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CONSTRUCTION OF PERIODIC PROLATE SPHEROIDAL WAVELETS
USING INTERPOLATION

Xiaoping Shen � Department of Mathematics, Ohio University, Athens, Ohio, USA

Gilbert G. Walter � Department of Mathematics, University of Wisconsin,
Milwaukee, Wisconsin, USA

� Periodic prolate spheroidal wavelets (periodic PS wavelets), based on the periodizaton of the
first prolate spheroidal wave function (PSWF), were recently introduced by the authors. Because
of localization and other properties, these periodic PS wavelets could serve as an alternative to
Fourier series for applications in modeling periodic signals. In this paper, we continue our work
with periodic PS wavelets and direct our attention to their construction via interpolation. We
show that they have a representation in terms of interpolation with the modified Dirichlet kernel.
We then derive a group of formulas of interpolation type based on this representation. These
formulas enable one to obtain a simple procedure for the calculation of the periodic PS wavelets
and finding expansion coefficients. In particular, they are used to compute filter coefficients for
the periodic PS wavelets. This is done for a number of concrete cases.

Keywords Bandlimited signal; Paley–Wiener space; Periodic wavelets; PS wavelets;
Spheroidal wave functions; Wavelets.

AMS Subject Classification 42C40; 65T60; 33E10; 42C05; 94A11; 94A12.

1. INTRODUCTION

The prolate spheroidal wave functions (PSWFs), ��n,�,�(t)�n∈Z , achieved
prominence in the 1960s as solutions of an important energy concentration
problem. These solutions were exploited by a group at Bell Labs ([9]
and [10]) who used them to solve problems in communications theory
([5, 8]). The problem was one of finding the �-bandlimited function
on the real line (functions whose Fourier transforms have support on
the interval [−�, �]) whose energy on [−�, �] was maximized. This led

Address correspondence to Xiaoping Shen, Department of Mathematics, Ohio University,
Athens, OH 45701-2979, USA; E-mail: shen@math.ohiou.edu
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446 X. Shen and G. G. Walter

to an integral equation satisfied by the PSWFs with the sinc function,
S(t)= sin �t/�t , as its kernel:∫ �

−�

�n,�,�(x)
1
T
S
(
t − x
T

)
dx = �n,�,��n,�,�(t), (1.1)

where T = �/�. The prolate spheroidal wavelets (PS wavelets) constructed
and studied in [15] were generated by the first prolate spheroidal
wave function �0,�,�(t). More recently, periodic PS wavelets were further
introduced via periodization [14]. These periodic PS wavelets have many
desirable properties lacking in other periodic wavelets [13], such as the
closure under differentiation and translation of the associated subspaces.

However, both the PSWFs and the periodic PS wavelets are difficult to
construct. In the former, a procedure based on a differential equation that
the PSWFs also satisfied (Slepian’s Lucky Accident [9]) is frequently used
for the construction. However, in the case of our periodic PS wavelets, we
have no such differential equation available. Rather, we use an alternate
procedure based on interpolation. This procedure is similar to that in
[18]. But rather than the sinc function used there, here we use a type of
trigonometric interpolation that requires only the values of the PS wavelet
scaling function at the integers.

This article is organized as follows: We begin with a brief review
of definitions for PS wavelets, periodic PS wavelets, and some related
properties. In the second section, we show periodic PS wavelets have
a representation in terms of interpolation with the modified Dirichlet
kernel. A number of formulas of interpolation type for the scaling function
and wavelets is then derived and used to find their dilation equation
coefficients. These formulas enable us to obtain a simple procedure for the
calculation of periodic PS wavelets themselves and for the calculation of
coefficients in the series approximation of a function. We then illustrate
the use of the interpolation formulas to derive the filter coefficients of the
PS wavelets numerically. The article is concluded by a brief summary.

