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On  Bandwidth 
DAVID SLEPIAN, FELLOW, IEEE 

Abstmcf-It is easy- to ugw that red signals must be bandlimited. 
It is Plso easy to argue that they annot be so. This paper  presents one 
possible resolution of this seeming purdox. A philosophical dircussion 
of  the d e  of mathematical models in the exact sciencea b @en and a 
new formulation of the 2 WTtheoffm is presented. 

The paper is a written version of the aecond Shannon Lecture given 
at  the 1974 International  Symposium on Information Theory. An 
appeadixgivingproofofthe2WTtheoremh.sbeenadded. 

THE DILEMMA 

A RE SIGNALS really bandlimited?  They seem to be, and 

On the  one  hand,  a  pair of solid copper wires will 
not propagate  electromagnetic waves at  optical  frequencies, 
and so the signals 1 receive  over such  a pair must be band- 
limited.  In  fact,  it makes little physical  sense to talk of  energy 
received  over  wires at  frequencies higher than  some  finite 
cutoff W, say lozo Hz. It would seem, then,  that signals must 
be bandlimited. 

On the  other  hand, however, signals of limited  bandwidth W 
are fiiite Fourier  transforms, 

yet  they seem not to be. 

s ( t )  = 1; e z m n  S( f) d f  

and  irrefutable  mathematical  arguments  show  them to be 
extremely  smooth.  They possess  derivatives of all orders. 
Indeed,  such integrals are entire  functions of t ,  completely 
predictable  from  any  little piece, and they  cannot vanish on 
any t interval unless they vanish  everywhere. Such signals 
cannot  start  or  stop,  but must go on forever. Surely real 
signals start  and  stop,  and so they  cannot  be  bandlimited! 
Thus we  have a  dilemma: to assume that real signals must 

go on forever in time (a consequence of bandlimitedness) 
seems just as unreasonable as to assume that real signals have 
energy at arbitrarily high frequencies (no bandlimitation).  Yet 
one of these  alternatives  must  hold if we are to avoid mathe- 
matical  contradiction,  for  either signals are  bandlimited or 
they  are  not:  there is no  other choice. Which do  you think 
they  are? 

I have  my own  pet  resolution of this seeming paradox,  and 
that is what  I plan to talk  about this morning. The prelimi- 
nary discussion is long  and will take us rather  far afield from 
Information  Theory,  but  I will come back to  touch  on it  later 
in a  fundamental way if you will but bear  with me. My solu- 
tion to this  dilemma will certainly not please all of you: it 
rests on  matters I do  not fully  understand myself. But,  then, 
perhaps  this is the best function  these  Shannon  Lectures can 
serve-to shake us all up a bit,  to stir  the  waters  with  contro- 
versy. From  such  a  jostling new ideas  are often  born. 
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ON MODELS AND REALITY 

My starting  point is to recall to you  that each of the  quanti- 
tative physical  sciences-such as physics, chemistry,  and  most 
branches of  engineering-is comprised of  an  amalgam of two 
distinctly  different components.  That  these  two  facets of each 
science  are  indeed  distinct  from one  another,  that  they are 
made  of totally  different  stuff, is rarely mentioned  and cer- 
tainly not emphasized  in the  traditional college training of 
the engineer or  scientist.  Separate  concepts  from the  two 
components  are  continually  confused.  In  fact, we  even lack  a 
convenient language for keeping them straight  in our thinking. 
I shall call the  two  parts Facet A and  Facet B. 

Facet A consists  of observations on, and  manipulations of, 
the “real  world.” Do not ask me  what  this real world is: my 
thoughts  become hopelessly muddled  here.  Let us assume 
that we all understand  the  term  and agree on what it means. 
For  the electrical  engineer,  this real world contains oscillo- 
scopes  and wires and  voltmeters  and coils and  transistors  and 
thousands of other tangible  devices.  These are  fabricated, 
interconnected,  energized,  and  studied  with  other real instru- 
ments.  Numbers describing the state of this real world are de- 
rived from  reading  meters,  thermometers,  counters,  and  dial 
settings.  They are recorded in notebooks as rational real 
numbers. (No  other kind of number seems to be directly o b  
tained  in  this real world.) 

Facet B is something else again. It is a  mathematical  model 
and the means for  operating  with  the  model.  It consists  of 
papers  and pencils and  symbols  and rules for manipulating the 
symbols. It also  consists of the minds of the men and wDmen 
who  invent  and  interpret the rules and  manipulate the sym- 
bols, for  without  the seeming consistency of their  thinking 
processes there would  be no single model to consider. When 
numerical values  are  given to some of the symbols, the rules 
prescribe  numerical values for  other symbols of the model. 

