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Time~frequency transforms, including wavelet and wavelet
packet transforms, are generally acknowledged to be useful for
studying non-stationary phenomena and, in particular, have been
shown or claimed to be of value in the detection and character-
ization of transient signals. In many applications time—frequency
transforms are simply employed as a visual aid to be used for sig-
nal display. Although there have been several studies reported in
the literature, there is still considerable work to be done investi-
gating the utility of wavelet and wavelet packet time-frequency
transforms for automatic transient signal classification. This paper
contributes to this ongoing investigation through the development
of a non-parametric wavelet packet feature extraction procedure
which identifies features to be used for the classification of tran-
sient signals for which explicit signal models are not available
or appropriate. Recent literature in this area is devoted to truly
ad-hoc, high-dimensional, non-parametric types of classification
in which one or more time—frequency transform forms the base
from which a large number of features are determined by trial
and error. In contrast, the wavelet-packet-based procedure pre-
sented in this paper was formulated to systematically adapt to any
data dictionary within which several classes must be distinguished.
This method is aimed at focusing the information in the data set to
find the smallest number of features for robust, reliable classifica-
tion. The promise of our method is illustrated by performing our
procedure on a set of biologically generated underwater acoustic
signals. For this example the wavelet-packet-based features ob-
tained by our method yield excellent classtfication results when
used as input for a neural network and a nearest neighbor rule.
© 1995 Academic Press, Inc.

1. INTRODUCTION

Signals possessing non-stationary information are not
suited for detection and classification by traditional Fourier
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methods. An alternate means of analysis needs to be em-
ployed so that valuable time—frequency information is not
lost. The wavelet packet transform (WPT) is one such time—
frequency analysis tool. This paper examines the feasibility
of using the WPT in automatic transient signal classifica-
tion through the development of a simple and systematic
non-coherent feature extraction procedure which is tested
on biologically generated underwater acoustic transient sig-
nals in ocean noise.

The classification of transient signals is both an inter-
esting and important problem. Specifically, the ability to
classify underwater acoustic signals is of great importance
to the Navy. Today, detection and classification, tailored
for stationary signals, is done by Naval personnel who lis-
ten to incoming signals while viewing computer generated
displays which plot time vs angle-of-arrival and time vs fre-
quency. The signal of interest is monitored and the primary
frequencies contained in the signal are noted. An initial
guess as to the source is made. In efforts to confirm or
contradict the guess, the Naval officer will, perhaps repeat-
edly, consult tables which contain frequency information on
a large range of possible signals.

Transient signals, lasting only a fraction of a second,
are of particular concern because they will typically ap-
pear as broadband energy on the frequency display. Thus,
the Naval officer cannot rely on any visual displays for as-
sistance in the classification process. At present the human
observer must be able to detect and classify transient sig-
nals by only listening for them. These brief signals may
be missed by the listener. An automatic method of classifi-
cation for transient signals would greatly aid in the detec-
tion/classification process.

A frequency display which uses standard spectral analy-
sis methods is useful for stationary signal classification, but
transient signals are not well matched to these methods. In
particular, Fourier-based methods are ideally suited to the
extraction of narrow band signals whose durations exceed
or are at least on the order of the Fourier analysis window
length. That is, Fourier analysis, particularly the short-time
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Fourier transform (STFT), does an excellent job of focus-
ing the information for sources of this type, thus, providing
features (spectral amplitudes) perfectly suited to detection
and discrimination. For transient signals, the STFT with its
non-varying window is not readily adaptable for capturing
signal-specific characteristics. The STFT does allow for
some temporal as well as frequency resolution, but it is not
well suited for the analysis of many transient signals and,
in particular, to the generation of features for detection and
discrimination. This is discussed in greater detail in later
sections.

The wavelet packet transform (WPT) offers a great deal
of freedom in dealing with different types of transient sig-
nals. Indeed, the development of the wavelet transform
(WT) [4, 10, 11, 15, 16] and wavelet packets {3, 23] has
sparked considerable activity in signal representation and
in transient and non-stationary signal analysis [1, 20, 21].

This paper is particularly interested in the research that
has dealt with automatic detection and classification of tran-
sients. These works can roughly be grouped into two cate-
gories. One group of methods has focused on problems for
which the classes of transients to be detected are well char-
acterized by prior parametric models that identify the dis-
tinguishing characteristics of each class. Such methods gen-
erally operate based on coherent processing, i.e., on using
wavelets as the basis for detection procedures that resem-
ble matched filtering [7-9, 20]. In particular, Friedlander
and Porat [7] find the optimal detector via the generalized
likelihood ratio test for three linear time—frequency trans-
forms of the received signal which is characterized by a
signal model and a mismatch error in additive white Gauss-
ian noise. They examine the performance of their detector
with the STFT, the Gabor transform, and the WT. Frisch
and Messer [8, 9] also formulate a detector by using the
generalized likelihood ratio test for the WT coefficients of
the received signal model. They restrict their signal model
to an unknown transient with known relative bandwidth and
time-bandwidth product. This assumption greatly reduces
the complexity of the detector.