1.1. PS Wavelets

We will assume that the readers are familiar with basic wavelet theory
(for general references, see [2] or [17], for example). The scaling function
�(t) of the PS wavelets on R was defined as the first PSWF �0,�,�(t), the one
with maximum concentration on [−�, �] among normalized �-bandlimited
functions. Many of the calculations are based on the Fourier transform of
the PSWF given by:

�̂0,�,�(	) = A�,��0,�,�

(
�	

�

)

�(	), (1.2)
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Construction of Periodic Prolate Spheroidal Wavelets 447

where A�,� =
√

2��
��0,�,�

, �0,�,� is the first (largest) eigenvalue of the associated
integral operator (1.1), and 
�(	) is the characteristic function of
the interval [−�, �]. The Fourier integral theorem inverts the Fourier
transform and enables us to express � = �0,�,� as

�(t) = 1
2�

∫ �

−�

�̂(	)e i	t d	

Because � is �-bandlimited, it can be represented by the sampling
theorem as

�(t) =
∞∑

n=−∞
�(n)S(t − n)� (1.3)

This can be used to derive several properties such as the discrete
orthogonality (More discussions on sampling theory of the PSWF �0,�,�(t)
can be found in [16]). If �̃ denotes the biorthogonal dual function, that is,
the �-bandlimited function such that∫ ∞

−∞
�(t)�̃(t − j)dt = �0j ,

then by substitution of (1.3) we find that

∞∑
n=−∞

�(n)�̃(n − j) = �0j �

The PS mother wavelet was then defined as (see [15]):


(t) = �0,�/2,�/2(t) cos
(
3�
2
t
)
,

with


̂(	) = 1
2

{
�̂0,�/2,�/2

(
	 − 3�

2

)
+ �̂0,�/2,�/2

(
	 + 3�

2

)}
�

Neither the PS scaling function nor the PS mother wavelet are
orthogonal to their translates, but these integer translates constitute a
Riesz basis of an appropriate subspace. They were both used to construct
periodic scaling functions and wavelets.

1.2. Periodic PS Wavelets

The periodic PS scaling function was defined by periodizing the PS
scaling function [14]. At level m, the periodic PS scaling function is
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448 X. Shen and G. G. Walter

defined as

�
p
m,0(t) =

∞∑
n=−∞

�(2m(t − n))� (1.4)

This was shown to have the expression for m > 0,

�
p
m,0(t) = A�,�

2m+1

{
�(−�)e2�i2

m−1t + 2
2m−1−1∑

k=−2m−1+1

�

(
k�
2m−1

)
e2�ikt (1.5)

+ �(�)e−2�i2m−1t

}
, m = 0, 1, � � � ,

where A�,� =
√

2��
��0,�,�

, �0,�,� is the first (largest) eigenvalue of the associated

integral equation (1.1). Notice that �
p
m,0 are a set of trigonometric

polynomials of degree 2m−1� The translates by j2−m give us the other
functions at the same scale

�
p
m,j(t) = �

p
m,0(t − j2−m), m = 1, 2, � � � ; j = 0, 1, � � � , 2m − 1� (1.6)

This gives us the usual multiresolution decomposition of L2(0, 1),
that is, a nested sequence of subspaces V p

m spanned by �
p
m,0(t),

�
p
m,1(t), � � � ,�

p
m,2m−1(t) with the property that

1. V p
0 ⊂ V p

1 ⊂ · · · ⊂ V p
m ⊂ · · · ⊂ L2(0, 1),

2.
⋃∞

m=0 V
p
m is dense in L2(0, 1)�

Clearly, V p
m is composed of trigonometric polynomials of degree ≤2m−1

and can be shown to contain all trigonometric polynomials of degree
<2m−1. Hence

⋃∞
m=0 V

p
m contains all trigonometric polynomials, which

therefore is dense in L2(0, 1)�
We then defined the periodic PS wavelets as [14]:



p
m,j(t) = A �

2 ,
�
2
2−m

[ 2m−1∑
k=1

�0,�/2,�/2

(
k�
2m

)
cos

3�k�
2m

cos 2�k
(
t − j

2m

)

+ �0,�/2,�/2(�) cos(2m2�t)
]
,

m = 1, 2, � � � ; j = 0, 1, � � � , 2m − 1�

a trigonometric polynomial of degree 2m .
Figure 1 shows the periodic PS scaling function �

p
2,0(t), � = 1 and the

corresponding mother wavelet. Even at this relatively coarse scale, the
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Construction of Periodic Prolate Spheroidal Wavelets 449

FIGURE 1 The periodic PS scaling functions �p
2,0(t) (solid line) and mother wavelet 
p

2,0(t) (dotted
line). Left: � = 0�5. Right: � = 1�

localization of the scaling function is evident. This is even more evident at
finer scales as shown in [14].