Now,  as you all know, we like to  think  that  there is an  inti- 
mate  relationship  between  Facet A and  Facet B of a given 
science. The numerical value  associated with the  symbol V3 
in the model  should,  in  the right  circumstances, agree with the 
reading of the  voltmeter we  have labeled #3 on  the  workbench 
over there,  the meter we touch in  Facet A. Indeed, so confi- 
dent  are we of this  agreement that we  use the very  same name 
“the voltage  across R3”  for  these two very different  quantities, 
thus  confounding hopelessly the distinction  between  these 
constructs.  I have carefully said that we  “like to think”  that 
there is an intimate  relationship  between the  facets  because, 
in  fact,  under closer scrutiny  one sees the correspondence as 
tenuous,  most  incomplete,  and  imprecise.  There is a  myriad 
of detail in  the  laboratory  ignored  in the model.  Worse yet, 
many  key  parts of the model-many of its  concepts  and 
operations-have no counterpart in Facet A. To  the  extent 
that  there is some  correspondence  between  Facets A and B, 
we  have the miracle of modem science-the deepening  under- 
standing of our universe,  and the  bounty  and ease of the  tech- 
nological society  in which  we  live. A second-order  miracle, 
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little recognized  or appreciated, is that this first miracle 
could arise from  such  a really ragged fit between the facets. 

This gross mismatch goes in two directions. Details from 
Facet A do  not  appear in Facet B; details of Facet  B may 
have no counterpart  or meaning in Facet A. The  first  type 
of mismatch usually  causes little  trouble.  The angle of the 
caster wheels on the  little  portable  table  supporting  the os- 
cilloscope with  which we observe the waveform of a signal 
does not  enter  our circuit  equations. We say that this angle 
has no effect on the circuit  and we like to think  that, if  we 
wanted to, we could  describe  a  completely comprehensive 
model that would  include the angle of the caster wheels as a 
parameter  and  that this  model would indeed  show the voltage 
here or  there to depend  hardly at all on  the inclination of 
the caster wheels. 

Mismatches the  other way  are much  more  troublesome. 
Our  mathematical models are  full of concepts,  operations,  and 
symbols that have no counterpart in  Facet A. Take the very 
fundamental  notion of real number,  for instance.  In  Facet B, 
certain  symbols  take  numerical values that  are supposed to 
correspond to  the readings of instruments in Facet A.  Almost 
always in  Facet  B these numerical values are  elements of the 
real-number  continuum, the rationals and  irrationals. This 
latter sort of number  seems to have no counterpart  in  Facet 
A.  In Facet B, irrational  numbers are defined by limiting 
operations  or Dedekind  cuts-mental exercises that with  some 
effort  and  practice we can  be trained to “understand”  and 
agree upon.  After  years of experience  with  them, we theoreti- 
cians  find them very  “real,” but  they  do  not seem to belong 
to the real world  of Facet A. The  direct  result of  every in- 
strument  reading in the  laboratory is a  finite  string of deci- 
mal  digits-usually  fewer  than  6-and  a  small  integer  indicat- 
ing the  exponent of  some  power  of  10 to  be  used as a factor.  
Irrationals  just  cannot  result  directly  from real measurements, 
as I  understand  them.’ 

Now there  are several  ways in which we can handle this 
fundamental  lack of correspondence  between  symbol values in 
Facet  B  and  measurements in Facet A. We could  build a 
mathematical  model  in which only  a  finite  number of numbers 
can occur, say those  with 10 significant digits and  one of a 
few hundred  exponents.  Differential  equations would  be re- 
placed  by difference  equations,  and  complicated  boundary 
conditions  and  rules would  have to be added to treat  the 
roundoff  problem  at every stage. The model would  be ex- 
ceedingly complex. Much simpler is the scheme usually 
adopted  and  known to you all. We admit  the real-line conti- 
nuum into  Facet B  and we impose yet  another abstraction- 
continuity. In the  end, if the model  says the voltage is n, we 
are  pleased if the  meter in  Facet A reads 3.141 7. We work 
with the  abstract  continuum in  Facet B, and we round off to 
make the correspondence  with  Facet A. 

Mathematical  continuity deserves a few  words. It is another 
concept  with no counterpart in the real world. It makes no 
sense at all to ask whether in Facet A the position of the 
voltmeter  needle is a continuous  function of time. Observing 
the position of the needle at millisecond or microsecond or 
even picosecond  intervals  comes no closer to answering the 
question  than  does  measurement daily  or annually.  Yet  con- 

idiosyncratic  scientist can, of course, use the  symbols TI or e or 

is that  what is recorded in the  notebook is a  “word” drawn from a 
finite (but possibly very large) list of words. 

j.. 2 UI place of digits,  but this  does  not alter the  situation. T h e  point 

tinuity is a vital concept  for  Facet B. By invoking it, by 
demanding  continuous  solutions of the  equations of our 
models, we make the  parts of the model that correspond to 
measurements in Facet A insensitive to small  changes in the 
parts of the model that  do  not correspond to anything in 
Facet A. Specifically, continuity means that  the first five 
significant digits of our  computed answers, those to which 
we do ultimately attribute real significance,  will  be dependent 
only weakly on  the sixth to  tenth significant digits of the 
numbers we  assign to  the parameters of the model. They will 
be essentially independent of the  100th  or  1000th significant 
digit-constructs of importance to  the working  of  Facet B 
but with no meaningful counterpart  in  Facet A. 