The second set of techniques, into which this research
falls, deals with the detection and classification of transient
signal classes that are not well-characterized in terms of
prior models [2, 5, 12, 14, 17, 19]; consequently, somewhat
different methods of detection and classification must be
developed. In particular, recent work in the area of under-
water acoustic transient classification using wavelet related
concepts has been done by Nicolas, Lemer, and Legitimus
[19] and Desai and Shazeer [5]. Both [19] and [5] em-
ploy wavelets as a means of generating features from vari-
ous classes of underwater acoustic transients for input to a
neural network. The authors of [19] use the energy in the
wavelet decomposition of the transients along with features
derived from autoregressive signal models and histograms
of the data. The authors of [5] use the eight signals result-

LEARNED AND WILLSKY

ing from the third level of the wavelet packet decomposi-
tion (WPD), i.e., each transient signal is separated into eight
components, one corresponding to each of eight equal band-
width channels. The Fourier transform and curve length of
these eight sequences are used as features. In the same
spirit, much of the literature in the area of transient clas-
sification is devoted to the ad hoc development of features
from one or more time—frequency transform. See [2, 12,
14, 17].

One characteristic common to the above efforts is that the
transform used prior to feature construction is not adaptable
to the signal characteristics. The WPT is the only time-
frequency transform with a potential for adaptability.? In
these works exploitation of class dependent frequency char-
acteristics is suppressed by using a predetermined time—
frequency transform or wavelet packet basis. In general,
many researchers have come to the conclusion that no sin-
gle time—frequency transform works best on all types of
transients. Current methods for transient signal classifica-
tion are developed by the trial and error approach to feature
extraction resulting in procedures which are unique to each
transient type on which they are performed and to each per-
son that administers them. Moreover, it is typical for these
ad hoc approaches to lead to the use of a large number of
features (sometimes greater than the number of samples in
the signal). This is a drawback in that pattern recognition
algorithms work best with a reasonable number of inputs
(features).

This paper describes an approach to signal classification
based on the need for a non-parametric feature extraction
algorithm that best adapts to sets of pre-classified data. As
detailed in later sections, the WPT is well suited to a careful
search for features. In contrast to the trial and error, high-
dimensional, non-parametric types of classification which
are truly ad-hoc approaches, the wavelet packet feature ex-
traction technique presented in this paper is systematic. The
feature extraction procedure does an orderly compilation of
the information present in the data, focusing the informa-
tion present in a set of signal samples into a few robust and
well grounded statistics.* The promise of our method is il-
lustrated by performing our procedure on a specific set of
biological data. While the experimental results do repre-
sent tests on a substantial data set, the application results
presented are preliminary. The purpose of our paper is to
show the promise of the wavelet packet feature extraction
procedure, offer motivation for further investigation of the
utility of our method, and motivate research in using the

2 Although, Desai and Shazeer did use the WPT, the choice of the basis
was not considered as part of the feature selection process.

3 n comparison, other non-parametric methods leave the task of sorting
through the sets of signal samples (and often their Fourier and a variety
of time-frequency transforms) to a neural network which, in general, is
not to be reliable in cases where the number of inputs is large (this is due
to the network settling in a local minima).
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FIG. 1.
length 8.

The fully decomposed wavelet packet tree for a signal of

wavelet packet transform with systematic procedures for
the development of a feature extraction algorithm that can
be used on a broad class of transient signals.

This paper is organized as follows. Section 2 summarizes
wavelet packet notation and establishes the energy mapping
of the wavelet packet transform used in this paper. The
wavelet packet feature extraction procedure is presented in
Section 3. Section 4 illustrates our systematic method for
determining wavelet-packet-based features by the formula-
tion of a feature set for a set of biological transients. The
Charles Stark Draper Laboratory and the Naval Undersea
Warfare Center furnished an extensive collection of under-
water acoustic signals in background noise which allowed
for an empirical study of our feature extraction procedure
on some typical occurrences of snapping shrimp and whale
clicks. Using these features with a nearest neighbor rule
and a neural network yielded 98% to 99% classification.
Section 5 offers concluding remarks and a discussion of
possible future work.

2. THE WAVELET PACKET TRANSFORM
AND ITS ENERGY MAP

In this section we briefly review the structure of the dis-
crete WPD that was developed by Coifman and Wicker-
hauser in [3]. We also introduce the notation and quantities
to be used in the rest of this paper. WPD can be viewed
as a natural extension of the WT providing a level by level
transformation of a signal from the time domain to the fre-
quency domain. The top level of a WPD is the time repre-
sentation of the signal. As each level of the decomposition
is calculated there is a decrease in temporal resolution and
a corresponding increase in frequency resolution.

The wavelet decomposition of a discrete signal x[n] may
be calculated using a recursion of filter-decimation opera-
tions. Figure 1 shows a WPD tree for a signal of length
eight.* The full WPD is displayed as a tree with a discrete
sequence at every branch. Fy and F; are the operators

4 The display of the WPD trees throughout this paper is in accordance
with the Paley ordering of the bins as described in [3].
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FIG. 2. The WPD tree with index label at each bin in the first four
levels.

which perform the lowpass-downsampling and highpass-
downsampling, respectively.” Each branch sequence is re-
ferred to as a bin vector. The decomposition may be contin-
ued down to the final level where there is only one element
in each bin vector.

The bin locations within a tree will be represented by the
notation b(/, c) where a bin is indexed by two parameters,
level, /, and column, ¢. Figure 2 shows each bin of a WPD
tree labeled with the appropriate bin position notation.

