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ABSTRACT 

This paper extends Thomson’s adaptive multitaper spec- 
trum estimation method [17] to the nonstationary case. 
The general approach and the nonadaptive estimation pro- 
cedure were first presented in [12]. The method uses time- 
frequency concentrated basis functions which generalize the 
properties of the prolate spheroidal waveforms [15]. Individ- 
ual spectrograms computed with these eigenfunctions form 
direct time-frequency spectrum estimates, and are com- 
bined to form the multitaper time-frequency spectrum es- 
timate. We then develop a new adaptive procedure which 
reduces the bias of the individual eigenestimates using an 
estimate of their leakage characteristics. The revised mul- 
titaper estimator then has correspondingly improved bias 
properties. An expression for the variance of the adaptive 
estimator is also derived, providing a complete characteri- 
zation of the statistical time-frequency estimator. 

1. INTRODUCTION 

Time-frequency analysis is the process of estimating the 
time-varying spectral content of nonstationary signals, which 
would not be completely described by stationary spectral 
analysis. A general approach to time-frequency analysis is 
given by Cohen’s bilinear class [3], which provides a gen- 
eral formulation for time-frequency representations. This 
general class includes well-known analysis methods such 
as the spectrogram and Wigner distribution. Other meth- 
ods of time-frequency analysis are based on an evolution- 
ary spectrum approach (e.g., [14, 6, 7]), which models the 
spectrum as a slowly varying envelope of a complex sinu- 
soid. This assumption allows the averaging of short-time 
spectral estimates to stabilize the variance. Computation- 
ally, the evolutionary spectrum methods fall within Cohen’s 
class; however, they have a distinctly different theoretical 
foundation, being statistical estimation methods. 

Most methods of time-frequency analysis are fixed pro- 
cessing techniques - the same analysis is used for all sig- 
nals. In other words, the time-frequency representation is 
signal-independent. Such representations either have trade- 
offs in time and frequency resolution, like the spectrogram, 
or are not generally nonnegative, like the Wigner distri- 
bution. Nonnegativity is particularly important for spec- 
tral estimation, whether stationary or not. The shortcom- 
ings of these fixed time-frequency analysis methods may 
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be avoided by restricting oneself to positive time-frequency 
distributions (TFDs) [4]. Positive TFDs are, of course, 
everywhere nonnegative, and do not suffer a trade-off in 
time and frequency resolution. Unlike any fixed methods of 
time-frequency analysis, they yield the correct univariate 
marginal distributions in time and frequency (the instanta- 
neous energy and the energy spectral density): 

where S(w) denotes the Fourier transform of the finite en- 
ergy signal s ( t ) ,  and all integrals are from -00 to 00. 

The first method for generating positive TFDs used con- 
strained optimization, minimizing the cross-entropy to a 
prior distribution subject to a set of linear constraints [8]. 
Positive TFDs have been linked to the evolutionary spec- 
trum and estimated via deconvolution [13]. Least-squares 
estimation has also been used to compute positive TFDs 
[lo]. Approximate solutions for positive TFDs have been 
obtained through a nonlinear combination of spectrograms 

Another approach to computing time-frequency spec- 
tra has been to extend Thomson’s multitaper spectral es- 
timation method [17] to the nonstationary case through a 
sliding-window framework [16]. [l] developed a multitaper 
time-frequency spectrum, including a significance test for 
nonstationary tones, using Hermite windows, which have 
previously been shown to maximize a time-frequency con- 
centration measure [5]. [2] extended the Hermite multiwin- 
dow method to include a means of reducing artifacts using 
a time-frequency mask. 

While these methods all provide some representation 
of the time-varying frequency content of a signal, they do 
not relate the computed distribution to an underlying time- 
frequency spectrum (e.g., [l] minimizes the bias between the 
multitaper TFD and the Wigner distribution; however, the 
Wigner distribution is not nonnegative for arbitrary signals, 
and as such is not a valid timefrequency spectrum). As 
a result, there is no quantitative measurement of the accu- 
racy of the representation. Many real-world applications re- 
quire bias and variance expressions for measured quantities, 
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so that confidence intervals may be assigned or hypothe- 
sis testing performed. A time-frequency analysis technique 
meeting these requirements was presented in [12]. Based on 
a timevarying filter formulation for positive TFDs [ l l ] ,  the 
method constructed a multitaper time-frequency spectral 
estimate using eigenvectors which diagonalize the nonsta- 
tionary spectral generating function. These eigenvectors are 
maximally concentrated (and doubly-orthogonal) in time- 
frequency. We review this multitaper estimation procedure, 
and then develop a new adaptive procedure which reduces 
the bias of the individual eigenestimates using an estimate 
of their leakage characteristics. We also derive an expres- 
sion for the variance of the adaptive estimator, providing a 
complete characterization of the statistical time-frequency 
estimation procedure. 