The  situation  just  exemplified by this discussion of numbers 
and  continuity  occurs in many  different guises in the sciences. 
There  are  certain  constructs in our models (such as the  first 
few  significant digits of some  numerical variable) to which we 
attach physical  significance. That is to say, we  wish them to 
agree quantitatively  with  certain measurable quantities  in  a 
real-world experiment.  Let us call these the principal  quanti- 
ties of Facet B. Other  parts of our models  have no direct 
meaningful counterparts in Facet A but are mathematical 
abstractions  introduced  into  Facet  B to make a  tractable 
model. We call  these secondary  constructs or secondary 
quantities. One can, of course,  consider  and study  any model 
that  one chooses to. It is my  contention, however, that a 
necessary and  important  condition  for a  model to be useful 
in science is that  the principal  quantities of the  model  be in- 
sensitive t o  small changes in the  secondary  quantities. Most 
of us would treat  with great  suspicion a  model that predicts 
stable flight for an airplane if some  parameter is irrational  but 
predicts disaster if that parameter is a  nearby  rational  number. 
Few of us would board  a  plane designed from  such  a  model. 

THE DILEMMA RESOLVED 

What has  this  long digression to  do with  bandwidth?  (You 
have  been most patient.) I assert that, as usually used  by 
members of this  sophisticated  audience, the words “bandlim- 
ited,”  “start,”  “stop,” and  even “frequency” describe secon- 
dary  constructs  from  Facet  B of our fieId. They are abstrac- 
tions we have introduced  into  our paper  and pencil  game for 
our convenience in working  with the model.  They  require 
precise specification of the signals in the model at times in 
the  infiitely remote  past  and in the infinitely  distant future. 
These notions have no meaningful  counterpart in Facet A. 
We are no more  able to determine by measurements  whether 
a  “real signal”  was always “zero”  before noon  today  than we 
are  able to determine  its  continuity with  time. 

I shall soon discuss Facet B of communication  theory in 
more  detail  and  tell you how we can proceed to keep the 
principal  quantities insensitive to small  changes in the secon- 
dary  ones. But first, we have come  far  enough  to lay to 
rest the question  with which I opened  this discussion.  Are 
signals really bandlimited? If you mean real signals, those of 
Facet A, and if by bandlimited you mean the usual definition 
of our  trade  in  terms of the  Fourier integral-a notion from 
Facet B-then I assert this is a nonsense question,  one com- 
pletely  without meaning.  If you are asking a  question  about 
the signals of Facet B, why, use whatever  kind that suits  your 
purposes in the model-bandlimited  or not as you choose. 
In useful models, the principal  quantities will  be  insensitive 
to this  choice. 
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And so, you see,  by  purposely mixing concepts  from  Facets 
A and B, I  set  up  a  strawman to begin  my lecture:  after  much 
talk,  I have succeeded in tearing  him  down. 

MODELS IN COMMUNICATION THEORY 
Let us turn now to  look  in  more detail at  the models of com- 

munication theory. Signals frequently are represented as func- 
tions of time  that are  defined on  the whole real line. Many 
real-world  devices are  then  represented in Facet  B  by  linear 
time-invariant operators  that  transform  one signal of the 
model into  another.  The  notion of time invariance entails 
shifts of arbitrary  duration. This introduction  into  Facet B 
of the infinitely  remote  past  and the infinitely  distant future 
is certainly  worrisome  from  a  philosophical  point of view. 
Indeed, as was the case with the irrationals, it could be avoided. 
But, by  introducing  these  abstractions, we obtain an enor- 
mous  simplification,  one so great as to override objections  on 
mere philosophical  grounds. On the  infinite  domain, all time- 
invariant  linear  operators have the same  simple eigenfunctions- 
the complex  exponentials. A sinusoid  in gives a  sinusoid of 
like  frequency  out. This simplification makes  possible the 
elementary  description of devices by  transfer  functions: it is 
the  true genesis of the widespread applicability of Fourier 
analysis to electrical engineering. 