2. INTERPOLATION OF PERIODIC PS WAVELETS

Many of the formulas involving these prolate spheroidal functions are
related to the sinc function as we have seen. This function is itself a scaling
function, and we can find the associated periodic scaling function and
mother wavelet. The periodic extension at scale m is

spm,0(t) =
∞∑

n=−∞
S(2m(t − n))� (2.1)

Because the Fourier transform of S is the characteristic function of the
interval [−�, �], (2.1) may be represented by the trigonometric polynomial

spm,0(t) = 2−1−m

(
e2�i2

m−1t + 2
2m−1−1∑

k=−2m−1+1

e2�ikt + e−2�i2m−1t

)

= 2−m

(
1 + 2

2m−1−1∑
k=1

cos(2�kt) + 1 cos(2m�t)
)

= sin(2m�t)
2m tan(�t)

�

This is the modified Dirichlet kernel D∗
2m−1(2�t) of Fourier series theory

([20], p. 50). This kernel is used for trigonometric interpolation. It is
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450 X. Shen and G. G. Walter

very close to the scaling function of periodic PS wavelet �p
m,0(t) for small

values of � but has poor time localization compared with �
p
m,0(t) for larger

values of �.

2.1. The Transform Matrix

As was shown in [14], the PS scaling function can be recovered from
its values on the integers by using (1.3). In this section, we show that a
similar formula holds in the periodic case as well. We first return to the
sampling theorem (1.3) and use it to find a new formula for �

p
m,0(t)� It is

given formally by

�
p
m,0(t) =

∞∑
n=−∞

∞∑
k=−∞

�(k)S(2m(t − n) − k)

=
∞∑

k=−∞

∞∑
n=−∞

�(k)S(2m(t − n − k2−m)

=
∞∑

k=−∞
�(k)D∗

2m−1(2�(t − k2−m))

=
2m−1∑
k=0

{ ∞∑
l=−∞

�(k + 2ml)
}
D∗

2m−1(2�(t − k2−m))

=
2m−1∑
k=0

�
p
m,0(k2

−m)D∗
2m−1(2�(t − k2−m))� (2.2)

However, the last line is an immediate consequence of the interpolation
theorem from Fourier series as well. Notice that it requires only the
values of the PS scaling function (the first PSWF) at the integers. This
expression can also be used to find the expansion of functions in V p

m in
terms of �

p
m,j . Because �

p
m,j(t) = �

p
m,0(t − j2−m), we immediately have the

formula

�
p
m,j(t) =

2m−1∑
k=0

{ ∞∑
l=−∞

�(k + 2ml)
}
D∗

2m−1(2�(t − (k + j)2−m))� (2.3)

Now we suppose that f ∈ V p
m is given by

f (t) =
2m−1∑
j=0

aj�
p
m,j(t);
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Construction of Periodic Prolate Spheroidal Wavelets 451

then f may be represented by its interpolation series similar to (2.2):

f (t) =
2m−1∑
k=0

f (k2−m)D∗
2m−1(2�(t − k2−m))

=
2m−1∑
k=0

2m−1∑
j=0

aj�
p
m,j(k2

−m)D∗
2m−1(2�(t − k2−m))� (2.4)

If we restrict ourselves to the values of t given by �0, 2−m , 2 ·
2−m , � � � , (1 − 2−m)� and denote by

f = [f (0), f (2−m), � � � , f (1 − 2−m)]T ,
a = [a0, a1, � � � , a2m−1]T

and

�m = [�p
m,0((k − j)2−m)]2m−1

k,j=0 , (2.5)

then formula (2.4) can be written in matrix format as

f = �ma� (2.6)

If the matrix �m (the transform matrix) is nonsingular and well
conditioned, then it can be inverted to find the coefficients. That is,

a = �−1
m f� (2.7)

Fortunately, �m has very good computational properties. Some of them are
summarized in the following proposition.