2. EIGENVECTORS FOR TIME-FREQUENCY 
SPECTRAL ESTIMATION 

A signal s ( t )  may frequently be modeled as the output of a 
linear time-varying filter driven by white noise: 

s ( t )  = h(t ,  T ) e ( r ) d T .  (4) I 

J 
e ( t )  is bandlimited Gaussian white noise with bandwidth 
much greater than that of the filter h(t ,  T ) :  

e ( t )  = eJwtdZ(w).  (5) 

dZ(w) is an orthogonal process with unit variance. The 
signal can then be written as: 

s ( t )  = H(t ,w)eJwtdZ(w),  (6) s 
where H ( t ,  U )  is defined as the Fourier transform of h(t ,  t - 7) 
[ll]. This formulation is a straightforward extension of 
the spectral representation theorem for stationary processes 
[14]. The time-frequency spectrum is defined by: 

P ( t , w )  = IH(t,w)l'. (7) 
This formulation for a time-frequency spectrum is of the 
same general form as Priestley's evolutionary spectrum [14]. 
However, we have not constrained H ( t , w )  to be slowly- 
varying. This form for P ( t , w )  also satisfies the stochas- 
tic equivalent of the time and frequency marginals (equa- 
tions (2)-(3)); the relationship between the above time- 
varying spectrum and positive TFDs is discussed in [ll]. 

Given a signal s ( t ) ,  we want to estimate P ( t , w ) ;  how- 
ever, direct inversion of equation (6) is impossible. A rough 
estimate of the timevarying frequency content of s ( t )  may 
be obtained by computing its short-time Fourier transform 
(STFT): 

s,(t,w) = 1 s (T)g( t  - T)e - jwrdT ,  

ss 

(8) 

where g( t )  is a rectangular window of length T. A relation- 
ship between the STFT and H ( t ,  w )  is obtained by replacing 
s ( t )  by its timefrequency spectral formulation: 

s J ( t , w )  = ~ ( 7 ,  e ) g ( t  - T)e -J (w-e ) rdz (e )d7 .  (9) 

To solve for the time-varying spectrum H(T,  e), we need to 
invert the STFT operator g(t - r ) e - 3 w r .  This inversion is 
an inherently ill-posed problem. Instead, we approximate 
the inverse solution by regularizing it to some region R(t, w )  
in the time-frequency plane, much as Thomson regularized 
the spectral inversion to a bandwidth W in his multitaper 
approach [17]. For simplicity throughout, we will define 
R ( t , w )  to be a square region of time-frequency of dimen- 
sion AT x AW; however, the results readily generalize to 
arbitrary regions R(t, U ) .  

In the case of spectral estimation, the operator is square 
and Toeplitz; its regularized inverse is found through an 
eigenvector decomposition. Such is not the case in the time- 
frequency problem; the STFT operator is neither full rank 
nor square. To diagonalize it, we apply a Singular Value 
Decomposition, finding the left and right eigenvectors U(.) 

and V ( t , w )  and the associated eigen (singular) values A: 

g ( t  - T)e-JwT = Xk'lLk(T)V;(t,W). (10) 
k 

The eigenvectors U(T)  and V( t ,  U )  form an STFT pair: 

V ( t , w )  = u(T)g ( t  - 7)e - jWTd7 .  (11) s 
The SVD relationship between U(.) and V(t ,  U )  is obtained 
by applying the STFT operator to V ( t , w ) ,  computing the 
integrals only over AT x AW: 

A ~ ( T )  = 1 1 V ( t , w ) g ( t  - 7 ) e J w T h d t .  (12) 

The inverse STFT computed over all ( t , w )  also holds. This 
equation can be reduced to a standard eigenvector equation 
by substituting for V ( t , w ) :  

A T  AW 

n n n  

X U ( T )  = J J J u(s)g( t  - s)g(t  - .r)ejw('-"dsdwdt. 
A T  AW 

(13) 
The integral in w reduces to a sinc function, or for the dis- 
crete case, Dirichlet's kernel. The integral in t can be easily 
computed over the two rectangular windows, the result of 
which for convenience we define by: 

f(7,s) = s,, 9(t - sMt - T W .  (14) 

The eigenvalue equation for u(7) is then: 

Au(7) = 2AWsinc(AW(.r - s ) ) f ( ~ ,  s)u(s)ds. (15) 

We can then solve for u( r )  using standard eigenvector so- 
lution methods. 

