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ABSTRACT where S(w) denotes the Fourier transform of the finite en- 

This paper extends Thomson's multitaper spectrum esti- 
mation method I171 to nonstationary signals. The method 
uses a newly-derived set of basis functions which generalize 
the concentration properties of the prolate spheroidal wave- 
forms 1151 to the time-frequency case. We solve for the basiis 
which diagonalizes the nonstationary spectrum generating 
operator over a finite region of the time-frequency plane. 
These eigenfunctions are maximally concentrated to and 
orthogonal over the specified time-frequency region, and 
are thus doubly orthogonal. Individual spectrograms coni- 
puted with these eigenfunctions form direct timefrequency 
spectrum estimates. We next present a multitaper time- 
frequency spectrum estimation procedure using these time- 
frequency eigenestimates. Bias and variance expressions are 
derived, allowing for a statistical characterization of the ac- 
curacy of the estimate. The timefrequency concentration 
property of the basis functions yields an estimator with ex- 
cellent bias properties, while the variance of the estimate is 
reduced through the use of multiple orthogonal windows. 

1. TIME-FREQUENCY SPECTRAL ANALYSIS 

There have generally been two approaches to time-frequency 
spectral analysis. The evolutionary spectrum approaches 
(e.g., [14, 7, 81) model the spectrum as a slowly varying eii- 
velope of a complex sinusoid. This assumption allows the 
averaging of short-time spectral estimates to stabilize the 
variance. The second approach is commonly referred to as 
Cohen's bilinear class [3], which provides a general formula- 
tion for joint time-frequency distributions. Computation- 
ally, the evolutionary spectrum methods fall within Cohen's 
class. 

A subclass of time-frequency distributions are the posi- 
tive time-frequency distributions (TFDs) [4]. Postive TFDs 
are everywhere nonnegative, and yield the correct univar i- 
ate marginal distributions in time and frequency (the in- 
stantaneous energy and the energy spectral density): 

P ( t , w )  2 0, 

. ,  
ergy signal s ( t ) ,  and all integrals are from -cm to 03.' 

The first method for generating positive TFDs used con- 
strained optimization, minimizing the cross-entropy to a 
prior distribution subject to a set of linear constraints [9]. 
Positive TFDs have been linked to the evolutionary spec- 
trum and estimated via deconvolution (131. Least-squares 
estimation has also been used to compute positive TFDs 
Ill]. Approximate solutions for positive TFDs have been 
obtained through a non1i:near combination of spectrograms 

Another approach to computing time-frequency spec- 
t ra  has been to extend Thomson's multitaper spectral es- 
timation method [17] to the nonstationary case through a 
sliding-window framework [16]. [l] developed a multitaper 
timefrequency spectrum ~ including a significance test for 
nonstationary tones, using Hermite windows, which have 
previously been shown to maximize a time-frequency con- 
centration measure [ 5 ] .  [;!] extended the Hermite multiwin- 
dow method to include a means of reducing artifacts using 
a time-frequency mask. 

While these methoda all provide some representation 
of the timevarying frequency content of a signal, they do 
not relate the computed diistribution to an underlying time- 
frequency spectrum (e.g., [I] minimizes the bias between the 
multitaper TFD and the Wigner distribution; however, the 
Wigner distribution is noit nonnegative for arbitrary signals, 
and as such is not a valid timefrequency spectrum). As a 
result, there is no quantitative measurement of the accu- 
racy of the representation. For time-frequency analysis to 
be useful in a wide variety of real-world applications, some 
method of measuring the bias and variance of the estimated 
timefrequency spectrum is required. To meet this require- 
ment, we present a statistical spectral estimation method 
for nonstationary signals. The method is based on a time- 
varying filter formulatioin for positive TFDs, as discussed 
in [12]. We solve for the ieigenvectors which diagonalize the 
nonstationary spectral generating function. These eigenvec- 
tors are maximally concentrated (and doubly-orthogonal) 

'Throughout the  analysis t ha t  follows, we use integral formu- 
lations of the various operations. The extension to the discrete, 
finite case is straightforward and not presented here. Integrals 
with no limits are over the  entire domain of support of the in- 
tegrand. The correspondin,g summations in the discrete case are 
then  over the length of the corresponding vectors. 