Proposition 2.1 (Properties of the transform matrix �m). The 2m by 2m matrix
�m defined by (2.5), m ∈ Z , satisfy the following properties:

(i) �m is a symmetric Toeplitz matrix with generator rm = �rm(n)�T , where

rm(n) = �
p
m,0

(
n
2m

)
,n = 0, � � � , 2m − 1; (2.8)

(ii) �m is a positive definite matrix;
(iii) The row sums of �m are all equal to �̂(0), an eigenvalue of �m with

eigenvector v1 = [1, 1, 1, � � � , 1]T ;
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452 X. Shen and G. G. Walter

(iv) The eigenvalues of �m are bounded below by �̂(�) and above by �̂(0),
independently of the scale parameter m; they are given by

�̂(0), �̂(2−m�), � � � , �̂((2m − 1)2−m�);

(v) The condition number is bounded uniformly with respect to the scale parameter
m and

lim
m→∞

cond(�m) = 2�
�0

�(0)�(�)�

Proof. (i) The statement is clear from the construction of the
transform matrix.

(ii) By the definition of the matrix �m and formula (1.5), we have,

�m = [�p
m,0((n − l)2−m)]

=
[
A�,�

2m

2m−1∑
k=−2m−1

bke2�ik(n−l)2−m
]

=
[
A�,�

2m

2m−1∑
k=−2m−1

um(n, k)um(k, p)
]

=
[
A�,�

2m
UmU∗

m

]
where A�,� =

√
2�

�0,�,�
> 0, bk = �

(
k�

2m−1

)
for |k|< 2m , b±2m = �(�)/2, um(n, k) =√

bke2�ikn2
−m
, and Um = [um(n, k)]� If x �= 0 is a column vector of 2m − dim,

we have

xT�mx = xT

(
A�,�

2m
UmU∗

m

)
x

= A�,�

2m
(xTUm)(U∗

mx)

= A�,�

2m
‖U∗

mx‖2 > 0�

(iii) Each of the rows is given by a permutation of the generator
��

p
m,0(

n
2m )� and hence the row sum is

2m−1∑
n=0

�
p
m,0(n2

−m) =
2m−1∑
n=0

∞∑
l=−∞

�(k + 2ml) =
∞∑

k=−∞
�(k) = �̂(0)
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Construction of Periodic Prolate Spheroidal Wavelets 453

for each row. This last equality follow from the fact that the �(k) are the
Fourier coefficients of �̂(	), and the fact that the Fourier series converges
at each point of continuity of �̂(	), in particular at 	= 0� Because the row
sums are just �m[1, 1, � � � , 1]T , which must equal �̂(0)[1, 1, � � � , 1]T , we have
our conclusion.

(iv) For any scale parameter m, we go through similar calculations.
Let

vm = [v0, v1, � � � , v2m−1]T

be an eigenvector with eigenvalue �m . Then we have

�mvm =
[ 2m−1∑

k=0

�
p
m,0((n − k)2−m)vk

]T

= �m[v0, v1, � � � , v2m−1]T �

Now by taking the discrete Fourier transform at the 2m discrete values t =
0, 2−1�, � � � , (2m − 1)2−m�, we find

2m−1∑
n=0

2m−1∑
k=0

�
p
m,0((n − k)2−m)vke int = �m

2m−1∑
n=0

vne int ,

or, because of the 2m periodicity of �p
m,0(2

−mt) and e int ,

2m−1∑
n=0

�
p
m,0(n2

−m)e int
2m−1∑
k=0

vke ikt = �m

2m−1∑
n=0

vne int = �mvm(t)� (2.9)

Now vm(t) cannot be equal to 0 for all 2m values of t because it is a
trigonometric polynomial of degree 2m − 1 with at most 2m − 1 zeros in
[0, 2�)� Hence, because it is not identically equal to 0, we can divide both
sides of (2.9) by v(t) and as e ik2

m t = 1 for each of these values of t , we have

�m =
2m−1∑
n=0

�
p
m,0(n2

−m)e int

=
2m−1∑
n=0

∞∑
k=−∞

�(n − 2mk)e i(n−k2m t)

