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ABSTRACT sented by this author 161 that diagonalized the nonstn- 

This paper presents further extensions to the multita- 
per time-frequency spectrum estimation method devel- 
oped by the author. The method uses time-frequency 
(TF) concentrated basis functions which diagonalize 
the nonstationary spectrum generating operator over 
a finite region of the TF plane. Individual spectro- 
grams computed with these eigenfunctions form direct 
T F  spectrum estimates, and are combined to form the 
multitaper T F  spectrum estimate. A method is pre- 
sented for adapting the multitaper spectrogram to lo- 
cally match frequency modulation in the signal, which 
can cause broadening of the spectral estimate. An F- 
test for detecting and removing frequency-modulated 
tones is also given. 

1. INTRODUCTION 

Thomson's multitaper spectral estimation approach [I] 
is a powerful method for nonparametric spectral esti- 
mation. This method uses a set of orthogonal data ta- 
pers that are maximally concentrated in frequency and 
diagonalize the spectral generating operator. These 
tapers are used to approximately invert the operator 
and estimate the spectrum. The multitaper approach 
was first applied to time-frequency (TF) analysis by 
a direct extension to the nonstationary case through a 
sliding-window framework [2], in which spectrograms 

tionnry spectral generating operator, formally extend- 
ing Thomson's approach to TF. Subsequent work by 
the author gave bias and variance measures for the es- 
timated TF spectrum, presented an adaptive procedure 
to reduce the bias of the individual spectrograms, and 
derived other properties of the eigenfunctions and the 
resulting T F  spectral estimate [7, 81. 

In this paper, a method is presented for adapting 
the multitaper spectrogram to locally match frequency 
modulation in the signal, which can cause broadening 
of the spectral estimate. Frequency modulation (FM) 
in the signal will degrade the resolution and accuracy 
of the multitaper spectrogram due to well-known spec- 
tral broadening effects. One common way of alleviat- 
ing the effects of the spectral broadening is to match 
the spectrogram to the FM by frequency-modulating 
the window. This approach works perfectly well when 
there is only one FM rate in the signal, as is the case 
with chirped sonar and radar. However, in multicom- 
ponent signals such as speech, biological, and mechan- 
ical signals, there can be multiple FM rates present 
at any given time. To accurately analyze these types 
of signals, it is necessary to locally adapt the multi- 
taper spectrogram to the FM at a given TF region. 
This paper presents a method for performing this lo- 
cal adaptation. An F-test for detecting and removing 
frequency-modulated tones is also given. 

are computed with each of the tapers and combined 
to form an estimate of the TF spectrum. A multita- 
per TF spectrum was constructed using spectrograms 2. BACKGROUND: MULTITAPER 

viously been shown to maximize a TF concentration 

means Of reducing artifacts using a TF mask [51* More 

computed with Hermite windows [3], which had pre- 

measure l41* This method was extended to 

TIME-FREQUENCY SPECTROGRAMS 

a This approach to  TF spectral estimation is based on a 
straightforward extension of the spectral representation 

a multitaper method for TF was pre- 
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filter. The signal can then be written as: 

where H ( t , w )  is defined as the Fourier transform of the 
LTV filter h(t, t - T )  [lo]. The T F  spectrum is defined 
by: 

P(t ,  w) = IH(t, (2) 

This formulation for a TF spectrum is of the same gen- 
eral form as Priestley’s evolutionary spectrum [9]; how- 
ever, H ( t ,  U )  is not constrained to  be slowly-varying. 