But what about these  infinities  affecting the principal 
quantities of the model? For  the  common garden-variety 
principal  quantities-the  power dissipated in  resistor R, the 
measured  voltage at  time t at  the  output terminals, etc.-it is 
clear that small  changes made in the model  in the signal be- 
havior at very  large times or, dually, at very  high frequencies, 
cause correspondingly small  changes in  these  principal  quanti- 
ties. If E is  small enough,  the numerical  values of 

a  bandlimited signal, and  those of 

which is not bandlimited,  are very  nearly the same for all 
values of t .  Fortunately,  most  principal  quantities  depend 
just  on such  numerical values, for there are other ways in 
which s1 and s2 differ  drastically.  For  example, s1 is infi- 
nitely  differentiable  at t = 0, while s2 is not  differentiable 
there  at all. Yet s2 differs  from s1 only  by  arbitrarily small 
changes in  its high-frequency  tail. We should thus be wary of 
making the  order of differentiability  a  principal quantity in 
any physical theory. 

Now  while most classical principal  quantities we deal  with 
do  not seem to be sensitive to small  changes in signal behavior 
at  infinity,  Information  Theory  has  come along with  some 
questions whose  answers at fmt blush do seem to depend on 
these  secondary  quantities.  Anyone  who  thinks  deeply about 
data transmission  asks sooner  or  later  for  the  number of num- 
bers we  can transmit per second  with “real” signals. The 
question is fuzzy,’ and  a  fully  satisfying answer to even a 
well-posed form of the  question is elusive. 

where the a’s are decimal  digits,  then we can also transmit two real 
‘ I f  we can transmit one real number per second, say s = a, a2a,  . . * , 

numbers .b, bl . . and .c lcp per second by the trick of transmitting 
s = .b, c,  b2c2 , etc. 

As all of you in  this  audience  know,  most of Shannon’s 
great 1948 paper  founding  Information  Theory,  and the 
bulk of his succeeding work, dealt with time-discrete  com- 
munication  systems. His channel models accepted inputs 
and delivered outputs at discrete instants in time: the 
inputs  and  outputs were either real numbers  or  symbols 
drawn  from  a  countable  list. By  means  of coding  theorems, 
he rigorously  established the  limits of communication possible 
over such  channels. The results can all be  expressed in terms 
of bits  transmitted per channel use. Time, the infinitely re- 
mote past and  infinitely  distant future, need never be consid- 
ered.  Later  papers  set  tight  bounds on  how many  bits  could 
be  transmitted  and  with  what  accuracy  with N uses of the 
channel. These could  equally well be N independent  identical 
channels used at  the same  time,  or  they could refer to uses of 
a single channel  at  different  times. 

The extension of these  ideas to create  a model that describes 
accurately the limits of electrical  communication  systems in 
the real world is fraught  with  difficulties.  I  cannot possibly 
go into  the details of these  difficulties  here.  Two  different 
approaches to overcoming them are to be found  in  Chapter 8 
of  Gallager’s book  on  Information Theory [ 3 ]  and  in Wyner’s 
paper  entitled  “Capacity of the band-limited  Gaussian channel” 
[4 ] .  Shannon,  by  an  adroit hand-waving argument,  extended 
his discrete  channel work to the time-continuous case and, 
of course,  came up with the  correct answer. He invoked the 
sampling  theorem  and argued in an  imprecise  way that “using 
signals of bandwidth W one can transmit  only 2WT indepen- 
dent  numbers  in  time T.” Shannon himself was unhappy  with 
his method of bridging the gap from  the time-discrete to  the 
time-continuous case. Indeed,  it was  as a  result of questions 
he raised in  trying to make  rigorous  this notion of 2WT 
degrees of freedom  for signals of duration T and  bandwidth 
W that  the research  leading to the Landau-Pollak theorem 
got under way. I want to close  my talk  with  a short discussion 
of this  important result.  I put a slightly different  emphasis 
on the  theorem which makes it fit particularly well into  the 
framework I have constructed  for  models  and  their  correspon- 
dence  with the real world. 

A NEW VERSION OF THE 2 WT THEOREM 

In  Facet B, let us define  the  energy of a signal s ( t )  by 
As a f i t  step,  I shall give a special  significance to energy. 

W 

E [ s ]  = I_ s 2 ( t )  d t  

and  let us restrict our  attention to signals for which this inte- 
gral exists, i.e., to signals of finite energy. We take  this energy 
to be  a  principal quantity of the model  and so assume that a 
direct  reading of a  laboratory  instrument will provide us with 
a “corresponding  energy of the corresponding real signal.” 
We have the usual  fuzziness in this correspondence:  Facet B 
in general  gives us an  irrational  for E ;  in  the  laboratory our 
instrument measures  energy only to a few  decimal places. We 
suppose that  the  units are fmed in which  we  measure various 
quantities  and  that in  these  units  there is a  minimum  energy 
E > 0 that we  can just  detect  with  our  meters  in  Facet A. 

