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Abstract—We provide an overview of recent progress regarding
the role of sampling in the study of signals that are in the image of
a bandpass or multiband frequency limiting operation and have
most of their energies concentrated in a given time interval. We
finish considering a means to approximate essentially time-limited
bandpass signals. In this case we present a new phase-locking
metric that arises in the study of EEG signals.

I. INTRODUCTION

We discuss relationships between time and band limit-
ing and sampling, leading also to numerical computation
of essentially time-limited multiband and bandpass signals.
As an application we propose a method to analyze phase
synchrony of bandpass projections of signals, illustrating a
particular case of electroencephalographic (EEG) signals. In
this introductory section we will review several elements of
the theory of time and band limiting. In Section II we review
connections between sampling and time and bandlimiting.
In Section III we present a method to construct time- and
multiband-limited signals from eigenfunctions for time and
band limiting to separate bands and a numerical technique
that takes advantage of sampling. In Section IV we provide
a method to approximate essentially time-limited bandpass
signals. In Section V we use a corresponding time localized
projection to provide a new method to study phase differences
of bandpass projections of signals. We illustrate the method
in the context of study of EEG signals. In this setting, it
is believed that relatively constant phase lag among two
EEG channels can indicate involvement of the corresponding
cortical regions in a distributed cognitive process.

A. Time and band limiting

Set (QT )(f)(t) = 1[−T,T ](t) f(t) where 1S denotes the
function equal to one on S ⊂ R and zero outside S. Let
Q = Q1. Also let (PΣ)(f)(t) = (1Σf̂)∨(t) where f̂(ξ) =∫∞
−∞ f(t) e−2πitξ dt. We write PΩ = P[−Ω/2,Ω/2] and P = P1.

The Paley–Wiener space PWΣ is of the image of L2(R) under
the orthogonal projection PΣ. We write PWΩ instead when
Σ = [−Ω/2,Ω/2] and simply PW when Ω = 1. For compact
Σ, the operator PΣQT is compact and its trace is equal to
2T |Σ| where |Σ| denotes the Lebesgue measure of Σ ⊂ R. It
is also self adjoint on PWΣ while PΣQSPΣ is self adjoint on
L2(R). Since functions in PWΣ are real analytic, PΣQS has

no unit eigenfunctions and the discrete spectrum of PΣQT is
contained in [0, 1).

B. Prolate functions and their properties

Prolate spheroidal wave functions, or prolates for short, on
the interval [−1, 1] are eigenfunctions of

Pc ϕn(t) = χn ϕn(t); Pc =
d

dt
(t2 − 1)

d

dt
+ c2t2 . (1)

Such functions extend to elements of L2(R). The operator
Pc commutes with Pc/πQ and thus the prolates also form
a complete orthogonal basis for PWc/π and they are also
eigenfunctions of the integral operator

(Fcf)(t) =

∫ 1

−1

eicst f(s) ds = Q̂f(−ct/2π) . (2)

The eigenvalues Pc/πQ are nondegenerate. Denote by
λ0(c) > λ1(c) > . . . the nth eigenvalue of Pc/πQ and ϕcn
the corresponding eigenfunction. That ϕcn is an eigenfunction
of (2) and some other basic properties imply that

Dc/πϕ̂cn =
in√
λn
Qϕcn (3)

where Da is the unitary dilation (Daf)(t) =
√
af(at),

a > 0. When L2(R)-normalized, the prolates {ϕcn} form an
orthonormal basis for PWc/π , as well as a complete, orthog-
onal set in L2[−1, 1] with λn(c) =

∫ 1

−1
|ϕcn|2. As such, any

f ∈ PWc/π can be expanded in the form f =
∑∞
n=0 αn ϕ

c
n

with ‖f‖2L2(R) =
∑
α2
n and

∫ 1

−1
|f |2 =

∑
λnα

2
n. The prolates

are real valued and ϕcn is even (odd) if n is even (odd).
Further properties of prolates and justification of the facts just
mentioned, which were established in the Bell Labs papers
[1]–[3], can be found in [4].

C. The 2ΩT theorem

Suppose that Σ is a union of M pairwise disjoint frequency
intervals of unit length so that the total time–bandwidth prod-
uct corresponding to PΣQT is 2MT . Denote by N (2MT,α)
the number of eigenvalues of PΣQT larger than α. The
following is a special case of a version of the “2ΩT ” theorem
proved by Landau and Widom in [5].



Theorem 1 (Landau–Widom, 1980): As T → ∞ the num-
ber of eigenvalues of PΣQT exceeding α ∈ (0, 1) satisfies

N (2MT,α) = 2MT+
M

π2
log 2T log

( α

1− α

)
+o(log 2MT ) .