=
∞∑

n=−∞
�(n)e inj2

−m�, j = 0, 1, � � � , 2m − 1�
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454 X. Shen and G. G. Walter

The sampling expansion of the function e ij2
−mx is

∑∞
n=−∞ S(x − n)

e inj2
−m�, and hence we have

�m =
∫ ∞

−∞

∞∑
n=−∞

S(t − n)e inj2
−m��(t)dt

=
∫ ∞

−∞
e ij2

−m�t�(t)dt = �̂(j2−m�)� (2.10)

Using the duality of PSWFs and their Fourier transform,

�̂n,�,�(	) = (−1)n
√

2��
��n,�,�

�n,�,�

(
�	

�

)

�(	), (2.11)

(2.10) can be rewritten as

�m =
√

2�
�0,�,�

�0,�,�

(
j�
2m

)
, j = 0, � � � , 2m − 1� (2.12)

(v) Follows from (iv). �

The generators rm , m = 3, 4, 5, 6 of the matrix �5 are shown in Figure 2
and the matrix �5 is shown in Figure 3. Eigenvalues of matrices �m ,

FIGURE 2 The generators rm , m = 3, 4, 5, 6 of the matrix �5.
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Construction of Periodic Prolate Spheroidal Wavelets 455

FIGURE 3 The matrix �5 (top) and its inverse �−1
5 (bottom).

m = 2, 3, 4, 5 are shown in Figure 4. Notice that the matrix is very close
to the identity and hence we could get a reasonable approximation to the
expansion coefficients an by using the sampling coefficients f (n2−m).

2.2. The Dilation Equations

The dilation equation is used to connect the coefficients at different
scales. For periodic wavelets, we need a separate equation at each scale
in contrast with the nonperiodic case in which the same equation works
at each scale. Fortunately, as we have shown earlier in this section,
some computational-related properties of the transform matrix and filter
coefficients are independent of the scale parameter m (Proposition 2.1).
We begin with the dilation equations for the scaling function.

2.2.1. Dilation Equation for the Scaling Function
The equation at scale m is of the form

�
p
m,j(t) =

2m+1−1∑
k=0

cm,j ,k�
p
m+1,k(t) (2.13)
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456 X. Shen and G. G. Walter

FIGURE 4 Eigenvalues of �m ,m = 2, 3, 4, 5.

However, we need only consider the equation for j = 0 because

�
p
m,j(t) = �

p
m,0(t − j2−m)

=
2m+1−1∑
k=0

cm,0,k�
p
m+1,k(t − 2j2−m−1)

=
2m+1−1∑
k=0

cm,0,k�
p
m+1,0(t − k2−m−1 − 2j2−m−1)�

=
2m+1−1∑
k=0

cm,0,k−2j�
p
m+1,k(t)�

To get the coefficients in (2.13), we need to invert the matrix �m+1

again

�
p
m,0

(
n

2m+1

)
=

2m+1−1∑
k=0

cm,0,k�
p
m+1,0

(
n − k
2m+1

)
�

To do so, we denote by cm = �cm,0,k�
2m+1−1
k=0 , then

cm = �−1
m+1 · [rm(n/2)]2m+1−1

n=0 � (2.14)

The filter coefficient vector cm is shown in Figure 5 for m = 2, 3, 4, 5�
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Construction of Periodic Prolate Spheroidal Wavelets 457

FIGURE 5 The filter coefficient vector cm ,m = 2, 3, 4, and 5.