I have already  commented  on the lack of precise correspon- 
dence  between signals in Facet  B  and  Facet A. Since small 
enough changes in the signals of the model  are not to affect 
quantities  with meaning in  Facet  A, it seems natural to attempt 
to make the correspondence  many-to-one. We wish to say that 
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two  Facet  B signals correspond to  the same Facet A signal if 
they  are  enough  alike  in  form. If they  do  correspond to  the 
same  Facet A signal, we shall also say they  are “really indis- 
tinguishable.”  But what  should we take  for  this  criterion of 
distinguishability? The energy of the difference, E [sl - s z ]  , 
of course.  Thus we adopt  the  Facet B definition: 

Two signals, sl(t) and s 2 ( t ) ,  are really  indistinguishable 
at  level e if 

E [ s l ( t )  - s z ( t ) ]  [ s l ( t )  - s2(t)12 d t  <E. 1: 
Thus if, in the real world, we cannot measure the energy of 
the difference of the corresponding signals, the signals must 
be considered “the same.” Notice that,  at level e, $1 ( t )  may 
be really indistinguishable  from s 2 ( t ) ,  and s 2 ( t )  may  be really 
indistinguishable  from s g ( t ) ,  while sl(t) and s J ( t )  are  not 
really indistinguishable  from one  another. 

Having adopted  this  definition, we now say that a signal g ( t )  
in  Facet B is timelimited to  the interval (- T / 2 ,   T / 2 )  at level 
e if g ( t )  is really indistinguishable  from its  time  truncation to 
this  interval. That is, we make the  definition 

g ( t )  is timelimited to (- T / 2 ,   T / 2 )  a t  level e if 

s l ( r ) = g ( t ) ,  - = < t  <= 
and 

are really indistinguishable at level E. 
If To is the smallest  value  of T for which s1 and s2 are really 

indistinguishable at  level e, we  say that g ( t )  is of duration To 
at level e. Similarly, we make  the  definition 

g ( t )  is bandlimited to (- W ,  W )  a t  level E if ul(t)  and uz( t )  
are really indistinguishable at level E, where 

Ul(f)  = G f G O0 

and 

Here, of course, U1, U 2 ,  and G are the  Fourier transforms of 
ul(t) ,  u2( t ) ,  and g ( t ) ,  respectively. If WO is the smallest 
value  of W for which u1 and u2 are really indistinguishable at 
level e, we say that g( t )  is a signal of bandwidth W O  a t  level E .  

Thus  a  Facet B signal is bandlimited to (- W, W )  at level e 
if it is really indistinguishable at level e from  the signal ob- 
tained  by  cutting off the high-frequency  tails  beyond W. 
We do  not require  there to be no energy at frequencies higher 
than W; we require  only that  the energy  there be  smaller than 
the  quantity we  can just measure in  Facet A. Note  that with 
these  definitions,  doubling the  strength of a signal may  well 
increase  its  bandwidth. Similar remarks  hold for  the  time 
duration of a signal. A consequence of these  definitions is 
that all signals of finite  energy  are both bandlimited to some 
fiiite bandwidth W and  timelimited to some  finite  duration T.  
This is in  distinct  contrast to the situation  that  obtains with 
the usual definitions,  where  only the always-zero signal can  be 
both bandlimited and  timelimited. 

One  more  definition is now  needed to complete  the picture. 
We shall say that a set 3 of signals has amroximate dimensinn 

N at  level e during  the  interval (- T / 2 ,   T / 2 )  if there is a fixed 
collection of N = N ( T ,  e) signals, say \ k l ,  \ kz ,  - * * , \ k~ ,  
such that every signal in 3 is really indistinguishable at level e 
during the interval  from  some signal of form Zy ai\ki(t). 
That is, we require for each f € 3 that  there exist a’s such that 

We further require that there be no  set of N - 1  functions 
whose linear  combinations can furnish signals really indistin- 
guishable in this sense from every member of 3. 

We can now  state a version of the Landau-Pollak theorem 
[ S ,  theorem 121 suited to  our  point of view. Let 9, be the 
set of all signals bandlimited to (- W, W )  and  timelimited to 
(- T / 2 ,   T / 2 )  at level e. Let N ( W ,   T ,  e, e’) be the  approximate 
dimension  of 9, at level e‘ during  the  interval (- T / 2 ,   T / 2 ) .  
Then,  for every e‘ > e, 

N W ,   T ,  e, E’) 
lim = 2 w  
T+- T 

N ( W ,   T ,  e, e‘) 
lim = 2T.  
W+- W 

A proof is given in the  Appendix. 
It would  be satisfying, of course, if in the  theorem we could 

take e’ = e and still draw the same conclusions, but this is not 
the case. The  situation is delicate. We must be a  little  more 
stringent  in  bandlimiting  and  timelimiting  than  in  fitting the 
signals of 8, with  those of a  finite-dimensional  function 
space, but  only infinitesimally  more  stringent. The nuance 
is a  mathematical one, of no significance in the  Facet A 
interpretation of results. 

