above show that if 2Ωα /∈ N then there will be some excess in the density of frame 
coefficients. When 2Ωα = N ∈ N it is possible that the family {ϕn(· − αk) : k ∈ Z, n = 0, . . . , N − 1} may 
form a Riesz basis for PW2Ω where, as before, the duration is 2T with T = 1 so that the duration–bandwidth 
product is 4Ω. In this case the condition that there are N = 2Ωα frame coefficients per α units of time 
means that there is, on average, one frame coefficient per unit time per unit bandwidth.

To consider conditions for a Riesz basis we proceed in a manner analogous to that in the previous section 
with the goal of showing that the quantity f =

∑N−1
n=0

∑
k∈Z

cnk ϕn(· −αk) satisfies ‖f‖2 ∼
∑N−1

n=0
∑

k |cnk|2
when N = 2Ωα ∈ N as we assume henceforth. Computing as before we see that

‖f‖2 = ‖f̂‖2 =
Ω∫

−Ω

∣∣∣∣∑
n

∑
k

cnke−2πiαkξϕ̂n(ξ)
∣∣∣∣2 dξ

=
Ω∫ ∣∣∣∣∣

N−1∑
n=0

(−i)n√
λnΩ

∑
k

cnke−2πiαkξϕn

(
ξ

Ω

)∣∣∣∣∣
2

dξ

−Ω
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=
�2Ωα�−1∑

�=0

1/α∫
0

∣∣∣∣∣
N−1∑
n=0

(−i)n√
λnΩ

∑
k

cnke−2πiαkξϕn

(
ξ + 	/α

Ω
− 1

)∣∣∣∣∣
2

dξ

=
N−1∑
�=0

1/α∫
0

∣∣∣∣∣
N−1∑
n=0

1√
λnΩ

∑
k

c̃nke−2πiαkξϕn

(
ξ + 	/α

Ω
− 1

)∣∣∣∣∣
2

dξ (7)

where c̃nk = (−i)ncnk (note that |c̃nk| = |cnk|).
Consider the matrix Q(ξ):

Q =
N−1∑
�=0

Q�; Q�
n,m(ξ) = 1

Ω
√
λnλm

ϕn

(
ξ + 	/α

Ω
− 1

)
ϕm

(
ξ + 	/α

Ω
− 1

)
, 0 ≤ n,m < N (8)

where, again, N = 2Ωα ∈ N. This matrix is different from the matrix M(ξ) considered previously in that 
the roles of the shift parameter 	 and the prolate parameter n are reversed. As before, though, each Q�(ξ) is 
nonnegative definite since it has the form U�(ξ) UT

� (ξ) for a real vector U�(ξ) in RN thought of as a column 
vector whose nth coordinate is ϕn( ξ+�/α

Ω − 1)/
√
λnΩ. In order that Q(ξ) is strictly positive definite for 

a given value of ξ, it must be the case that there is no unit vector �c in RN such that �c is orthogonal to 
U�(ξ) for each 	 = 0, . . . , N − 1. But such orthogonality would imply that �c, thought of as a column vector, 
is in the kernel of the matrix whose 	th row is U�(ξ). That is, the N × N matrix whose (	, n)th entry is 
ϕn( ξ+�/α

Ω − 1)/
√
λnΩ must be a singular matrix. This contradicts that the functions {ϕn}N−1

n=0 (and any 
nonzero constant multiples of them) form a Chebyshev system on [−1, 1] just as before. As in Proposition 1, 
by compactness, we conclude that the spectrum of Q(ξ), as a function of ξ ∈ [0, 1/α], is uniformly bounded 
below in (0, ∞).

The following paraphrases [17, Corollary 3.4].

Theorem 11. Let Q : [0, 1/α) → C
N×N be a positive definite matrix-valued function. The trigonometric sys-

tem {e2πikαξ en}N−1
n=0, k∈Z

forms a Riesz basis for L2([0, 1/α), CN ; Q) with squared-norm 
∫ 1/α
0 (F ∗QF )(ξ) dξ, 

if and only if there exist constants 0 < c ≤ C < ∞ such that the spectrum σ(Q(ξ)) of Q(ξ) satisfies

c ≤ min σ
(
Q(ξ)

)
and C ≥ max σ

(
Q(ξ)

)
, a.e. ξ ∈ [0, 1/α).

In (7) one associates to f =
∑N−1

n=0
∑

k∈Z
cnkϕn(· −αk) the vector function F (ξ) =

∑
n

∑
k c̃nk e2πikαξ en

with en the nth standard basis vector. In this case, ‖f‖2 = ‖F‖L2([0,1/α), CN ;Q) with Q in (8). By Theorem 11
and the observations made on Q in (8), we conclude that the functions {e2πikαξen}N−1

n=0, k∈Z
form a Riesz basis 

for L2([0, 1/α), CN ; Q) and, therefore, that for this F one has ‖f‖2 = ‖F‖2
L2([0,1/α), CN ;Q) ∼

∑
nk |c̃nk|2 =∑

nk |cnk|2. That is, the functions {ϕn(· − αk)}N−1
n=0, k∈Z

form a Riesz basis for PW2Ω . We have proved the 
following theorem.

Theorem 12. Let ϕn denote the nth prolate bandlimited to [−Ω, Ω] and time-concentrated in [−1, 1]. If 
N = 2Ωα ∈ N then the functions {ϕn(· − αk)}N−1

n=0,k∈Z
form a Riesz basis for PW2Ω. That is, there exist 

constants 0 < A ≤ B < ∞ such that for any sequence {cnk}N−1
n=0, k∈Z

∈ 	2(ZN ) one has

A
∑
nk

|cnk|2 ≤
∥∥∥∑

nk

cnk ϕn(· − αk)
∥∥∥2

≤ B
∑
nk

|cnk|2.

Technically, the arguments above show that {ϕn(· −αk)}N−1
n=0,k∈Z

forms a Riesz basis for its span. However, 
by Theorem 10 they form a frame for PW2Ω and hence span PW2Ω . As in the case of Theorem 10, the 
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Riesz basis bounds depend on the spectrum of the matrix Q—the constant A in Theorem 12 can be taken 
as A = infξ min(σ(Q(ξ)))/α. However, so far there is no simple analytical estimate for this lower bound.

In the case α = 1/2Ω one has N = 1. In this case the theorem states that the shifts ϕ0(· − k/2Ω) form 
a Riesz basis for PW2Ω and the lower Riesz basis bound can be computed explicitly as the infimum of 
|ϕ0(t)|2/λ0 on the interval [−1, 1] as in Corollary 8, cf., [27]. This lower bound is very small for large values 
of Ω, cf. the bottom curve in Fig. 1 for N = 3. It appears that one obtains better frame bounds using 
N ≈ 4Ω and α ≈ 2, see Fig. 2.
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