II. SAMPLING AND TIME AND BAND LIMITING

A. Local approximation by shifted sinc functions

Walter and Shen [6] and Khare and George [7] observed

(PQT f)(t) =

∞∑
n=0

λn

∞∑
k=−∞

f(k)ϕn(k)ϕn(t)

where ϕn are eigenfunctions of PQT . Oscillatory behavior of
the prolates near the endpoints of [−T, T ] prohibits an estimate∑
|k|>T ϕ

2
n(k) ≤ C(T )(1− λn). However, in [8] the estimate∑

|k|>M(T )

ϕ2
n(k) ≤ C(1− λn), M(T ) = π2T (1 + logγ(T ))

(4)
was proved for any γ > 1. The logγ(T ) factor arises from
use of a Fourier bump function ψ, i.e., ψ̂ = 1 on [−1/2, 1/2]
and ψ̂ has compact support. The best known temporal decay
of such a function is |ψ(t)| = o(exp(−c|t|/ logγ(t)). It was
conjectured in [8] that the log factor is not necessary. The
following consequence of (4) was also established in [8].

Theorem 2: Let f ∈ span {ϕn}Nn=0, with ϕn the nth eigen-
function of PQT . Define ϕTn =

∑
|k|<M(T ) ϕn(k)sinc (t− k)

with M(T ) as in (4). Then

‖QT (f −
N∑
n=0

〈f, ϕTn 〉ϕTn )‖ ≤ C‖f‖
N∑
n=0

λn(1− λn) .

The last sum can be shown to be essentially a multiple of λN .
A method to obtain accurate numerical estimates of integer
samples of prolates is outlined in Hogan et al., [8].

III. TIME- AND MULTIBAND-LIMITED SIGNALS

This section reviews techniques underlying numerical com-
putation of certain time- and multiband-limited signals. We
start with a method for building eigenfunctions for the case
in which Σ is a finite union of intervals from appropriately
modulated prolates.

A. Eigenfunctions for unions

If Σ is a finite union of pairwise disjoint intervals
I1, . . . , IM then we can denote PΣ =

∑M
k=1 PIk . Unlike

PQT , the operator PΣQT does not commute with a finite
order differential operator with polynomial coefficients when
Σ is a union of two or more intervals. This important fact,
established by Morrison in [9], bars us from using power series
methods to compute eigenfunctions.

The following results were established in [10] in a more
general setting. If J is a frequency interval of unit length
then the orthogonal projection onto PWJ , the Paley–Wiener
subspace of L2(R) of functions frequency supported in J , has
the form MmJ

PM−mJ
where, as before, P = P[−1/2,1/2]

and (Muf)(t) = e2πitu f(t) with mJk the midpoint of Jk.

Suppose that one has M pairwise disjoint frequency intervals
J1, . . . , JM each of unit length and set Σ = ∪kJk. Set
mk = mJk . Since the J-prolates ϕJn = MmJ

ϕn, with ϕn the
corresponding eigenfunction of PQT , form a complete family
for PWJ , any function in PWΣ has an orthogonal decomposi-
tion f =

∑M
k=1

∑∞
n=0〈f, Mmk

ϕn〉Mmk
ϕn. Consider now the

problem of finding an eigenvalue–eigenfunction pair (λ, ψ)
for PΣQT . Expanding ψ in terms of the modulated prolates
Mmk

ϕn and applying PΣQT to these, one sees that one must
identify the coefficients Γk,`nm = 〈QTMmk

ϕn, Mm`
ϕm〉. Note

that Γ`,kmn = Γk,`mn, that is, if Γk,` is the matrix with entries
Γk,`nm then Γ`,k = Γk,`. The following lemma describes how
to produce eigenvalue–eigenfunction pairs (λ, ψ) for PΣQT
from the standard prolates.

Proposition 3: Suppose that J1, . . . , JM are pairwise dis-
joint unit intervals with union Σ = ∪Mk=1Jk. Let Λ denote
the diagonal matrix with nth diagonal entry λn(PQT ) and let
Γk,` be the matrix with entries γk,`nm = 〈QTMmk−m`

ϕn, ϕm〉,
k < `. Then any eigenvector–eigenvalue pair ψ and λ for
PΣQT can be expressed as ψ =

∑M
k=1

∑∞
n=0 α

k
nMmk

ϕn
where the vectors αk = {αkn} together form a discrete
eigenvector for the block matrix eigenvalue problem

λ


α1

α2

...
αM

 =


Λ Γ̄12 · · · Γ̄1M

(Γ12)T Λ Γ̄23 · · ·
...

...
. . .

...
(Γ1M )T · · · · · · Λ




α1

α2

...
αM

 .