P O I .  
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in time-frequency. We then derive a multitaper estimation 
procedure to solve for the timefrequency spectrum. We 
also present bias and variance measures for the estimated 
time-frequency spectrum. 

2. INTEGRAL EQUATION FOR A 
TIME-FREQUENCY SPECTRUM 

As is the case in stationary spectral estimation, a rigorous 
approach to timefrequency spectral estimation should be 
based upon the integral formulation underlying the gener- 
ation of nonstationary signals. The formulation used here 
is a straightforward extension of the spectral representation 
theorem for stationary processes [14], and is equivalent t o  
a linear time-varying (LTV) filter model. Define the signal 
s ( t )  as the output of a white-noise-driven LTV filter: 

s ( t )  = h(t ,  ~)e(7)d~. s (4) 

e ( t )  is bandlimited Gaussian white noise with bandwidth 
much greater than that of the filter h(t ,  T ) :  

e ( t )  = e ' " * d ~ ( w ) .  (5) s 
dZ(w) is an orthogonal process with unit variance. 
signal can then be written as: 

The 

where H ( t ,  w )  is defined as the Fourier transform of h(t ,  t - 7 )  

[12]. The time-frequency spectrum is defined by: 

P ( t , w )  = I H ( t , w ) / 2 .  ( 7 )  

This formulation for a time-frequency spectrum is of the 
same general form as Priestley's evolutionary spectrum [14]. 
However, we do not require that H ( t ,  w )  be slowly-varying. 
This form for P ( t , w )  also satisfies the stochastic equivalent 
of the time and frequency marginals (equations 2-3); the 
relationship between the above time-varying spectrum and 
positive TFDs is discussed in [12]. 

Given a signal s ( t ) ,  we want to estimate P ( t , w ) ;  how- 
ever, direct inversion of equation 6 is impossible. We can 
gain some idea of the timevarying frequency content of s ( t )  
by computing the short-time Fourier transform (STFT): 

s ( T ) g ( t  - ~ ) e - ~ " ~ d 7 . .  ( 8 )  J S,(t,w) = 

where g ( t )  is a rectangular window of length T .  The re- 
lationship between the STFT and H ( t , w )  is obtained by 
replacing s ( t )  by its timefrequency spectral formulation: 

Ss(t, w )  = 1 / H ( 7 ,  e)g( t  - 7)e-3("-Q) 'dZ(r9)d7.  (9) 

To solve for the time-varying spectrum H ( T .  e ) ,  we need to 
invert the STFT operator g( t  - 7)e-3Wr. This inversion is 
an inherently ill-posed problem. Instead, we approximate 
the inverse solution by regularizing it to some region R(t. w )  

in the time-frequency plane, much as Thomson regularized 
the spectral inversion to a bandwidth W in his multitaper 
approach 1171. For simplicity throughout, we will define 
R ( t , w )  to be a square region of timefrequency of dimen- 
sion AT x AW; however, the results readily generalize to 
arbitrary regions R(t, U ) .  

In the case of spectral estimation, the operator is square 
and Toeplitz; its regularized inverse is found through an 
eigenvector decomposition. Such is not the case in the time- 
frequency problem; the STFT operator is neither full rank 
nor square. To diagonalize it, we apply a Singular Value 
Decomposition, finding the left and right eigenvectors U ( . )  

and V ( t ,  w )  and the associated eigen (singular) values A: 

g( t  - 7 ) e - ~ " ~  = ~ I ; u k ( T ) ~ ; ( t , w ) .  (10) 
k 

The eigenvectors U(. )  and V ( t ,  w )  form an STFT pair: 

V ( t ,  w )  = u(7)g( t  - 7)e-3'"*d7 (11) s 
A T  1 A W  

The SVD relationship between U(.)  and V ( t , w )  is obtained 
by applying the STFT operator to V ( t , w ) ,  computing the 
integrals only over AT x AW: 