A few examples will illustrate the display used for the
WPD of a signal and the time—frequency trade-off inherent
in the WPD. Each bin vector of the WPD tree is displayed
as a rectangular intensity plot at its appropriate position in
the tree.

Figure 3 shows a signal comprised of two sinusoids and
its full WPD. As the levels of the WPD tree are traversed,
the information becomes more focused. The lowest level
of the tree essentially agrees with the windowed discrete
Fourier transform of the signal. Figure 4 shows a time and
frequency localized signal corresponding exactly to one of
the wavelet packet basis functions. Note the focusing of
information at bin b(5, 6) of the tree. The information is
less focused at the top and bottom of the tree, thus, the
most compact or focused representation would be at b(5, 6)
of the WPD tree.

Three points about these examples are worth noting. First,
recall that the wavelet transform corresponds to a particu-
lar set of bins, namely those corresponding to successive
low-pass/decimation (Fy) operations followed by a single
highpass/decimation (F|) operation. As pointed out in [3],
only certain types of signals are well-focused in these bins.
For example, the signal in Fig. 4 is focused at b(5, 6) which
is not part of the ordinary wavelet decomposition. Sec-
ond, as discussed in greater detail in Section 3.5, the STET
of a signal will not exhibit the same type focusing unless
the most appropriate window size is used. The full WPT
roughly corresponds to many STFT's using different win-
dow sizes. Third, the principle idea that we wish to exploit
in finding useful features for transient detection and clas-
sification is precisely this focusing property, i.e. transients

3 The Daubechies 14-point filter {4] is used for all the wavelet packet
decompositions in this work. The choice of the wavelet used was some-
what arbitrary, guided primarily by a desire to have significant smoothness
but reasonably short support.
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FIG.3. The WPD of two sinusoids. (a) A frequency localized signal (b) WPD of signal. The magnitude of each element of a bin vector is displayed
with black corresponding to the maximum absolute value in the tree and white corresponding to zero.

with different time—frequency characteristics will focus dif-
ferently. To exploit this property for signals as in Fig. 4 we
must use the full WPT and not simply the WT or a STFT
in our search for features.

2.1. Energy Mapping of the Wavelet Packet Decomposition

Tree

In detection terms, the formation of the WPT can be
viewed as a coherent processing step; i.e., each sample of
each signal in each bin in the full WPD can be viewed as
the output of a matched filter tuned to a particular basis
function. At the top of the WPD tree the basis functions
are simply unit impulses at each successive time instant,
and as the WPD tree is traversed downward the basis func-

tions become more resolved in frequency and more highly
decentralized in time. The matter to be determined, then,
is how to use this tree of coherently processed signals to
perform detection. If the signals to be detected are also
described coherently, i.e., as weighted linear combinations
of WPD basis functions, then a fully coherent system in
which the test statistics are the same weighted linear com-
binations of the WPD of the received signal may be used.
In the problems of interest here, however, we do not have
such a prior model. Indeed, a fundamental premise is that
the variability in these signal classes precludes such a pre-
cise representation. A second premise, however, is that the
energy in the WPD for these signal classes does focus in a
robust and useful way. This suggests a second non-coherent
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FIG. 4. The WPD of a time and frequency localized function. (a) The signal in time (b) WPD of signal.
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(i.e., energy-based) processing step after the WPD has been
performed. Specifically, in this work a simple energy map-
ping of the WPT’s of the data has been done in order to
begin the feature extraction process with a rudimentary ex-
ploration of signal specific characteristics.

Let e, denote the average energy of a vector y having N
elements. The average energy in y is

1

ey = Nyry- (1)
As an example of this energy mapping is shown in Fig. 5 for
the WPD tree from Fig. 1 where a single energy value has
been calculated for each bin vector. The formation of one
energy value over an entire bin obviously surrenders what-
ever time resolution there is within each bin vector. For
example, at the top of the WPD we are simply calculating
total average energy, a classic test statistic in non-coherent
processing.

3. THE FEATURE EXTRACTION PROCEDURE

In the formulation of a decision rule, it is desirable to
find a feature set which uniquely represents each class of
signals. It is generally of great importance to reduce di-
mensionality in order to focus information in a way that
accentuates interclass distinctions and makes the task of a
pattern classification scheme tractable. For example, if a
neural network is used for classification, a small feature set
will lessen problems that the neural network learning algo-
rithms have with local minima. The wavelet packet feature
extraction procedure was designed with the above criteria
in mind.

Feature Extraction Procedure

1. Calculate the full WPT of each signal in the pre-
classified data set (the training set).

2. Create an energy map for each signal from its WPT.

3. Organize the energy maps into energy matrices, one
for each class.

4. Calculate the singular vectors for each class.

(¢ € e e € € € €
sS88 ssd sadd sds ddd dds dss dsd

FIG. 5. Energy mapping of the WPD tree from Fig. 1.
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5. Determine a parsimonious set of features from the
most significant singular vectors.

6. Examine/test feature set to insure for satisfactory
inter-class separation.

Steps 1 and 2 are explained in Section 2, this section
details steps 3 through 6.

3.1. Matrix Representation of the Energy Maps

An energy map is found from the WPD for each of the
data signals in the training set. For ease of manipulation,
each energy map is represented as an energy vector by as-
sembling the bin energies of an energy map into a column
using lexicographic ordering of the bins. We number the
bins from one to B and create and energy vector, e, for
each of our data excerpts, where the element ¢,4[b] is the
energy from bin number b of the energy map for the kth
signal of class t.