There are two extremely important properties of these 
eigenvectors for the time-frequency spectral estimation prob- 
lem. These properties are obvious results of diagonaliz- 
ing the STFT operator over a finite region of the time- 
frequency plane. First, the first left eigenvector u1 maxi- 
mizes a time-frequency energy concentration measure 

~ ( 7 )  = arg,max/ 1 ISu( t ,w) I2hdt  

1 

(16) 
A T  AW 

666 



over the space of unit-energy functions. In other words, 
the fist right eigenvector Vi(t ,w),  the STFT of the first 
left eigenvector ul(r) ,  has the greatest proportion of energy 
in AT x AW (or more generally in R ( t , w ) )  of any STFT. 
The second eigenvector maximizes the energy in a subspace 
orthogonal to the first, and so on. It is straightforward 
to show that maximization of this integral reduces to the 
eigenequation for U(.). This time-frequency concentration 
property is akin to the frequency concentration property of 
the prolate spheroidal waveforms (or the prolate spheroidal 
sequences, in the discrete case) [ 1 5 ] .  The second important 
property, again similar to the Slepian functions, is a double- 
orthogonality property. Since the U,+ (.) are orthonormal 
functions on the real line, the Vk(t,d) are orthonormal on 
the entire time-frequency plane. In addition, the Vk(t,w) 
are also orthogonal over AT x AW.  This orthogonality 
is to be expected, given the maximization of the time- 
frequency concentration measure. The Slepian functions, 
by contrast, are orthonormal on the real line and orthogo- 
nal on the interval W .  This orthogonality on AT x AW lets 
US construct a regularized estimate of the time-frequency 
spectrum, just as the orthogonality of the Slepian functions 
on W provides the basis for Thomson's multitaper spectral 
estimation method. 

3. MULTITAPER TIME-FREQUENCY 
SPECTRUM ESTIMATION 

We now want to estimate H ( t ,  U )  regularized to AT x AW.  
We project H(t,w) onto the rectangular region AT x AW 
around ( t ,w )  using the k t h  left eigenvector Uk(t): 

Hk is thus a direct, but unobservable, projection of H ( t , w )  
onto AT x AW.  

We next form an estimate of these expansion coefficients 
using the STFT. We compute the STFT of s ( t )  using Uk(t): 

sk(t,W) = 1 /H(T,B)uk(t - T)e-3("-e) 'dZ(f+h,  (18) 

i .e.,  the kth eigenspectrum Sk(t,W) is a projection of H(t,w) 
onto the kth left eigenvector Uk(t), estimating Hk(t,W) over 
AT x AW.  When s ( t )  is a stationary white noise process, 
it follows that 

E[ISk(t,W)12] = IH(t ,w)12 = P( t ,u ) .  (19) 

Thus, the individual eigenspectra are direct estimates of 
P(t ,w) ,  and are unbiased when the spectrum is white. 

Next, we form an estimate of H ( t , w )  over AT x AW 
using the right eigenvectors Vk(t,W) weighted by the pro- 
jections of H(t,w) onto ?&(t): 

where K E ATAW. Choosing ATAW too small will re- 
sult in estimates with poor bias and variance properties. 

The magnitude-square of I?@, (3; t ,  w )  yields our estimate 
of P(t ,w)  over AT x AW.  This estimate is a x 2  random 
variable with two degrees of freedom (except for DC and 
Nyquist) with variance P'(t,w). To reduce the variance, 
we average the estimate over AT x AW,  making use of the 
orthogonality of v k  (t, w )  on this region: 

The average of K direct estimates is a x' random vari- 
able with 2K degrees of freedom; hence, the variance of 
this estimate is P 2 ( t , u ) / K .  If we choose AT to be a fixed 
proportion of the window length T, then this estimator is 
consistent for fixed AW. 