W T )  = V ( t ,  w)g( t  - r)eJ"'dwdt (12) 

The inverse STFT computed over all ( t , w )  also holds. This 
equation can be reduced to a standard eigenvector equation 
by substituting for V ( t , w ) :  

Xu(.) = / / / u ( s ) g ( t  - s ) g ( t  - .)eJ"(r-*) dsdwdt 

The integral in w reduces to a sinc function, or for the dis- 
crete case, Dirichlet's kernel. The integral in t can be easily 
computed over the two rectangular windows, the result of 
which for convenience we define by: 

A T  A W  
(13) 

f(7, .) = s,, d t  - s ) g ( t  - 7 ) d t  

J 

(14) 

The eigenvalue equation for U ( . )  is then: 

Xu(7) = 2AWsinc(AW(r - s))f(7,s)u(s)ds (15) 

We can then solve for U ( T )  using standard eigenvector so- 
lution methods. Figure l plots the first 20 eigenvalues for 
this equation with T = 256, AT = 128, and AW = 61256. 
so that ATAW = 3.  Figure 2 illustrates the first 4 eigen- 
vectors for the same values of AT and ATV. Note that the 
U ~ ( T )  are of length T + AT, as determined by the region 
of support of f(7, a)  in equation 15. This increase in length 
beyond T is a result of the convolution in time inherent in 
the STFT. 

There are two extremely important properties of these 
eigenvectors for the timefrequency spectral estimation prob- 
lem. These properties are obvious results of diagonaliz- 
ing the STFT operator over a finite region of the time- 
frequency plane. First, the first left eigenvector u1 maxi- 
mizes a timefrequency energy concentration measure 

u l ( 7 )  = arg, max 
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3. EIGENESTIMATES 

We now want to estimate H ( t , w )  regularized to A T  x AW. 
Following Thomson’s approach, we form a Fourier-Bessel 
expansion of H ( t ,  U )  over the rectangular region A T  x A W  
around ( t ,  w): 

Figure 1: 
ATAW = 3. 
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Figure 2: 
ATAW = 3. 

First 4 eigenvectors of the STFT kernel for 

over the space of unit-energy functions. In other words, 
the first right eigenvector V l ( t , w ) ,  the STFT of the first 
left eigenvector u1 ( T ) ,  has the greatest proportion of en- 
ergy in A T  x A W  (more generally, in R )  for any STFT. 
The second eigenvector maximizes the energy in a subspace 
orthogonal to the first, and so on. It is straightforward 
to show that maximization of this integral reduces to the 
eigenequation for U (  7). This timefrequency concentrat ion 
property is akin to the frequency concentration property of 
the prolate spheroidal waveforms (or the prolate spheroidal 
sequences, in the discrete case) [15]. The second important 
property, again similar to the Slepian functions, is a double- 
orthogonality property. Since the u k ( 7 )  are orthonorimal 
functions on the real line, the Vk(t,W) are orthonormal on 
the entire timefrequency plane. In addition, the Vk(t,  w)  
are also orthogonal over A T  x AW. This orthogonality is to 
be expected, given the maximization of the timefrequency 
concentration measure. The Slepian functions, by contrast. 
are orthonormal on the real line and orthogonal on the inter- 
val W. Looking ahead, it is this orthogonality on A T  x LAW 
that will let us construct a regularized estimate of the time- 
frequency spectrum, just as the orthogonality of the Slepian 
functions on W provide the basis for Thomson’s multitabper 
spectral estimation method. 

H k  is thus a direct, but unobservable, projection of H ( t , w )  
onto A T  x AW. 