Next, we create a matrix for each signal class by aligning
column vectors of the same class. Denote the energy matrix
by E,

E = [el,l €2 €M, 1. (2)
where M, represents the number of sample signals in the
training set for the given class. Thus, E, is a B X M, matrix.

3.2. Determination of the Singular Vectors

A first step in the analysis of the transients is to quantita-
tively identify significant features of all energy maps from
a given class. This can be done by performing the singular
value decomposition (SVD) [22] of the matrices, E,.5

E, =UzVT (3)

The B-element singular vectors, uy, make up the columns
of the B X B orthogonal matrix UU. The first M, columns of
U span the column space or range of E,.

U=[|.l] llz-'-llB] (4)

The B X M, singular value matrix, Z, reveals the rank of
E, in the first M, diagonal elements. The rank (or effective

rank) of E, is equal to the number of non-zero (or non-
negligible) singular values.’

6 The way in which to interpret singular value decomposition in the con-
text that we (and others) have used it is as providing the Eigen-decomposi-
. A
tion of the sample second moment matrix, R = EET.

7 The row space and nullspace of E, are defined in the M, x M, matrix,
V7. The information in V7 is not used in the analysis of the energy maps.
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These singular vectors identify the dominant energy pat-
terns for each signal class, but what we are ultimately in-
terested in is not only capturing the dominant energy in
each class but also those features that are distinctly differ-
ent between classes. In the next section we look for bins
that have significant participation in the dominant singular
vectors for one class but not for the other classes.

3.3. Construct Feature Set

We begin by finding a collection of bins that contain sig-
nificant information by examination of the components of
the primary singular vectors of the energy matrices. For
each class, determine a singular vector to be significant if
its corresponding singular value is relatively close to the
maximum singular value. This will give at least one sin-
gular vector per class. Construct a preliminary feature set
from the WPT bin energies that correspond to peak val-
ues of the significant singular vectors. For example, for
a given singular vector, choose all bins corresponding to
elements of that vector which fall above some percent-
age of its largest element. To form a frugal feature set,
arrange features obtained from each singular vector into
ancestor/descendant groupings and eliminate redundancy
within a class by discarding features corresponding to the
descendant bins. These steps are carefully carried out in
the example of Section 4.%

3.4. Examine/Test Feature Set

This step is best understood through example, but a brief
overview is offered here. Recall that we wish to determine
the dominant bin energies that will give the best separation
between classes. A preliminary validation of the feature
set may be done by examination of the training set feature
vector clusters and should show an inter-class variation of
the features to be greater than the intra-class variation. The
success of these features may be tested by using them to
classify a portion of the data that has been set aside from
the feature extraction process.

8 A comment on why not to use the mean vector for extraction of fea-

tures: Since REEET = P+ mm’, where P is the sample covariance
matrix and m is the mean vector of the training set, the mean vector is
approximately equal to the most significant singular vector of R only in
the case where |im|{®> > eigenvalues of P.

LEARNED AND WILLSKY

3.5. Common Questions

We are often asked why we don’t use the simpler STFT
in place of the full WPT. It should be noted that the above
feature extraction procedure is performed once. After ro-
bust features are determined, the classification algorithm is
simple and, if the feature set is terse, of low computational
complexity. A well known trait of the WPT is that it pro-
vides a variety of tilings of the time-frequency plane; at
top levels in the wavelet packet decomposition tree there is
fine time resolution and coarse frequency resolution, while
at subsequent levels time resolution is sacrificed for im-
proved frequency resolution. Although any individual level
of the WPT does not correspond exactly to a STFT with
a correspondingly-sized time window, the WPT at a par-
ticular level results in the same type of tiling of the time-
frequency plane as that implied by a corresponding STFT.
It follows that if the optimal feature set determined by our
procedure corresponded to all of the WPT bins at a sin-
gle level, one would have strong evidence that the corre-
sponding STFT would also be appropriate for generating
discriminating features. However, an advantage of using
the WPT is that we are not restricted to a particular fixed
time—frequency tradeoff but can, in fact, identify a feature
set for which each feature corresponds to a very different
time-frequency tiling.

Another question sometimes raised deals with using the
SVD to identify features from the energy maps. For exam-
ple, why not use classification and regression trees (CART)
on the energy maps to determine which features to use?
This is an interesting idea, but we found our simple straight-
forward SVD-based procedure to yield a far more parsimo-
nious feature extraction mechanism than would a CART-
based procedure. Since no analysis of CART was done in
this work, it remains an interesting possible alternative for
identifying key features from the energy maps.

4. EXAMPLE

In this section, using the method described in Section 3,
a feature set is found from a training set of acoustic tran-
sients. These features are used for automatic classification
of a test set of these signals. The ideas presented in this
paper and the following example are discussed in greater
detail in Learned’s thesis [13].

4.1. The Data

This example uses a collection of ocean recordings made
available by the Charles Stark Draper Laboratory and the
Naval Undersea Warfare Center (NUWC). The data consist
of several hours of naturally occurring biologically gen-
erated underwater sounds in ambient ocean noise. The
recordings have been lowpass filtered with a cutoff fre-
quency of 5 KHz and, subsequently, sampled at 25 KHz.
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FIG. 6. Some 4096-sample (163.8 ms) excerpts from the NUWC recordings. (a) Whale click. (b} Snapping shrimp. (c) Background noise.