4. ADAPTIVE TIME-FREQUENCY 
ESTIMATOR 

When the time-frequency spectrum is not white, the indi- 
vidual eigenestimates will no longer be unbiased. Since the 
eigenvalues decrease with increasing order, the bias prop- 
erties of the corresponding spectral estimates will likewise 
degrade. Regions where the time-frequency spectrum is low 
will be corrupted by leakage from high-energy regions. To 
reduce the bias in these estimates, we introduce a series of 
time-frequency weighting functions dk ( t ,  w) ,  and minimize 
the mean squared error between the unknown Hk(t,w) and 
the kth eigenspectrum sk(t,Ld). The mse is given by: 

mse = E[(Hk(t,w) - dk(t,Ld)Sk(t,W)12]. (22) 
Minimizing this quantity with respect to dk(t,w) gives: 

The value of the denominator has previously been shown 
[13] to be: 

E[ISk(t,w)12] = - T , W  - e)wk(T,e)dedT, (24) 

where wk(t,W) is the Wigner distribution of Uk(t). 
In a similar fashion, we can obtain an estimate for the 

numerator of equation (23) .  Inserting equations (17)- (18)  
for H k ( t , W )  and &(t,  W )  in the numerator and doing a sim- 
ple change of variables gives: 

E[Hk ( t , ~ ) s i  (t,  U ) ]  = /lTlw H k ( t  - U ,  - 0) 

H l ( t  - 'U,W - e ) U k ( u ) U ~ ( v ) e - j e ( u - ~ ) d e d U d v .  (25) 
After again making use of the assumptions from [13], per- 
forming a change of variables, and changing the order of 
integration, this equation simplifies to: 

u+AT/2 

E[Hk ( t ,  w ) s i  ( t ,  U ) ]  = S,,/ J - u,w - 0) 
u-AT/2 

U k ( U  + 'V/2)Ui(U - 'U/2)e-JevdVdUd8. (26) 
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The inner integral (in U )  may be evaluated separately, and 
is equal to: 

u+AT 
u~(u+ - ) u ~ ( u -  E)e-jevdv = Wk(u, 0 )  *sinc(OAT)e-jeu. 

Denoting the value of this integral by Wi*)(u,8), the nu- 
merator of equation (23) is given by: 

E[Hk(t ,w)SH(t ,w)]  = 

l - A T  ' 2 
(27) 

P(t - 7, w - O)Wi*'(7,O)d6'dr. 

(28) 
SS,, 

These results give the time-frequency weights in equa- 
tion (23), and the corresponding estimate of P ( t , w )  is: 

Note that these equations define an adaptive procedure 
for estimating P(t ,  w ) .  The K time-frequency weighting 
functions dk(t ,  w )  are computed using an initial multitaper 
estimate of P ( t , w ) .  This estimate is then updated using 
the weights, which in turn are recomputed using the new 
P(t ,w) .  This procedure is repeated until the weights have 
converged to a steady state. 

As mentioned above, the individual direct estimates 
ISk(t ,w) l2 are unbiased estimators of P ( t , w )  when P ( t , w )  
is white. As a result, th,e normalization in the denominator 
of equation (29) makes P(t ,  w )  a similarly unbiased estimate 

The variance properties of P ( t , w )  are also easily ob- 
tained. The individual & ( t ,  U) are approximately uncor- 
related, given the assumption that P ( t , w )  is white over 
AT x AW. It immediately follows that the variance of 
P(t,  U )  is: 

of P(t ,w) .  

The independence assumption will be valid so long as 
the K eigenvectors are well-localized to AT x AW. If addi- 
tional eigenvectors with worse leakage properties are used, 
the individual direct estimators will no longer be uncorre- 
lated, and the variance of the adaptive estimator will in- 
crease. 

5.  CONCLUSIONS 

We have presented an adaptive multitaper estimator for 
time-varying spectra. This method extends the estimation 
method first presented in [12]. As with the non-adaptive 
method, the approach follows that used by Thomson [17]. A 
family of orthonormal windows with double-orthogonality 
properties in the time-frequency plane are used to form 
the estimate. Leakage in the estimator is controlled by the 
time-frequency concentration properties of the windows. 
The adaptive weights minimize the mean squared error of 
the multitaper estimator. An expression for the variance of 
the adaptive estimator is also presented. 
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