This method applies, in principle, to any family of or-
thogonal projections P1, . . . , PM (i.e., PνPµ = δνµ Pµ) onto
closed subspaces of a Hilbert space and Hermitian operator
Q. However, such an approach does not necessarily lead to
computable eigenproblems. In order to turn the method into
a means to compute eigenvalues and eigenfunctions of PΣQT
numerically, one needs to estimate the coefficients

Γk,`nm =

∫ T

−T
e2πi(mk−m`)tϕn(t)ϕm(t) dt

and to justify truncating the matrices Λ and Γk,`. The matrix
truncations are justified by Theorem 1.

The corresponding Γ-matrix entries can be expressed via
the inner products

〈QTMmI
ϕn, MmJ

ϕm〉 =
∑
k

∑
`

ϕn(k)ϕm(`)A(T ; I, J)k`;

A(T ; I, J)k` =

∫ T

−T
e2πi(mI−mJ )t sinc (t− k)sinc (t− `) dt .

The inner products can be computed using the following
proposition derived in [10].

Lemma 4: As a bilinear form acting on the pair of se-
quences {ϕn(k)}, {ϕm(`)}, the matrix A(T ; I, J)k` coincides
with in+m

√
λmλn sinc (2T (mJ −mI) + k − `).

An eigenfunction ψ of PΣQT will be called a time- and
multiband-limiting eigenfunction (TMBLE). If ψ is a TMBLE
with eigenvalue λ > 1/2 then ψ should be, at least nearly,
in the span of those eigenfunctions ϕIn, where Σ = ∪I ,
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Fig. 1. Matrix in Proposition 3 for T = 2, I = [−1/2, 1/2], J = [2, 3],
and K = [5, 6]. Intensity plot of the real part of the matrix in Proposition
3. Each Γµν term is truncated to size 10 × 10. On the right is a plot of the
moduli of the eigenvalues of the same matrix.
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Fig. 2. TMBLEs for T = 2, I = [−1/2, 1/2], J = [2, 3] and K = [5, 6].
Plotted are the TMBLMS corresponding to n = 0, 1, 2, 3, 4, 5 respectively
for three frequency bands. Real parts solid, imaginary parts dashed.

corresponding to the eigenvalues of PIQT larger than 1/2,
hence, of eigenfunctions ϕIn corresponding to n ≤ 2T . In this
case, ϕIn can be approximated accurately on [−T, T ] by sinc
interpolating its samples ϕIn(k) where |k| ≤M(T ) above.

B. Numerical estimation of TMBLEs

Accurate numerical estimation of the TMBLEs is obtained
via estimation of the entries of suitable truncations of the Γ
matrices and eigenvectors of the corresponding truncation of
the eigenproblem in Proposition 3. Details are given in [10].
Figure 1 illustrates the case with three frequency intervals.The
corresponding eigenfunctions are plotted in Fig. 2.

IV. TIME- AND BANDPASS-LIMITED SIGNALS

Given 0 < c′ < c denote by PWπ
c′,c the orthogonal

complement of PWc′/π inside PWc/π , that is, the closed
subspace of L2(R) of functions whose Fourier transforms f̂(ξ)
are supported in c′/π ≤ |ξ| ≤ c/π, and by Pπc′c the orthogonal
projection onto PWπ

c′c. The eigenfunctions of the operator
Pπc′cQ corresponding to time truncation of a function in
L2(R) to a finite interval—[−1, 1] in this work—followed by
frequency limiting to frequencies |ω| ∈ [c′, c]/π will be called
bandpass prolates here. Numerical approximation of the most
time concentrated bandpass limited signals (called bandpass
prolates here) was studied recently by SenGupta et al., [11]

by expressing the kernel of the bandpass limiting operator in
terms of Legendre polynomials, then identifying the bandpass
prolates through their Legendre coefficients. Alternatively,
Proposition 5 proved in [12], produces the coefficients of the
bandpass prolates, expressed as superpositions of full-band
prolates, from partial inner products of full-band prolates. As
explained below, these partial inner products can be computed
directly from pointwise values of ϕcn and ϕc

′

n where, as before,
ϕcn is the nth eigenfunction of Pc/πQ.

Denote by R = R(c′, c) the matrix with entries Rjk =
ik−j√
λjλk

∫ c′/c
−c′/c ϕ

c
k(ξ)ϕcj(ξ) dξ. The matrix R is real symmetric,

a consequence of the parity properties of the ϕcn. Let Λ = Λ(c)
be the diagonal matrix with nth diagonal entry λn(c).

Proposition 5: If ψ =
∑
αnϕ

c
n ∈ PWc/π then

Pπc′cQψ =
∑
k

αkλk

(
ϕck −

∑
j

Rjk ϕ
c
j

)
.