The biologically generated sounds are sperm whale clicks
and snapping shrimp. A typical whale click has a dura-
tion of approximately 80 to 120 ms and a single snap of
a shrimp has a duration on the order of 1 ms. In addition
to the signals, each record contains portions of background
noise alone.

A single whale click can be encompassed by a 163.8-
ms or 4096-sample window which also holds one to a large
number of snaps. Figure 6 shows 3 163.8-ms excerpts from
the NUWC recordings, one from each class (whale click,
snapping shrimp, ambient noise). We use 75 of these ex-
cerpts for the feature derivation done in Section 4.2 and 240
additional excerpts to run simulations of the classification
algorithms in Section 4.3.

4.2. Find a Feature Set

The feature extraction procedure described in Section 3
was carried out on the test set of data. (1) Using our im-
plementation of Wickerhauser’s algorithm presented in [23]
with the Daubechies 14 point wavelet [4], the first six levels
of the wavelet packet transform of each of the 75 data ex-
cerpts were calculated. (2) An energy map was calculated
for each of these 75 WPD trees. Each energy map contains
B = 63 bin energies. (3) An energy matrix was then con-
structed for each class, ¢, where ¢ = ¢ (click), s (shrimp),
and n (noise).

(4) Each of the energy matrices, E.. E, Ey, was found to
have a single dominant singular value. In particular, de-
fine the difference ratio, é;, between the largest and second
largest singular values for each class to be

041 — 012

b = (6)

T11

6, is displayed in Table 1. These values suggest that there
is a single representative energy vector, corresponding to
the first singular vector w,;, for each class, ¢, with only a
relatively small amount of variation across class members.

(5) All 63 elements (corresponding to the 63 bins of the
WPD) of the primary singular vector for each class are dis-
played in Fig. 7. Notice that high valued elements for the
noise roughly coincide with both the high valued elements
for the snapping shrimp and the whale clicks. The figure

TABLE 1
Difference Ratio between the Largest and Second Largest Singular
Values of the Three E, Matrices

Classt a0 X 108 6,2 X 10° 8,
Whale clicks 2221 285 0.87
Snapping shrimp 762 79 0.90
Background noise 412 43 0.89
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FIG. 7. Components of the 63-element primary singular vectors. Note that this plot displays elements of the three primary singular vectors with
each vector representing the energy maps for its class. In other words, this plot is a lexicographical display of the representative energy bins for the

three classes of energy maps.

also reveals that the high valued elements for whale clicks
differ from the high valued elements for snapping shrimp.
Before continuing the search for a reduced parameter fea-
ture vector from the energy maps of the training set, we
may compensate for the influence of noise.

4.2.1. Compensating for the Noise. This noise normaliza-
tion step does not explicitly appear in Section 3 and would
fall between steps (2) and (3). Each bin energy, and, thus,
each component of the energy vector, e, ;, contains both
signal and noise energies. The energy maps of background
noise displayed consistent energy distribution patterns. An
example is seen in the singular vector of background noise
in Fig. 7. This distribution of background noise energy
within the energy maps may mask dominant features that
may be useful in distinguishing between the shrimp and
clicks. We wish to normalized each bin energy by an av-
erage noise energy so that features may be chosen without
the influence of noise.

Let r denote the portion of the received signal vector that
is due to the signal source alone. Let w denote the portion of
the received signal vector that is due to background noise.
The received signal vector, X, may be written as a linear
combination of the source signal and the background noise.

X=r+w. (7

Let x; denote the vector at bin b of the WPD of x. Like-
wise, we denote the vector at bin & of the WPD of r and
w as r, and w,, respectively. Since the WPD is a linear
transform, the bin vector at each bin of the WPD tree can
be written as a linear combination of the bin vector due to
the source and the bin vector due to the noise, i.e.

Xp =Tp + Wy (8)

In agreement with Eq. (1), the average energy due to the
bin vector x; will be denoted by e,,. Likewise, the average

energy in r, and w, is denoted by e,, and ey, , respectively.
Assuming that the noise is uncorrelated with the signal al-
lows us to write the average energy at any bin of the WPD
tree as a linear combination of the average energy due to
the source and the average energy due to noise.’

ex, = €r, T ew,. 9)

Normalization of the bin energy, e4,, by the energy in
that bin due to noise alone would give &,,.

s _ fx, _ €r,
€x, = — = -
ewb ewb

+ 1. (10)

Performing the normalization described in the above para-
graphs allows for a source-signal-energy to noise-energy
ratio analysis of the patterns exhibited by the energy maps.

We have already found an energy vector, €4, for each of
our data excerpts. We now wish to find a normalized energy
vector, &4, for each e,;. Element by element normalization
of e,; by the average noise energy elements is done by

~ e «[b)
&bl = ——, (1
FT ewaelb]
where the element index is b = 1,. .., 63, the signal number

is k = 1,...,M,, and each class is denoted by t = ¢, s, n.
The average noise energy for bin b of the energy maps from
our noise excerpts is used for the noise energy, e, avelb]. El-
ement by element (or bin by bin) calculation of the average
noise energy is done by

9 Here, by “uncorrelated” we are in essence assuming that the time-
averaged product of the noise and signal components over each bin is
ZEer0.
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FIG. 8. Components of the 63-element primary singular vectors for the noise normalized case.