We next form an estimate of these expansion coefficients 
using the STFT. We have from above that the STFT of s ( t )  
is given by: 

Ss(t ,w)  = H(T,O)g(t - T)e- j ( ‘ -6)7 dZ(6)dr.  (18) 

Inserting the STFT S,(I.,w) for the rectangular window g ( t )  
gives: 

I I  
S s ( t , w )  = [ / / X o S , ( t  - T l 4 )  

(19) 

In this formulation, H ( T ,  e )  is the time-varying envelope 
of a complex exponential ej’?, and its such is relatively 
smooth. Since g ( t )  and S,(t,w) are also smooth, the in- 
tegral in T will be approximately zero when the argument 
of the complex exponential is nonzero. This condition holds 
when 4 = 0 - w ,  and equation 19 reduces to: 

t! - j (w-e+ +)r+i 41 d4dz ( 6  )d7. 

S,(t,U) = H(T,O)S,(t - 7 , 0  - w)e i (@-w) fdZ(o )dr .  

(20) 
SI 

SI 
It follows (with a change in notation) that the STFT of s ( t )  
computed with U k ( 7 )  is, 

S k ( t , u )  = H(T,  (g)vk(t - T , B  - w)e’(e-w)idZ(8)dr, 

(21) 
i . e . ,  the kfh eigenspectriim Sk(t ,w)  is aprojectionof H ( t , w )  
onto the kih right eigenivector vk(t ,W), estimating Hk( t ,w)  
over AT x AW. When s ( t )  is a stationary white noise 
process, it follows that 

E[ISk(t,U)lZ] = IH(t,w)lZ = P(t ,w) .  (22) 

Thus, the individual eigenspectra are direct estimates of 
P ( t , w ) ,  and are unbiased when the spectrum is white. 

Next, we form an estimate of H ( t , w )  over A T  x A W  
using a Fourier-Bessel series: 

where K M ATAW. Choosing ATAW too small will re- 
sult in estimates with poor- bias and variance properties. 
The magnitudesquare of H(s ,G;  t .  U )  yields our estimate 
of P ( t , w )  over A T  x AW. This estimate is a xz random 
variable with two degrees of freedom for frequencies other 

2427 



than DC or Nyquist. As such, its variance is P' ( t ,w) .  To 
reduce the variance, we average the estimateover A T x A W ,  
making use of the orthogonality of V k ( t ,  w )  on this region: 

Averaging K "eigenspectrograms" results in a xz random 
variable with 2K degrees of freedom; the variance of this 
estimate is then P'(t, w ) / K .  If we choose AT to be a fixed 
proportion of the window length T ,  then this estimator is 
consistent for fixed AW. 

While the individual eigenspectrograms, and hence, their 
sum, are unbiased for white noise, there will be bias in 
the final estimate due to leakage from the timefrequency 
smoothing window. The expected value of spectrograms 
for estimating a time-frequency spectrum has been derived 
previously [13]. Using those results, it follows that the ex- 
pected value for the multitaper timefrequency spectrum 
is: 

K 

E[$(t,w)] = / / P ( t  - T , W  - 0) Y d S d r ,  (25) 
k=l 

where Wk(T,8) is the Wigner distribution of the k t h  left 
eigenvector u k ( 7 ) .  Since the eigenvectors are localized to 
AT x AW, their Wigner distributions will likewise be lo- 
calized. Note, however, that concentration of the Wigner 
distribution of the eigenvectors was not a factor in the 
derivation; see [6) for a discussion of that topic. Using such 
Wigner-concentrated eigenvectors would produce a multi- 
taper estimate with minimum broadband bias. 

4. C O N C L U S I O N S  

We have presented a multitaper method of estimating time- 
varying spectra. The methodology follows that used by 
Thomson in his seminal 1982 paper [17], extended through- 
out to the timefrequency case. Specifically, we used a 
family of orthonormal windows whose corresponding short- 
time Fourier transforms are doubly orthogonal and maxi- 
mally concentrated in time-frequency. The multitaper es- 
timate approximately solves the integral equation for time- 
frequency spectra, providing a local least squares solution. 
Expressions for computing the bias and variance are pro- 
vided; the multitaper estimate is also consistent for fixed 
bandwidth resolution. This solution to the problem of es- 
timating time-varying spectra is computationally efficient, 
easily automated, and, most importantly, provides a means 
of quantifying the accuracy and stability of the estimate. 
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