2.2.2. Dilation Equation for the Mother Wavelet
In order to get an expression for the dilation equation of the mother

wavelets, we need to find coefficients dm,k such that



p
m,0(t) =

2m+1−1∑
k=0

dm,k�
p
m+1,k(t)� (2.15)

Just as before, we can take the values at discrete points to get



p
m,0(n2

−m−1) =
2m+1−1∑
k=0

dm,k�
p
m+1,0((n − k)2−m−1)�

Again in matrix notation, we find that dm = �dm,k�
2m+1−1
k=0 is given by

dm = �−1
m+1 ·

[



p
m,0

(
n

2m+1

)]2m+1−1

n=0

� (2.16)

The expressions for these two dilation equations (2.14 and 2.15) are
similar. However, in the case of the mother wavelet, we cannot use the same
simplifications. Rather, in order to simplify (2.16), we first notice the fact
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458 X. Shen and G. G. Walter

that the original PS mother wavelet


(t) = �0,�/2,�/2(t) cos
(
3�
2
t
)
,

is the product of a �
2 -bandlimited function and a cosine function. Hence it

can be rewritten as:


(t) =
∞∑

k=−∞
�0,�/2,�/2(2k)S(t/2 − k) cos

(
3�
2
t
)

and 

p
m,0 becomes, for m > 1,



p
m,0(t) =

∞∑
n=−∞

∞∑
k=−∞

�0,�/2,�/2(2k)S(2m−1(t − n) − k) cos
(
3�
2
2m(t − n)

)

=
∞∑

k=−∞
�0,�/2,�/2(2k)

∞∑
n=−∞

S
(
2m−1

(
t − n − k

2m−1

))
cos

(
3�
2
2mt

)

=
∞∑

k=−∞
�0,�/2,�/2(2k)D∗

2m−2

(
2�

(
t − k

2m−1

))
cos(3�2m−1t)

Thus the values for the dilation equation in (2.16) can be found from the
integer values of a PSWF, though not those of a PS scaling function. It
can be converted to one by using the change of scale formula for PSWF
(see [15]):

�0,�/2,�/2(2k) = �0,�,�/4(k)/
√
2

which is a PS scaling function because it is �-bandlimited (though
it has different concentration interval). The filter coefficient vector
dm ,m = 2, 3, 4, and 5, is shown in Figure 6.

3. NUMERICAL IMPLEMENTATION

Most of the standardmethods of computing PSWFs involve an expansion
in Legendre polynomials for small values of t and expansion in Bessel
functions for large values. In practice, we rely on published tabulated values
[1, 3, 4, 11] to construct the original PSWFs. Although some computer
programs for evaluating the PSWFs are available [12, 19], many are not
portable or have not been tested thoroughly. In this section, we will discuss
some computation issues of the periodic PS wavelets. The interpolation
formulas (2.3) and (2.4) allow us to construct the periodic PS wavelets and
compute the expansion coefficients by using only the integer values of the

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
D

av
is

] 
at

 1
0:

37
 2

2 
Se

pt
em

be
r 

20
15

 



Construction of Periodic Prolate Spheroidal Wavelets 459

FIGURE 6 The filter coefficient vector dm ,m = 2, 3, 4, and 5.

PSWF �0,�,�� To find these integer values, we employ a new algorithm that was
recently developed in [18]. When we move from one scale to the next, there
are two different ways to go: using the interpolating formulas directly or
using the dilation equations developed in the last section. No matter which
way we go, we only need the integer values of �0,�,�. In what follows, we will
illustrate the implementation for the interpolation approach. We begin with
reviewing the method in [18] briefly.

3.1. The Eigenvector Algorithm

This method is based on identifying the relation between of energy
concentration problem and a discrete optimization problem. As is well-
known, the energy concentration problem is to maximize the ratio:

� =
∫ �

−�
|f (t)|2dt∫ ∞

−∞|f (t)|2dt , (3.1)

for �-bandlimited functions f � Such functions may be represented by the
Shannon sampling theorem as

f (t) =
∞∑

n=−∞
f (n)S(t − n),
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460 X. Shen and G. G. Walter

where S(t) is again the sinc function. We now denote by A�, the doubly
infinite matrix,

A� := [a�(n, k)] =
[ ∫ �

−�

S(t − n)S(t − k)dt
]
� (3.2)

Thus the ratio in (3.1) can be expressed as

� = 〈f,A�f〉
〈f, f〉 , (3.3)

where f now denotes the sequence �f (n)� and the inner product is just the
l 2 inner product.

Now if we expand the PS scaling function as

�(t) =
∞∑

n=−∞
�(n)S(t − n), (3.4)

by Shannon sampling theory, the following proposition was shown to hold
in [18].