M,
ewavelb] =~ 3" erslb] (12)
n g

Once again, we align these normalized energy vectors
into three matrices and perform singular value decomposi-
tion. The effective rank of each of these matrices was also
found to be one so that one singular vector may be used
as a representative energy map for each class. Figure 8
shows all 63 elements of the singular vectors found from
SVD of the noise normalized energy matrices. Let us de-
note these noise normalized singular vectors by @ic ; (whale
clicks) and i, (snapping shrimp). We see that the high
valued elements of the shrimp singular vector clearly differ
from the high valued elements of the whale click singular
vector and that there is no longer high valued elements for
noise.'”

4.2.2. Use Noise Normalized Energy Maps for Feature
Set Determination. In forming a feature set, we look for
dominant bin energies that will give us the best separation
between whale clicks and snapping shrimp. We begin by
finding a collection of bins that contain significant infor-

10 We may compare the pre-noise-normalized singular vectors of Fig. 7
to the post-noise-normalized singular vectors of Fig. 8. In addition to the
reduction of the noise singular vector, the normalization of the energy
maps results in shifting of the locations for the peak-valued elements of

" the whale click singular vector.

mation by examination of the components of the primary
singular vectors shown in Fig. 8.

We have chosen to consider a bin to be significant if the
value of its corresponding element of the primary singular
vector lies within 20% of the maximum component of that
singular vector. The significant components of fic,; corre-
spond to elements 9, 18 and 19. The significant components
of iig; correspond to elements 8 and 17. The two classes
have no dominant bins in common. The bins corresponding
to elements 8, 9, 17, 18, and 19 containing the dominant
information are shaded in Fig. 9.

Reduction of the feature vector is desirable for the sim-
plification of the decision rule, therefore, including super-
fluous information should be avoided. A feature set which
contains a parent bin energy and all of its descendant bin
energies may be redundant because any parent bin vector
of the WPD tree can be constructed from its children bin
vectors. Therefore, a feature set that does not incorporate
both parent and child energy bins found dominant within a
given singular vector is considered. Reducing the number
of features used for classification will also minimize the
computational complexity of the algorithm because most
bins of the WPD tree will not be used and will, therefore,
not be calculated.

For the whale click features, element 9 (bin b(4, 2)) is
the parent of elements 18 (bin b(5, 3)) and 19 (bin b(5, 4)).
For shrimp, element 8 (bin 5(4, 1)) is the parent of element
17 (bin b(S, 2)). Noting the parent child redundancy, it

FIG.9 The shaded bins of the energy map correspond to the dominant elements of the primary singular vectors fic,; and @ ;.
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FIG. 10. Noise normalized energies from bins (4, 1) and b(4, 2) of
the sample energy maps that make up the training set. b(4, 2) vs b(4, 1).

is reasonable to see if there is enough feature separation
using the energies from only the dominant parent bins at
the fourth level, b(4, 1) and b(4, 2).

We take a look at the separation of the two signal classes
provided by the two features our method identifies by show-
ing how these features separate for the training set. Figure
10 plots the normalized energies from bins b(4, 1) and b(4,
2) for the energy maps of our 75 data excerpts. There is
excellent separation between the click and shrimp features.
Examination of the scatter plot allows us to see if our pro-
cedure has in fact determined features that clearly separate
classes. That is, the features found from the training data
which are to be used for classification should enhance the
variation between classes and lower the variation within a
class.

4.3. Tests and Results

In this section the feature extraction algorithm is tested
on two groups of data. For Test I the training set is rep-
resentative of the test set and we obtain excellent results
using only two features. For Test II more intra-class vari-
ability is introduced by adding more shrimp data. For this
appended data set the training set used for Test I is not sig-
nificantly rich. In the second test we discuss what happens
when an inadequate training set is used, but when we repeat
the full application of the feature extraction procedure on a
rich enough training set we once again find a small number
features to give excellent results.

4.3.1. Test I. Once a reduced parameter feature set has
been derived for a given set of sample data, a method for

LEARNED AND WILLSKY

TABLE 2
Results Obtained from the Nearest Neighbor Rule
Number of features: 2 1!
Overall classification {%) 97.92 97.92
Click classification (%) 97.87 97.87
Shrimp classification (%) 97.26 97.26
Noise classification (%) 98.63 98.63

detection and classification must be formulated. Two pat-
tern recognition techniques that lend themselves to the clas-
sification of signals using a training set were used in testing
the utility of the wavelet-packet-based features: the nearest
neighbor rule and neural networks.'!

The nearest neighbor rule, detailed by Duda and Hart
in [6], uses as a training set feature vectors that have been
correctly labeled with their class. A feature vector is calcu-
lated for the unknown signal. The unknown feature vector
is classified with the same label as its nearest neighboring
feature vector from the training set. Euclidean distance is
the measure used in determining separation of feature vec-
tors.

The neural network tests were done using the Neuralware
software package [18] for building, training, and analyzing
a layered neural network. A back propagation network with
a tanh nonlinearity and the Widrow-Hoff-Delta Rule adap-
tive weighting algorithm was used in all tests.