Given a signal s ( t ) ,  an estimate P(t ,w)  is desired; 
however, direct inversion of equation (1) is impossible. 
A rough estimate of the time-varying frequency con- 
tent of s ( t )  may be obtained by computing its short- 
time Fourier transform (STFT): 

s,(t,U) / S ( T ) g ( t  - T ) e - j w T d T ,  (3) 

where g(t) is a rectangular window of length T. A 
relationship between the STFT and H ( t ,  U )  is obtained 
by replacing s ( t )  by its TF spectral formulation: 

s 8 ( t , W )  = 1 / H(T,@)g( t  - T)e-j(W-e)Tdz(6)dT. 
(4) 

To solve for the time-varying spectrum H ( T ,  e), the 
STFT operator g ( t  - T)e-jwT must be inverted. This 
inversion is an inherently ill-posed problem. Instead, 
the inverse solution is approximated by regularizing 
it to some region R ( t , w )  in the TF plane, much as 
Thomson regularized the spectral inversion to a band- 
width W in his multitaper approach [l]. For simplicity 
throughout, R(t, w) is defined to be a square TF region 
of dimension AT x AW; however, the results readily 
generalize to arbitrary regions. 

In the case of spectral estimation, the operator is 
square and Toeplitz; its regularized inverse is found 
through an eigenvector decomposition. Such is not the 
case in the TF problem; the STFT operator is neither 
full rank nor square. This operator is diagonalized us- 
ing a Singular Value Decomposition, giving left and 
right eigenvectors U ( T )  and V(t,w) and the associated 
eigen (singular) values A: 

The eigenvectors U ( T )  and V ( t ,  U )  form an STFT pair: 

The SVD relationship between U(.) and V ( t , w )  is ob- 
tained by applying the STFT operator to V(t,w), com- 
puting the integrals only over AT x AW: 

XU(.) = J J V(t,w)g(t - 7)ejuTciudt. (7) 

The inverse STFT computed over all ( t , ~ )  also holds. 
This equation can be reduced to a standard eigenvector 
equation by substituting for V( t ,  U). The eigenvalue 
equation for U ( T )  is then: 

A T  A W  

Au(T)  = 2AWsinc(AW(~ - s ) ) f ( ~ ,  s)u(s)ds,  (8) s 
where 

r 

U ( T )  can be computed using standard eigenvalue so- 
lution methods. As has been discussed elsewhere, the 
eigenvectors are concentrated in T F  and doubly orthog- 
onal, both over the entire TF plane and over AT x AW. 
These properties are critical for the estimation method. 

Next, H ( t ,  w )  is estimated regularized to  the rectan- 
gular region AT x AW by projecting it onto AT x AW 
in the vicinity of (t,u) using the I C t h  left eigenvector 
Uk (t):  

(10) 
H k  is thus a direct, but unobservable, projection of 
H ( t , o )  onto AT x AW. 

These expansion coefficients are then estimated us- 
ing the STFT of s ( t )  computed using U k ( t ) :  

s k ( t , w )  = / / H ( T , @ ) U k ( t  - T)e-j (w-e)rdz(@)dT,  

(11) 
i.e., the I C t h  eigenspectrum S k ( t , w )  is a projection of 
H ( t ,  U) onto the ICth left eigenvector U k ( t ) ,  estimating 
H k ( t , w )  over AT x AW. When s ( t )  is a stationary 
white noise process, it follows that 

E[ISk(t, w)12] = IH(t, w)12 = P(t tw) .  (12) 

Thus, the individual eigenspectra are direct estimates 
of P(t ,  U ) ,  and are unbiased when the spectrum is white. 

Next, H ( t ,  U )  is estimated over AT x AW using the 
right eigenvectors Vk(t, U )  weighted by the projections 
of H(t ,w)  onto U k ( t ) ,  i.e., the kth spectrogram: 

K 
fi(#f,c;t,Ld) = ~ v , ( f - t , ~ - U ) S k ( t , W ) ,  (13) 

k=l 
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where K M ATAW. Choosing ATAW too small will 
result in estimates with poor biasAand variance proper- 
ties. The magnitude-square of H(5, $; t ,  U) is an esti- 
mate of P(t ,w)  over A T  x AW. This estimate is a x2 
random variable with two degrees of freedom (except 
for DC and Nyquist) with variance P2(t,u).  The vari- 
ance of this estimate can be reduced by averaging over 
AT x AW and invoking the orthogonality of V,(t,w): 

The average of K direct estimates is a x2 random vari- 
able with 2K degrees of freedom; hence, the variance 
of this estimate is P 2 ( t , w ) / K .  If AT is chosen to be a 
fixed proportion of the window length T ,  then this es- 
timator is consistent for fixed AW. Note that the form 
of this estimator differs slightly from that presented 
previously [6, 7, 81 in the weighting by the eigenvalues. 