Proposition 3.1. Let A� be the operator on l 2 given by (3.2). Then

(i) A� is a self-adjoint, positive definite, and compact; its eigenvalues are simple
and positive and satisfy

1 > �0,�,� > �1,�,� > · · · > �n,�,� > · · · > 0�

In addition,
(ii) The principal eigenvalue of A� is the concentration index, that is, �0,�,� =∫ �

−�
|�(t)|2dt .

(iii) The associated eigenvector ��n� consists of the integer values of the PS scaling
function, that is, �n = �(n), n ∈ Z �

Practically, it is impossible to find exact eigenpairs of A� because it is
a doubly infinite matrix. We consider rather a finite projection defined by
the approximation matrix An

� = [a�(l , k)] with entries:

an
� (l , k) =

{
a�(l , k), if |l | ≤n, |k| ≤n�
0, otherwise

(3.5)

We also use the same notation An
� for the truncated version A�, the

matrix consisting of a�(l , k), |l | ≤ n, |k| ≤ n, which is a 2n + 1 square
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Construction of Periodic Prolate Spheroidal Wavelets 461

FIGURE 7 Top: the matrix A15
1 and its contour plot. Bottom: Eigenvalues of A15

1 and the eigenvector
associated with �151,0.

matrix. This can also be used to get bounds on the approximation to the
principal eigenvalue, which is the only one we are interested in here. Let
� ≥ 2; then we know that the energy of �(t) outside of the interval [−�, �]
is less than �� ≤ �2 < 0�00006, and is very small indeed for larger values
of �.

The eigenvalues and eigenvectors of An
1 are then used to approximate

those of A1� Those of A15
1 are shown in Figure 7.

The principal eigenvalues for A10
1 and A15

1 compared with those of A1

are shown in Table 1. The first prolate function ��,1,0(t), recovered by using
truncated Shannon expansions (3.4) via its integer values (the eigenvector
corresponding with the principal eigenvalue of the truncated matrix An

� ),
is illustrated in Figure 8, n = 10 and n = 15.

TABLE 1 Principal eigenvalues of matrices An
1 ,n = 10, 15

n �10�,1,0 �15�,1,0 ��,�,0

0 .9810381982 .9810435577 .981045699
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462 X. Shen and G. G. Walter

FIGURE 8 The eigenvector associated with the principal eigenvalue of matrix An
1 (comparing with

��,1,0(t), the solid line), n = 10 (top panel), n = 15 (bottom panel), respectively.

3.2. Algorithm for Periodic PS Wavelets

Now we turn to the computation of the periodic PS scaling functions
�

p
m,0(t). By using the values of PS scaling function already computed in

last subsection (by the eigenvector algorithm), the periodic PS scaling
function can be computed by means of a truncated version of the Shannon
theorem substituted in the interpolation formula (2.3). More precisely, the
computation can be described by the following algorithm:

Algorithm 3.2 (Compute periodic PS wavelets).

Step 1. Compute the sequence ��(k)�k∈Z , the function values of PS
scaling function � at the integers, using the eigenvector algorithm [18]
described above.

Step 2. Compute the sequence ��
p
m,0(k2

−m)�2
m

k=0, the function values
of the periodic PS scaling function �

p
m,0 at the points t = k2−m , using the

values �(k) in Step 1 and the truncated formulas (2.2) and (2.3):

�
p
m,0(k2

−m) =
∞∑

j=−∞
�(k + 2mj) ≈

N∑
j=−N

�(k + 2mj),

where N is the truncation parameter.
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Construction of Periodic Prolate Spheroidal Wavelets 463

Step 3. Compute the other values of �
p
m,0 using the interpolation

formula (2.3):

�
p
m,0(t) =

2m∑
k=0

�
p
m,0(k2

−m)D∗
2m−1(2�(t − k2−m))�

where D∗
2m−1(u) = sin(2m�u)

2m tan(�u)
�

In this algorithm, we have to truncate the series in Step 2. We should
check that the error is not too great. Because it is clear from the formula
for the Fourier transform and the fact that �̂ is even, we have,