Recall that a total of 75 signal segments (consisting of 29
whale clicks, 20 snapping shrimp excerpts, and 26 segments
of noise) were used to determine the bin energies which
were to be used as features. The features for this set of 75
examples were then used to establish the nearest neighbor
rule and to train several neural networks. Another distinct
240 excerpts from the same overall data set were then used
to test classification performance. Each test was run twice
using the features determined in Section 4.2.2, once with the
2-parameter feature set comprised of the energies from bins
b(4, 1) and b(4, 2) and once with an [ [-parameter feature
set comprised of the five bin energies shown in Fig. 9 plus
six more adjacent bins.

The nearest neighbor rule algorithm using both the 2-
parameter and 11-parameter feature sets resulted in correct
classification for 97.92% of the test signals. These results
are summarized in Table 2. Both nearest neighbor rule tests
resulted in identical outcomes, making the same errors for
both feature sets. Gaining nothing by adding more fea-
tures is not surprising because the analysis done in Section

1 Other appropriate classification algorithms may be determined by
examination of scatter plots of the feature vectors. For example, linear
discriminant analysis would also be effective given the type of feature
clustering shown in Fig. 10.
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TABLE 3
Results Obtained from the Neural Network
Number of inputs: 2 Il 11
Numberof ALNsinlaver L: 3 7 7
Number of ALNsinlayer 2: 0 0 3
Overall classification (%) 98.33 98.75 99.17
Click classification (%) 97.87 98.44 98.44
Shrimp classification (%) 98.63 98.63 100
Noise classification (%) 98.63 98.63 98.63

4.2 determined that the energies from bins 5(4, 1) and b(4,
2) were the dominant features necessary in distinguishing
among the three classes.

Three neural networks were constructed for tests using
2 and 11 features. Excellent results were obtained for all
tests. The networks (the number of adaptive linear neurons
(ALN) in each layer) and their results are summarized in
Table 3. The neural networks also did an excellent job;
classification ranged from 98.33% to 99.17%. Here, we
see that only a slight gain in performance results from the
addition of the child bins to the 2-parameter feature set.

4.3.2. Test 1I. This test illustrates our technique on a data
set for which intra-class variability is increased. This sec-
ond application of our methodology emphasizes a very im-
portant point for any learning-based approach to discrimi-
nation. In particular, any non-parametric classification pro-
cedure needs a training set that is rich enough to encompass
the full range of variability to be encountered in practice.

The range of the data set was increased by the addition of
recordings of snapping shrimp taken at a different time of
day and in a different region of ocean than the shrimp used
in the previous sections. Testing these data with both the 2-
feature and 11-feature sets (derived without samples of this
new shrimp data) and the nearest neighbor rules and neu-
ral networks discussed in the previous section resulted in
higher levels of incorrect classification. The reason for this
can be immediately discerned from the cluster distributions
shown in Fig. 11. The figure shows the two features (ener-
gies from bins b(4, 1) and b(4, 2)) for both the new shrimp
data and the original training data set. Notice that the bin
energies taken from the new shrimp data records form a
cluster which is distinctly separated from the bin energies
for the first shrimp data set. This suggests that there is
more variability in the bin energy patterns than that found
in the first data set, requiring a richer set of features to cap-
ture this behavior. The question is, of course, whether this
can be done in a way that still achieves significant feature
separability between classes.

The feature extraction procedure was repeated on a repre-
sentative training set where 16 excerpts of new shrimp data
were appended to the Test I shrimp matrix and the analysis
from Section 4.2 was repeated. The four largest singular
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values for snapping shrimp and whale clicks are shown in
Table 4. We calculate a difference ratio, 6} " between the
largest and ith largest singular values with i = 2, 3, 4 as
shown in (13).

011 — Oui

&' = (13)

Ol

Comparing the difference ratios in Table 4 reveals 87 10
be relatively small, signifying that the second singular value
for the shrimp class is a significant fraction of the largest
singular value. Indeed, there is more variability in the en-
ergy patterns for snapping shrimp excerpts than for whale
chicks. Accordingly, we expand our set of candidate fea-
tures by examining two singular vectors for shrimp. Fig-
ure 12 shows the primary singular vector for whale clicks,
the first singular vector for snapping shrimp, and the sec-
ond singular vector for snapping shrimp scaled by o52/05,1.
This scaling was done to show the relative intensity of the
two shrimp singular vectors.

We begin the search for a feature set by finding signif-
icant elements for each of the three singular vectors. We
consider an element to be significant if its magnitude is
within 25% of the maximum magnitude for that vector. The
13 significant values found by this procedure are marked
with circles in Fig. 12 and correspond to bins at levels 4,
5, and 6 of the energy maps. From the whale click singu-
lar vector, bins b(4, 2), b(S, 3), b(5, 4), b(6, 6), and b6, 7)
are significant. From the first singular vector for snapping
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FIG. 11. Noise normalized energies from bins &(4, 1) and b{4, 2) of

the energy maps for the original data set of snapping shrimp, whale clicks,
background noise, and the new set of snapping shrimp.
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TABLE 4
The Difference Ratios of Singular Values for Noise Normalized Energy Matrices That Include the New Shrimp Data

Class¢ o 02 0.3 o4 87 8" 8t
Snapping shrimp 65.59 25.25 13.19 9.26 0.615 0.799 0.859
Whale clicks 124.20 25.16 16.30 10.44 0.797 0.869 0916

shrimp, bins b(4, 1), b(5, 2), b(6, 3) and b(6, 4) are signifi-
cant. From the second singular vector for snapping shrimp,
bins b(5, 2), b(6, 4), b(6, 8), b(6, 9), b(6, 24), and b(6, 25)
are significant. These bins are shaded in Fig. 13a. We wish
to discard all child bins from each of the three groups of
features. Using only the ancestor bins within each group,
we are left with seven bin energies in our feature set: b(4,
1), b(4, 2), b(5, 2), b(6, 8), b(6, 9), b(6, 24), and b(6, 25).
These seven bins are shaded in Fig. 13b.