3. LOCALLY STATIONARY PROCESSES 

The estimate for P(t,w) given in equation (14) is un- 
biased for white noise. For the estimate to be unbiased 
for signals other than white noise, it is only necessary 
that P(t ,w)  be locally white in TF, since the estimate 
is regularized to AT x AW. A similar requirement is 
seen in the stationary case [I], wherein the spectrum 
is assumed to be smoothly varying so that it is ap- 
proximately white over AW. A class of stochastic pro- 
cesses known as locally stotaonary processes [12] satisfy 
the requirement of being smoothly varying in TF, and 
can be used to describe a wide variety of nonstation- 
ary signals. Locally stationary processes are stochastic 
processes with covariance functions of the form 

where g ( - )  is a nonnegative function and f(.) is a valid 
covariance function; that is, f(t) possesses a nonneg- 
ative Fourier transform F(u). Through a change of 
variables, the symmetric form of the covariance func- 
tion is seen to be: 

&( t ,T )  = E [ S ( t  -f- 7 / 2 ) S * ( t  - T / 2 ) ]  = g(t)f(T), (16) 

The T F  spectrum is thus given by [ll]: 

U) = $(t)F(U).  (17) 

For locally stationary s( t ) ,  P,(t,w) will be approxi- 
mately constant over AT x AW, and equation (12) 
will still hold. 

The class of processes with such nonnegative T F  
spectra is easily extended to include a wider range of 
nonstationary processes [13]. Let ~ ( t )  be a locally sta- 
tionary process with covariance function Rg(t ,  T )  and 
corresponding TF spectrum P,(t, U). Then the linearly 
frequency modulated signal s( t)ejflta12 will have co- 
variance R, (t ,  T ) e j p t r  and corresponding nonnegative 
TF spectrum P,(t,w - Pt) .  More generally, let z ( t )  = 
s(t)ej@(t), where s ( t )  is locally stationary with sym- 
metric covariance function R,(t, 7) from equation (16). 
Then the covariance of z(t) is 

&(t, T )  = g ( t ) f ( ~ ) , j ( @ ( ~ + ~ / ' ) - 0 ( ~ - ~ / ~ ) ) .  (18) 

By making use of the principle of stationary phase [14], 
it can be shown [13] that the TF spectrum of z ( t )  is 
given by: 

Pz(t ,w) = g( t )F(w-$' ( t ) )  = P&,u--"). (19) 

Thus, a frequency modulated locally stationary (FMLS) 
process will have a TF spectrum equal to that of the 
locally stationary process centered around the instan- 
taneous frequency of the FM. The generalization can 
be taken one step further to define a composite FMLS 
process, consisting of a sum of statistically independent 
FMLS processes. The composite signal will also have 
a nonnegative T F  spectrum equal to the sum of the 
spectra of the individual processes. 

However, when s( t )  is an FMLS process, P(t,w) 
will most certainly not be constant over AT x AW, 
and equation (12) will fail to be valid. In this case, the 
smoothing region A T  x AW must be oriented to match 
the FM of the signal. This reorientation is equivalent 
to matching the spectrogram window to the FM of the 
signal. This matching can be accomplished by using 
a frequency modulated window in the original STFT 
computation. However, in signals with multiple FM 
rates, as in a composite FMLS signal, this adaptation 
must be performed locally in TF, as discussed next. 