Note that  the  theorem holds for every e and E’ provided 
only  that e’ >e.  Thus  the  result is not really dependent on 
the precision with which we can  measure energy. If in future 
years we refine our  instruments  and so decrease E, it will 
still be true  that  the  approximate dimension of the  set of band- 
limited  and  timelimited  functions is asymptotically 2WT 
as W or T becomes large. A completely  dual  form of the 
theorem  exists, of course, in which the signals of 9, are a p  
proximated  in the  frequency domain  throughout  the  interval 
(- w, W). 

The foregoing theorem  differs in many  ways from  the 
Landau-Pollak theorem as stated by those  authors,  but it 
is  readily  established by minor  modifications of their  tech- 
niques and results. The version presented  here is particu- 
larly well suited to  the point of view I have adopted regarding 
models and  their  correspondence to  the real world.  I have 
made bandwidth  and  duration of signals principal  quantities 
of the model  and  independent of such  secondary  quantities 
as signal behavior at infinite  times  or  infinite  frequencies.  The 
definitions  correspond to measurements that can  be  made in 
Facet A. The  approximate  dimension N of the  set of band- 
limited  and  timelimited signals is also a  principal quantity. 
We find  the  robust result that N = 2 WT + o (  WT) ,  indepen- 
dently of how well  we  can measure  energy. 

There  are  many other areas where these ideas  can  be  used 
to clarify  apparent  paradoxes. Singular detection of signals 
and  hyperresolution of optical images are two of the most 
important of these.  Time  limitation (in a  different sense) 
keeps  me  from discussing these subjects now. Let me just 
say that  proper application of the principle of makina princi- 
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pal quantities  insensitive to secondary ones precludes  perfect 
detection  and  prevents  resolution  far  beyond  the Rayleigh 
limit. 

APPENDIX 
PROOF OF DIMENSION THEOREM 

A .  Review 
We f i t  recall  some  properties of a  set of special  functions 

Let W > 0 and  T > 0 be given. Let \ko(t), \kl(t), * be a 
discussed in detail  in  [51  and [6]. 

complete  set of solution  of  the  integral  equation 

and  let hi be the eigenvalue corresponding to \ k J + ) ,  j = 0, 1, 
* * - . We suppose the  solutions  ordered so that ho > h1 2 A 2  > 
* * * . The \kj(t) can be chosen  real  and  can be normalized so 
that  the following  statements  hold: 

--OD < t’,f < -OD. (6) 

Here 

and 

where i = fi and the * denotes  complex  conjugate. 
The  quantities hi satisfy the  inequalities 

l > h j > h j + l  >O,  j = O ,  1 , 2 ; - . ,  lim Ai=0. (8) 
j+ OD 

Furthermore,  for every fixed 77 > 0, we have the  limits 

n = [( 1 + 77)2WT] 

lim A, = [ l  +enb]-’ ,  n = [2WT+-log WT] @I b 
wT+- 21 

n = [(l  - 0)2WTI 

q>o .  (9) 

Here b and 77 are  numbers  independent of W and  T  and  the 
square brackets  denote “largest integer  not  exceeding.” 

The  functions \ k o ( t ) ,  \k , ( t ) ,  - are  complete  in ( - T / 2 ,  T/2) 
among all functions  square-integrable  on that  interval.  They 
are also complete  in (-00,~)) among all functions  in 9, defined 
as the set of all functions b( t )  whose Fourier  transform 

B ( f )  = J0 e2niftb(t) dt  

vanishes for I f 1  > W. We call members of 9 strictly band- 
limited.  From  (4) and (7), it follows that  the ‘ki(t) are  strictly 
bandlimited  and  hence  unaltered by low-pass filtering so that 

-0 

(10) 

B.  The Functions gj(t)  
We denote  by 9, the set of all real  functions  that  are of 

duration  T  and  bandwidth W at level e. That is, 9, is the  set 
of  all real  functions g ( t )  square-integrable  in (--OD,=) for which 

and 
r 

where 

= J0 g 2 ( t )   d t  - d t  1, dt’ 
sin 2nW(t - t ‘ )  

-0 -0 n(t - t’) 
g ( t ) g ( t ’ ) .  (13) 

Functions  in 9, cannot be arbitrarily  energetic. What mem- 
ber of 9, has  the largest  energy? We seek to  maximize 

(14) 

subject to  the inequality  constraints  (1  1)  and  (12). 