We used the nearest neighbor rule to test the utility of
these features for classifying excerpts from this more vari-
able data set. Each rule was run twice, once with the 7-
parameter feature set and once with the 13-parameter fea-
ture set. The results are summarized in Table 5. Errors
made by the 13-input nearest neighbor rule are a subset of
the errors made by the 7-input nearest neighbor rule. The
nearest neighbor tests using both the 7 and 13 features gave
excellent results ranging from 86.30% to 95.74% correct
classification.

We have not presented results for neural networks for this
set of experiments because of serious problems with con-
vergence to local minima. Indeed, one of the benefits of
performing the detailed feature analysis we have described
is that it leads to a very small set of features that provide ex-
cellent inter-class separation. This, in turn, allows us to use
a very simple classification rule, namely nearest neighbor,
thus avoiding the convergence problems of neural networks.

Whale Click ___ Shrimp singular vector 1 _ _ _ 2 _.

5. CONCLUSION AND FUTURE WORK

This work has explored the feasibility of applying the
wavelet packet transform to detection and classification of
transient signals in background noise in the case for which
the signals are not well characterized by a signal model. An
adaptable systematic feature extraction procedure is pre-
sented. The features exploit signal class differences in the
wavelet packet transform coefficients of pre-classified data.
The formulation of a wavelet-packet-based feature set ex-
plored here combines the coherent processing of the wavelet
packet decomposition with non-coherent energy calcula-
tions in each bin. From singular value decomposition of
matrices made from the bin energies of wavelet packet
transforms of our example data (snapping shrimp, whale
clicks, and background noise) we found that only a
very small number of features were necessary to distinguish
among the three classes.

Specifically, four important aspects of this work are
stressed. First, the approach presented is systematic. That
is, a precise, logical procedure is describe for extracting
features for signal discrimination. The procedure does not
change depending upon the particular types of signals be-
ing examined (although the wavelet features the procedure
identifies most certainly would). This stands in contrast
to other data-based ad-hoc classification procedures which
are unique to each data set for which they were intended

element number

FI1G. 12. The 63 elements of the primary singular vector for whale clicks and the two primary singular vectors for snapping shrimp.
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FIG. 13. The significant bins are shaded. (a) The 13 bins found significant for whale clicks and all snapping shrimp data. (b} The 7 bins of 13

that do not exhibit parent—child redundancy.

and to each person that administers them. Second, unlike
other techniques using time-frequency transforms for clas-
sification, the wavelet packet transform permits automatic
tuning of the features to a given signal-type. Third, and
very importantly, our approach is parsimonious in that it
attempts to identify a small number of features in which
significant amounts of discrimination information is con-
centrated. We view this as a great strength in contrast to
approaches that use vast numbers of features which are then
thrown at a neural network or other black box learning algo-
rithm. Focusing the problem down to a very small number
of features allows for visualization of the discrimination
problem and examination of robustness—e.g., are feature
classes clearly separated? Finally, the use, promise, and
success of this systematic and signal adaptable procedure
has been illustrated through a particular example applica-
tion. The wavelet-packet-based features obtained by our
method for biologically generated underwater acoustic sig-
nals yield 86% to 100% correct classification when used as

TABLE 5
Results Obtained from the Nearest Neighbor Rule in Test IT

Number of features: 7 13
Overall classification (%) 91.06 95.03
Click classification (%) 94,68 95,74
Shrimp classification (%) 91.11 94.81
Noise classification (%) 86.30 94.52

input for a neural network and a nearest neighbor rule. We
believe that these results are significant not because they
provide a definitive algorithm for biological acoustic tran-
sients, but rather because they provide convincing evidence
that the wavelet packet transform can be used effectively
as the basis for robust, systematic feature extraction and
automatic identification of transient signals that cannot be
well-characterized by parametric signal models.

Obviously, there is much more work that can be done to
develop these ideas. First, as the results in the preceding
section make clear, the development of robust classifica-
tion rules require the availability of data sets that display
the full range of variability present in the signal classes to
be distinguished (although, as the results in Section 4.3.2
demonstrate, even a considerable level of variability may
still be captured with comparatively small feature sets—a
maximum of 13 in this case). Second, the choice of the
wavelet used was not examined in this work and is, in gen-
eral, and interesting facet to this problem. Third, a sim-
ple extension of the non-coherent energy feature calculated
for each wavelet packet bin is to use a set of windowed
energies for each bin, thereby enhancing temporal resolu-
tion and expanding the set of possible features considerably.
The results presented here would seem to indicate that such
an extension might lead to only marginal performance im-
provement for the application considered in this paper, but
such enhanced temporal resolution may be of considerable
value in other applications such as communications and ac-
tive sonar/radar.
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