4. LOCALLY MATCHED MULTITAPER 
SPECTROGRAMS 

To locally demodulate the spectrograms, it is first nec- 
essary to construct a reliable estimate of the local FM, 
which is denoted by /3(t,w). Letting the T F  depen- 
dence be implicit, /3 can be estimated by computing a 
local covariance of the multitaper spectrogram normal- 
ized by the time spread: ( ( t - f ) (w-o) ) / ( ( t - t2 ) ,  where 
f and 3 are the local average time and frequency, re- 
spectively; their dependence on t and w is implied. The 
covariance is computed by integrating over a finite re- 
gion of the TF plane AT x AW as a two-dimensiohal 
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sliding window to provide an estimate of p as a function 
of t and w: 

SAT SA& - i - z)(w - LJ - L;r)P(i,LJ)didcj 
JATJA,(t - i- t)”(t^,LJ)di& l 

P(t1W) = 

(20) 
f and 3 are computed similarly. Integrating over a 
larger region will provide better variance properties at 
the expense of possible bias due to multiple signal com- 
ponents with differing FM rates lying within the area 
of integration. 

Once @(t, U) has been estimated, each STFT &(t, w) 
is dechirped by locally convolving it with the Fourier 
transform of ej@(t,~)7’/2: 

This convolution is shift-variant; at each frequency, a 
new P must be used. This convolution is equivalent 
to matching the STFT to the local chirp rate. While 
this convoluation at first would appear to be an O(N2)  
operation, it can actually be implemented much more 
efficiently. The equivalent chirp in the time domain 
is of length T ,  the length of the STFT window. The 
Fourier transform of this finite-length chirp will then 
have bandwidth PT. Thus, if the average bandwidth 
of the various FM components is M = PT bins, an 
STFT with N frequency samples can be dechirped with 
only N M  multiplies per time slice, comparable to the 
computational complexity of the STFT itself. Once all 
of the s k ( t , w )  are dechirped, the multitaper estimate 
is constructed as usual. 

5. F-TEST FOR 
FREQUENCY-MODULATED TONES 

The validity of the multitaper estimate rests on the 
assumption that the TF spectrum is smoothly vary- 
ing over AT x AW. This assumption is violated when 
spectral lines (FM or otherwise) are present in the sig- 
nal. In this case, it is necessary to estimate the tones 
and remove them from the signal. Ordinarily, estimat- 
ing a tone with unknown FM would be extremely dif- 
ficult. This task is made easier, however, by the local 
matching described above. Once the individual STFT’s 
S k ( t ,  U) have been adapted to local FM, any frequency 
modulated tones in the signal will behave exactly as a 
stationary tone would behave in a non-adapted STFT. 
As a result, an F-test for the existence of any FM tones 
in the TF spectrum can be defined by directly extend- 
ing Thomson’s approach in the stationary case. The 
expected value of the kth dechirped STFT for an FM 
tone pej@@) with instantaneous frequency w = 4‘(t) is: 

E[Sk(t,w)l = PUk(0) .  (22) 

The mean can then be estimated via regression: 

The variance of this estimate is equal to the background 
TF spectrum minus the spectral line, which is: 

The F-test at time t is then given by the ratio of the 
power of the spectral line and that of the background 
spectrum: 

Under the null hypothesis, the test quantity at a single 
time is the ratio of two x2 random variables with 2 and 
2(K - 1) degrees of freedom. For a signal of length T 
and an STFT of order N ,  there will be TIN indepen- 
dent blocks of data. Thus, the final F-test will be a ra- 
tio of xz random variables with 2T/N and 2 ( K - l ) T / N  
degrees of freedom, integrated along the contour spec- 
ified by w = $’(t): 

If the F-test achieves the specified confidence level, 
the tone should be removed by subtracting from the 
STFT’s prior to forming the TF spectrum, then added 
into the representation as an impulse: 

. K  
P(t ,w)  = f i ( t ,w)b(w - 4’(t)) + f 

k=l 

Matching the STFTs to the local FM greatly simpli- 
fies the F-test. With no matching, the STFT of an FM 
tone will be spread according to the sweep rate, and 
will thus have a functional form dependent on p. After 
matching, the FM tone will have the same response as 
a stationary tone in an unmatched STFT. Thus, the 
expression for p in equation (23) can be used for all 
FM rates. The procedure for testing for an FM tone 
is then a four-step process: compute the test statistic 
F ( t ,  w) over time and frequency; find candidate con- 
tours w ( t )  = @(t)  in F( t ,w) ;  compute F(+‘(t)); and 
test its significance. 
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