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ABSTRACT 
This paper presents a new foundation for positive t i m e  
frequency distributions (TFDs). Based on an integral equa- 
tion formulation of nonstationary systems, a positive TFD 
can be constructed from a decomposition of a signal over 
an orthonormal basis. This basis function definition of a 
positive TFD is used to obtain a relationship between the 
Wigner distribution and the positive TFD. The results are 
then generalized to derive positive joint distributions over 
arbitrary variables, following the approach of Baraniuk and 
Jones [l]. This general theory provides a common founda- 
tion for the two approaches of computing time-frequency 
representations: those based on linear decompositions of 
the signal (e.g., best basis methods) and those based on a 
quadratic, or bilinear, functional of the signal (z.e., Cohen’s 
bilinear class). 

1. INTRODUCTION 

There have been two distinct classes of time-frequency anal- 
ysis. Linear timefrequency analysis involves decomposing 
the signal over a set of basis functions to obtain a time- 
frequency representation. This class of methods includes 
the short-time Fourier transform, wavelets, and the adap- 
tive basis decomposition methods. Linear methods are use- 
ful in such applications as signal compression, denoising, 
and reconstruction. Quadratic methods of timefrequency 
analysis transform a second-order function of the signal, i.e. 
its timevarying autocorrelation, to obtain a representation 
of the signal energy distributed over time and frequency. 
These methods all fall within the framework of Cohen’s 
class of bilinear timefrequency representations’ [4]. The 
squared-magnitude of the linear representations also fall 
within Cohen’s class or its extensions. 

All of these disparate methods are used to describe the 
time-varying structure of a signal. However, there is no 
consistent means of measuring the accuracy of the result- 
ing representation, or comparing different representations. 
A god  of time-frequency research should be to discover 
a common foundation for timefrequency analysis that al- 
lows comparison of different methods of analysis, and en- 

’ While these methods use quadratic functions of the signal to 
obtain the distributions, the resulting distribution is not neces- 
sarily quadratic, i . e .  when signal-dependent estimation methods 
are used. 

ables cross-fertilization of techniques. Towards this end. 
this paper presents a new foundation for the theory of posi- 
tive TFDs, based on eigenfunction decompositions of linear 
integral equations [7]. It is shown that a positive distribu- 
tion can be obtained from an eigenfunction decomposition 
of a signal. Using this definition of the TFD, an integral 
equation relating the Wigner distribution of the signal to 
the positive TFD is derived. Thus, TFDs may be obtained 
from either linear or quadratic signal representations. It is 
also shown that the approach can be used to obtain repre- 
sentations for positive distributions in other signal domains, 
e.g., time-scale. Linear and quadratic methods can then be 
used in these domains as well to compute positive TFDs. 

2. POSITIVE TIME-FREQUENCY 
DISTRIBUTIONS 

A positive timefrequency distribution, or TFD, provides a 
measure of the instantaneous energy of a signal at  a par- 
ticulaF time and frequency. It is everywhere nonnegative, 
providing a meaningful estimate of the signal energy, and it 
yields the correct univariate marginal distributions in time 
and frequency (the instantaneous energy and the energy 
spectral density). Thus, it satisfies three fundamental prop- 
erties of distributions: 

where S(w) denotes the Fourier transform of the finite en- 
ergy signal s ( t ) ,  and all integrals are from -m to 03. TFDs 
satisfying these three properties are also known as Cohen- 
Posch TFDs, after the researchers who first showed that 
such distributions exist for all signals [5]. 

Positive TFDs satisfying the marginals can be com- 
puted using constrained optimization, i.e. finding the dis- 
tribution that minimizes some cost function subject to a 
set of constraints. The first method for generating positive 
TFDs was presented in 19, lo]. TFDs were obtained by min- 
imizing the cross-entropy to a prior distribution subject to 
a set of linear constraints. Spectrograms or combinations 
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of spectrograms were used as prior distributions, and posi- 
tivity and the marginals were used as constraints. Positive 
TFDs have also been computed using maximum entropy es- 
timation, which uses a uniform distribution as the prior. In 
(13,141, a convolutional relationship between a spectrogram 
and a positive TFD was derived, and maximum entropy de- 
convolution was used to compute the TFD. 

Least-squares estimation has also been used to com- 
pute positive TFDs. In [17, 81, a positive TFD was com- 
puted that minimized the L2 norm of the distance to a 
Wigner distribution. In [15], an alternating projections pro- 
cedure was used to minimize the squared distance to a re- 
duced interference distribution subject to positivity and the 
marginals. In [12], a general approach was presented for us- 
ing linearly-constrained quadratic programming to compute 
positive TFDs minimizing the weighted squared-error to a 
set of constraints derived from a statistical formulation of 
positive TFDs. 