�(k) = 1
2�

∫ �

−�

�̂(	)e i	kd	 = O(k−2),

it follows that the truncation error satisfies

emk,N =
∣∣∣∣ ∞∑

|l |≥N+1

�(k + 2ml)D∗
2m−1(2�(t − k2−m))

∣∣∣∣
≤

∞∑
l=N+1

(|�(2ml − k)| + |�(2ml + k)|)

≤ C
∞∑

l=N+1

((2ml − k)−2 + (2ml + k)−2)

≤ C
22m(N + 1)

�

Figure 9 shows �p
m,0(t), m = 3, 4 computed by Algorithm 3.2, where the

truncation parameter N = 3� In this case, the truncation error is O( 1
22m )�

3.3. Calculation of the Filter Coefficients

In this subsection, we will compute filter coefficient vectors cm and dm

defined by (2.14) and (2.16) for the dilation equations (2.13) and (2.15),
respectively. Before we start, it is worth to remark that the filter coefficients
are dependent on the scale parameter m!

As in Algorithm 3.2, we assume that the dyadic values of the periodic
PS scaling function are available (computed by using Algorithm 3.2).
The algorithm to compute the filter coefficients cm can be described as the
following,
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464 X. Shen and G. G. Walter

FIGURE 9 The periodic PS scaling functions �
p
m,0(t),m = 3, 4, constructed by using the

interpolation formula (2.3), truncated to n = 10, 15.

Algorithm 3.3 (Compute Filter Coefficients cm).

Step 1. Compute inverse of the transform matrix �m+1 using
formula (2.8);

Step 2. Compute rm( n2 ),n = 0, � � � , 2m+1 − 1, using formula (2.8);

Step 3. Compute cm , using formula (2.14).

Remark 3.4. In general, to compute the inverse of a Toeplitz matrix
requires n3 operations. Some algorithms for inverse QR factorization for
Toeplitz matrices using n2 are also available, see [7], for example. Notice
that the transform matrix is well conditioned with small condition number.
In our case, the condition number is bounded by

cond(�m) ≤ 2�
�0

�(0)�(�) ≤ 2 ∗ 1
�0

�(0)�(1)

≤ 2
0�98105

∗ 0�936576 ∗ 0�224680 = � 42899�

Remark 3.5. The algorithm to compute the filter coefficients dm (2.16)
can be derived by a simple modification of Algorithm 3.3 and therefore we
omit it.

Examples for filter coefficients computed by using the above algorithms
are shown in Table 2.
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Construction of Periodic Prolate Spheroidal Wavelets 465

TABLE 2 Filter coefficients

m = 2 m = 3

n c2,n d2,n c3,n d3,n

0 0�87860000 −�08071762 1�0025000 −�04790569
1 0�48990000 0�18695579 0�48770000 0�15999924
2 0�40500000 −�07385376 0�28490000 −�03968472
3 −�17990000 0�05429668 −�26190000 0�00114755
4 −�06860000 −�06623164 0�02720000 −�02922145
5 −�17990000 0�05429668 −�04160000 0�05284673
6 0�40500000 −�07385376 0�24580000 −�03422436
7 0�48990000 0�18695579 −�13160000 0�02715859
8 0�10680000 −�03450731
9 −�10490000 0�02719346

10 0�10460000 −�03433055
11 −�10480000 0�05325124
12 0�10580000 −�03609781
13 −�10810000 0�00155206
14 0�11520000 −�03979091
15 −�14980000 0�16003410

4. CONCLUSIONS

In this paper, we have continued our previous work with periodic
prolate spheroidal wavelets and directed our attention to their
construction via interpolation. We show that these periodic wavelets
have a representation in terms of the interpolation with the modified
Dirichlet kernel. We then derived a group of formulas of interpolation
type based on this representation. These formulas enable one to obtain
a simple procedure for the calculation of the periodic PS wavelets and
their associated filter coefficients. All of our procedures avoid integration
and thus should be easier to implement. They also avoid the use of the
associated differential equations for the PSWFs. These procedures could
also be extended to several dimensions where the PSWFs do not have such
a differential equation.
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