the  exact  constraints 
To solve this  problem,  let  us first replace (1 1)  and (1 2) by 
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where a > 0 and p > 0 are given numbers. We now seek to 
maximize (14) subject to  (1 5)  by choice of a square-integrable 
g ( t ) .  Introducing Lagrange multipliers p and v and using (13), 
we see that 

must be stationary with respect to small changes in g ( t )  for 
the most  energetic function. Taking the first  variation of I ,  
we find that g ( t )  must  satisfy 

where A and B are independent o f t .  
Now the right side of (16) is a  strictly  bandlimited function 

of t since its  Fourier transform is x ( f / W ) G ( f ) .  The  left side 
of (16) must also be a smooth  function of this  sort, so that we 
must have 

with b ( t )  E fd. Substituting  (17) forg in  (16) yields 

A + B  A t B sin nW(t - t ’ )  =- 
A [ A 3 - t ’ )  

b ( t )  + 1 - - 

* b ( t ’ )  dt’ 

or 

sin nW(t - t ’ )  ( A + B ) ( l - A )  
n(f - t ’ )  

b ( t ’ )  dt’ = 
B b( t ) .  

Comparison with (1) shows that we must have b ( t )  = k?lj(t) 
for some j ,  so that,  from (171, g ( t )  is of the form kl\ki(t) + 

By using the results of Subsection A, it is now a simple 
matter  to determine k l  and k2 to meet the constraints (15). 
In this way, we find that  the  functions 

k2X(2t/T)*i(t). 

j = O ,  1 , 2 ; . *  (18) 

are the only  solutions of (1 5 )  and  (16). A further calculation 
shows that 

Since the right member  here is monotone increasing in Xi for 
0 Q X i  < 1, we have now shown that FO has the greatest energy 
among all functions satisfying (1 5). Note also that  under  the 
constraints 0 < a < E ,  0 Q 0 < E ,  this greatest energy 

a + 2 & 3 + 0  
1 - x0 EiFoI = 

is maximized when a = 0 = E .  
It is now convenient to define the  functions 

j = O ,  1,2;*. ( 2 0 )  

obtained from the 4 by setting a = P = E .  They have the fol- 
lowing important properties: 

E f [ g i l   = E ~ [ g i l  = E  (21) 
00 

2E 
E [ g i ]  C 5 g f ( t )  d f  = - 

-OD 1 - 6  

The gi(t) belong to 6, and we have shown that among all 
members of 6,, g o ( f )  has the greatest energy. 

We now seek that member of 9, orthogonal to go( t )  on 
(-=, 00) that has the greatest energy. To proceed, we again 
replace the constraints (1 1) and ( 1 2 )  by (15), i.e., we f i i t  
find the  function g‘ of the largest energy orthogonal t o  go( t )  
and satisfying (15). As before, we find the  function must 
be a e given by ( 18). Equation ( 19) and the properties of 
the and A,- show that Fl(t) is the desired F. Maximizing 
on a and P subject to 0 <a, 0 < E shows gt (r )  to be the mem- 
ber of 3, of largest energy orthogonal t o  go(t) .  In  the same 
manner, we see that  for k = 1, 2 ,  * * * , gk( t )  is that member 

greatest energy. 
In exactly the same way, it can be shown that, among all 

functions of s,, g&) has the largest energy in ( - T / 2 ,   T / 2 ) .  
For k = 1, 2, * * , &(t) is the member of 9, orthogonal on 
( - T / 2 ,   T / 2 )  to go(?) ,   g t ( t ) ,  * - * , gk- l ( t )  that has the greatest 
energy in (- T / 2 ,   T / 2 ) .  

The gi( t )  are not complete in 9, but, as we shall see, they 
are the best functions to use in economically approximating 
functions in 6,. We note  from  (21), (22 ) ,  and (8)  that, as 
j + QO, gi tends to have as much energy in band as out of band 
and as much energy inside ( - T / 2 ,  T / 2 )  as outside of this 
interval. 

Of 9, orthogonal t o  g o ( t ) ,   g l ( t ) ,  * ’ * , gk- l ( t )  that has the 

C .  The Dimension  Theorem 

every E’ > E > 0, there exists  a number 47 ,  E ,  E ‘ )  such that 
In this section we wish to show that,  for every Q > 0 and 

1 - q <   < l + Q  N W ,  T ,  e ,  E ’ )  

2WT 

whenever 
W T >   c ( q , e , e ‘ ) .  
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Here, as in the main text, N(W, T ,  E, e') is the  approximate Now  assume for  the  moment  that 
dimension of 9, at level e'. 

the interval ( - T / 2 ,   T / 2 )  any g E 9, by its  projection 
1 )  The Right  Inequality of (25): Consider approximating  in A # O ,   B # 0 ,  B#-1. ( 3   2 )  