In particular, if ψ =
∑
αnϕ

c
n is an eigenfunction of Pπc′cQ

with eigenvalue λ then, with α = {αn}∞n=0,

λαn = λnαn −
∑
k

λk αk Rnk i.e. λα = (I −R)Λα .

The discrete eigenvectors α of the matrix (I −R)Λ thus give
rise to eigenfunctions of Pπc′cQ and the eigenvalue λ measures
the concentration of ψ in [−1, 1] just as in the case of standard
prolates. The proof uses the identities (2) and (3).

The partial inner products can be calculated by virtue of the
prolate differential equation and integration by parts. If n 6= m
then, with χn as in (1) and −1 ≤ a ≤ b ≤ 1,(
χn−χm

) ∫ b

a

ϕn(t)ϕm(t)dt =
[
(t2−1)(ϕ′nϕm−ϕ′mϕn)(t)

∣∣∣b
a
.

Approximate bandpass prolates are obtained from finite size
truncations of the eigenproblem in Proposition 5, see [12].

Khare [13] also considered the problem of numerical evalu-
ation of bandpass prolates, focusing instead on the role of the
interpolating function (sinc multiplied by a suitably dilated
cosine) and establishing that the bandpass prolate samples
form a discrete eigenvector of the matrix of partial integrals
on [−1, 1] of shifts of the interpolating kernel, cf. also Hogan
et al., [8]. Khare did not investigate dependence on c′/c.

V. PHASE SYNCHRONY AND AN APPLICATION TO EEG

In this final section we want to discuss briefly an application
of bandpass prolates in the study of phase synchrony, partic-
ularly in the context of EEG signals. It has long since been
argued that, in mental tasks that recruit different regions of
neural cortex, communication between the regions is manifest
in phase synchrony of neural firing patterns, e.g., [14], [15];
in particular, attention focusing tasks are hypothesized to
manifest such synchrony in the gamma band, e.g., [16]. Dif-
ferent methods have been proposed to measure band specific
synchrony in EEG channel signals, including filtered analytic
signals, convolutions with modulated Gaussians [17], and
others. Each of these methods that have been proposed to
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Fig. 3. EEG channel data 1/8 second record of two concurrent EEG channel
measurements, digitally sampled at 1024 samples per second.
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Fig. 4. Approximate γ projections. Projections of channel measurements
onto the span of the six top eigenvectors of time-limiting to 1/8 second and
bandpass limiting to 24–40 Hz.

quantify phase locking in EEG is subject to criticism for
different reasons.

To assign a temporal phase-locking value to a pair of signals
in a given band, one averages instantaneous phase difference
over a duration that accounts for several oscillations, say three
to five, in order that an average phase difference makes sense,
but not so many oscillations that one is unable to distinguish
episodes of phase synchrony from asynchronous epochs.

We consider here a new phase-locking metric computed
through the following steps. Step 1: define the duration and
frequency band for which synchrony is to be measured. Step
2: define the projection onto the span of the bandpass prolates
whose eigenvalues are close to one or, at least, not much
smaller than one half. Step 3: compute the analytic signal
for this projection, and divide by its amplitude to get its
unimodular factor. Step 4: For a pair of such signals, multiply
the unimodular part of one by the conjugate of that of the other,
integrate over the given duration, and compute the modulus.
This is the phase locking value (PLV).

We implemented this algorithm as follows to produce Fig. 5.
To analyze the gamma band of EEG signals, we chose the
frequency range from 24 to 40 Hz. In order to compute the
PLV over 3 to 5 oscillations of signals in this range, we took
the duration of interest to be 1/8 second. The time bandwidth
product in this case is 2(40 − 24)/8 = 4. The corresponding
time- and bandpass-limiting operator has six eigenvalues “not
much smaller than 1/2.” We successively chose 1/8 second
blocks of the EEG channels and computed the projections onto
the span of the first six eigenfunctions. We then computed the
analytic signal using the matlab builtin hilbert. A PLV
was computed for each successive 1/8-second segment of the
two EEG channels.

Fig. 5 shows PLVs of projections of 1/8-seconds of the two
EEG channels onto the space generated by the six eigenfunc-
tions of time limiting to 1/8-second duration and bandpass
limiting to 24–40 Hz most concentrated to the given duration.
The PLVs were computed for 1/8-second duration. In the data
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Fig. 5. Phase locking. Top shows PLVs of projections in Fig. 4 computed
over the full two second record. Bottom shows PLVs time averaged over 20
consecutive time shifts.

presented, a visual stimulus was shown to the subject after a
half second. An initial interval of synchrony then presumably
reflects response of the visual cortex. The subsequent interval
of synchrony after “t = 0” presumably then corresponds to the
subject maintaining a mental representation of the stimulus.
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