3. LINEAR DECOMPOSITIONS AND 
POSITIVE TFDS 

A comprehensive theory for time-frequency distributions 
must address both deterministic and stochastic signals. For 
the stochastic case, a TFD should satisfy a stochastic form 
of the marginals: 

(5) 

The TFD may then be derived from a linear time-varying 
(LTV) filter model. Define s ( t )  as the output of a white- 
noise-driven LTV filter: 

s ( t )  = / h(t, .r)e(.r)d.r = h(t, t - r)e(t - T ) ~ T .  (6) 

Using a definition originally due to Kailath, the Fourier 
transform of h(t, T )  is defined as: 

J 
~ ( t , w )  z / h(t, t - T)e-jwlciT. (7) 

This formulation is purely for notational convenience, let- 
ting H ( t , w )  be interpreted as a time-varying weight of a 
complex exponential input, consistent with linear time- 
invariant filters. Next, let e(t) be bandlimited Gaussian 
white noise with bandwidth much greater than that of the 
filter h(t, 7): 

e(t) = eJW*dZ(w), (8 )  s 
where dZ(w) is an orthogonal process with unit variance, 
gives 

s ( t )  = H ( t ,  w)e’w‘dZ(w). (9) s 
Consistent with stationary spectral estimation, the time- 
varying spectral density2 is defined by: 

P( t ,w)  = lB(t, w)[Z.  (10) 
*This form subsumes Priestley’s evolutionary spectrum if 

H ( t , w )  is restricted to be slowly varying. 

Equation (6) models s ( t )  as an integral transform of 
e(t). s ( t )  may equivalently be modeled as the solution to 
a nonhomogeneous linear differential equation with time- 
varying coefficients. Every linear differential equation has a 
corresponding integral equation specified by a unique kernel 
h( t , r )  [7]. Thus, any nonstationary signal which is the 
solution to a time-varying linear system may be uniquely 
represented by the kernel of its integral equation. 

For any linear system, there exists a corresponding ad- 
joint system whose kernel h ( t , ~ )  is symmetric [7] .  Thus: 
for any signal s ( t ) ,  there exists a corresponding symmetric 
kernel. According to Mercer’s Theorem, a symmetric kernel 
can be expanded in a series 

where (9;) are the eigenfunctions and {A;} are the eigen- 
values of the expansion. Using (7) gives: 

where @.;(U) is the Fourier transform of d;( t ) .  h positive 
TFD derived from the filter transform is then given by: 

This expansion satisfies the stochastic marginals defined 
above. To see this, expand h(t, T) in (6): 

xi is a zero-mean Gaussian random variable with unit vari- 
ance. The variance of s ( t )  is given by 

The spectrum of s ( t )  is given by 

It is readily shown that P(t ,  w )  satisfies these marginals. 
Thus, P(t,w) is a valid TFD for the stochastic signal s ( t ) .  

When s ( t )  is a deterministic signal, the kernel formula- 
tion can still be used. s ( t )  is now a solution to a homoge- 
neous integral equation: 

d(t) = f h(t, T)+(r)dT. (17) 

The kernel of the integral equation is a consistent repre- 
sentation for both deterministic and stochastic signals, cor- 
responding to homogeneous and nonhomogeneous systems. 
respectively. As before, there exists an adjoint system with 
an associated symmetric kernel, described by the series ex- 
pansion in (11). The signal is then given by a sum of the 
eigenfunctions of the kernel h(t, T): 

3650 



where the eigenvalues now form the coefficients of the ex- 
pansion. Thus. any nonstationary signal which is tlie solu- 
tion to a timevarying linear system may be uniquely rep- 
resented by the eigenfunctions of the kernel of tlie defining 
integral equation. hletliods such as best basrs [6] .  basrs pur- 
surt [2]. and matching p ~ ~ ~ ~ 7 . 1 1  [ l l ]  can be used to obtain a 
decomposition of the signal. 

Given a decomposition of the signal as in (18). a posi- 
tive TFD is can be defined by tlie same expansion used for 
st ocliast ic signals: 

This distribution does not precisely satisfy the determinis- 
tic time and frequency marginals. The marginals obtained 
from this distribution are: 

These marginals do not exhibit the interaction between the 
components of the signal. as observed in tlie true marginals. 
Rather. they are identical to  those obtained in the stochas- 
tic case. As such. tlie TFD is a distribution of the energy 
of tlie individual signal components in time-frequency. not 
thr  time-frequency energy of the signal itself. 

4. QUADRATIC METHODS FOR POSITIVE 
TFDS 

The basis decomposition approaches are essentially non- 
parametric spline approximations of the signal or TFD. Tlie 
difficulty in a basis function approach to signal representa- 
tions is finding a good basis for a given signal. Tlie de- 
composition met hods mentioned above maintain a library 
of candidate basis functions from which a unique basis is 
selected according to some optimality criterion. However. 
tlir library of functions does not always contain an adequate 
representation of tlie signal. This is particularly true with 
complicated signals such as speech. or when the signal is 
noisy ur stochastic and subject to random phase variations. 
Nonetheless. the candidate basis function approach can Iw 
very useful. particularly when the decomposition can he 
concisely paramrtrrized. 

Define a prototype basis function: 

p / ( Y . , i + 3 . i 2 / 2 )  t - t; rect - ( 2 2 )  O , ( f )  = -f , v z  T, ' 

o , ( t )  is parameterized by six variables: t , .  t;. T,. 0 , .  dt. 

and . 3 , ,  X seventh variable. E, .  normalizes the energy of 
thr eigenfunction. This family of functions offers much 
more flexibility than the traditional Gabor basis of trun- 
cated Gaussians. The recf function a l low any region of 
t l i r  Gaussian pulse t c )  be selected. providing a wider range 
of envelopes for o, . Xppropriate choice of parameters will 
approximate w c f  functions. ramps. and decaying exponen- 
tials. The resulting basis will not form an orthonormal set; 

however. such a basis is readily ubtained. e.g. via Gran-  
Schmidt. Note that the complex expoiipntials e'' also do 
not form an orthonormal basis: once a linearly-indepeiideiit 
subset has been determined for a given linear system. an or- 
thogonal basis can be obtained. 

To relate tlie linear and quadratic approaclirs t u  time- 
frequency analysis. t he quadratic represent a t  ioiis nius t 1Jt. 

described in terms of the linear decompositions. 'The IYigner 
distribution of a signal s ( t )  is: 

s ( t )  can be decomposed over the space defined l)y o,: 

(24 )  
1 

The stochastic formulation of the signal is used to obtain 
its second-order statistical properties. 

Replacing b ( f )  in (24) by its form in ( 2 2 ) .  and plugging 
into ( 2 3 ) .  it can be shown that the It-igner distril)utiun of 
the signal is given by: 

sin[(2& - -w'z)T,.,] 
( 2 d - 4  - d 2 )  

dd ,d .d2 .  ( 2 3 )  

where H ( t . d )  is given by ( 1 2 ) .  and T,.&, is related t u  T, and 
f, in the expansion. T,.u parameterizes a signal-dependent 
smoothing window. akin to Dirichlet's kernel. Ti.- must 
be estimated from the data. suggesting an iterative pro- 
cedure for solving (25) .  Such methods are currently be- 
ing investigated. Note that no restrictions 011 the, smuuth- 
ness of 0. such as assumptions of ..local stationarity" ur 
..slowly-varying processes." have been niadr; o( t )  call IF 
frequency-modulated and discontinuous at its endpuints. 
(25) is solved for H ( t . d ) .  which is then used to uljtain 
P ( f . d ) .  if desired. The importancr of this form fur P ( f . d )  
is that no explicit decomposition of the signal needs t u  1Jr 

performed: no library of basis functions nerds t t i  I)e main- 
t aiiied. 

5. JOINT POSITIVE DISTRIBUTIONS IN 
ARBITRARY VA RIA B LE S 

In section 3 .  a positive TFD was obtained by computing 
the Fourier transform of the time-varying filter h ( f .  T). Tht, 
filter may likewise be traiisfornied tu yield other joint dis- 
tributions. For example. a positive time-scale distri1,utiuii 
may be obtained by computing a scale transform [3]  of thi, 
decomposition: 

p - , C l n  i 

wherr Q, (c )  = - o, ( t )  - f l t  . (21;) 6, 
Positive timp-scale distrilJutions have also 1iet:u roni1)ut<,<l 
using cross-entropy minimization [IG]. 
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This approach may be extended to obtain positive dis- 
tributions in arbitrary variables. Following the notation of 
[4], given two variables a and b with associated Hermitian 
operators A and B ,  a positive distribution in (a, b)  is given 
by 

P(a,b)  = IC kFi(a)F;(b)12, (27) 
i 

where F;(a) and F;(b) are the A and B transforms, re- 
spectively, of +i(t). This distribution satisfies the a and 
b marginals of the signal, IF(a)lz and IF(b)I2. 

The linear and quadratic methods can be treated under 
a common framework again by considering the case when 
a and b are related to time and frequency by a unitary 
transform U :  

A = UtlU,andU = UtWU.  (28) 

In this case, a and b are said to be “unitarily equivalent” 
to t and f. Unitary equivalence of time-frequency repre- 
sentations was first addressed in [l]. Using the authors’ ap- 
proach, a U- Wigner distribution is obtained by computing 
the Wigner distribution of the unitary-transformed signal 
Us. A positive distribution P(a,  6 )  is obtained by solv- 
ing (25) in the (a ,  b)  domain. The (a, 6 )  distribution may 
be mapped back to the time-frequency plane by using the 
method described in [l]. 

6. DISCUSSION 

A commonly heard criticism of time-frequency analysis is 
that the problem is inherently ill-posed, as Iv points of data 
can not be used to estimate N Z  d u e s  in time-frequency. 
A basis function definition for time-frequency distributions 
refutes this criticism. The TFD is constructed from a finite 
set of eigenvalues and eigenvectors, which are mapped to 
the time-frequency plane by (13). The number of eigenval- 
ues will be less than or equal to N. In any case, this criti- 
cism was never well-founded. Computing a TFD does not 
entail estimating N 2  independent points of data, no more 
than constructing a Gaussian probability density function 
requires estimating an infinite number of values of the func- 
tion. Both functions are distributions, dependent on a finite 
set of parameters which must be estimated from the avail- 
able data. Equation (13) is one method of constructing the 
distribution from that finite set. 
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