Since the right of ( 3  1) is a strictly  bandlimited  function of t ,  

on the space spanned by the first (m + 1) 9 ' s .  The energy 
measure of the error of this  approximation is 

o', =I [ g - f 1 2   d f = l T 1 2 g 2  dt 
Tfi TI2 

-TI2 

We shall show below that if e' > e, then  for all g E 9, 
o', < e', when m = [2WT + kl(e') log WTI ( 2 9 )  

provided WT > kz(e'). Here kl and k2 are  independent  of W 
and T .  For WT > kz , therefore, we have 

N(W, T ,  e,  e') Q m + 1 < 2WT + 1 + kl(€') log WT 

and so 

N / 2 W T < 1 + 1 ( L + k l y  2 WT log WT 

NOW let xo(r)) be the smallest value of x for which (l/x) + kl * 
(log x)/x = 2r). Define c = max ( k 2 ,  XO). Then, whenever 
WT > c, we have N/2WT Q 1 + t7 and  the right side of ( 2 5 )  is 
established. 

To show  that o', < e' when ( 2 9 )  holds, we consider maxi- 
mizing ( 2 8 )  over all g E 9, that satisfy ( 15) where we assume 
0 < a, /3 Q e. Introducing Lagrange multipliers A and B,  we 
see from ( 2 8 )  and ( i 3 )  that 

( 3 3 )  

for some  strictly  bandlimited function b(t) .  But  now we can 
write 

( 3 4 )  

since the 9 i  are complete in 3. Inserting ( 3 3 )  and ( 3 4 )  into 
( 3  1)  and using the  independence of the 93, we fiid  that 

[A(l+B)-XjB(A- l ) ] b j = a j A j E ,   j = O , l , * * * , m -  1 

( 3 5 )  

and that 

[A(l+B)-XjB(A-  l ) ]bj=O, j a m .  ( 3 6 )  

Now in (27 ) ,  for g(r ) ,  insert the value  given by ( 3 3 )  and ( 3 4 ) .  
There  results 

a ~ A j B = ( A + E ) A j b j ,  j = O ,  l ; . . , m -  1. ( 3 7 )  

We now use ( 3 7 )  to eliminate a j  from ( 3 9 ,  and so find  that 

A ( l + B ) ( l - X j ) b j = O ,   j = O , l ; - - , m -  1. 

By virtue of ( 3 2 )  and ( 8 ) ,  we conclude  that bj = 0, j = 0, 1, 
- - * , m - 1,  and  hence  from ( 3 7 )  that alsoq = 0, j = 0, 1, * - , 
m - 1. From (27 ) ,  we now see that g is orthogonal to \ k o ,  91, 

- , 9,-1 in ( - T / 2 ,   T / 2 )  and  hence  from ( 2 0 )  is also orthog- 
onal to g o ,   g l ,  * * - , g,, in (- T / 2 ,   T / 2 ) .  Note  that when the 
u's are zero, 

Tfi 
U; = iTfi g2( t )  d t .  

+ A  Jm [ 1 - X (:)I g 2 ( t )  dt  + B [ 1, g 2 ( t )   d t  We have now shown that when ( 3 2 )  holds,  the  maximum of 

of any g satisfying (15) that is also orthogonal  on (- T / 2 ,   T / 2 )  

( 3 0 )  energy is attained by E,,, and  has  the value (a + 2 4- + 

-m a', for all g satisfying ( 15) is the largest energy in (- T / 2 ,   T / 2 )  

1: dt' 
sin 2nW(t - t ' )  to go,   gl  , - - * , g,-l. We saw in  Subsection B that  this largest 

n(t - t ' )  m/( 1 - X, ). Further  maximization over a and 4 then gives 
must be stationary  for  the maximizing g .  On setting the first 
variation of J equal to zero, we fiid  that 

for all g E g,, with  equality when g = g ,  ., It is not  hard to 

solution of (31) contained  in 9, also satisfies (38 ) .  
0 show that, if any of the  conditions in ( 3 2 )  is violated, every 

Equation ( 2 9 )  now  follows easily from ( 3 8 )  ind ( 9 ) .  The 
n(t - t ' )  g( t ' )*  (31) limit in ( 9 )  implies the  existence of a  function no(S)  such  that, 
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1 b x, Q- +6,  whenm = 
1 + enb 

Let 6 = i [(e’ - e)/(€’ + e)]’ y d  set b = (l /n) log [( 1 - 6)/6]. 
We then have Am < 26 = [ ( e  - e)/(€’ + € ) I 2 ,  which implies 
[( 1 + &)/( 1 - &)I e < e’. Thus,  for  the  two  constants 
kl and k2 introduced  at (29), we have 

and 

2 )  The Left Inequality of (25): To establish the  left in- 
equality of ,(25), we must show that  for any %, cp1, - * - , &, 
and every e > e > 0, and for every q > 0, for  sufficiently large 
WT there  exists  a g  ̂E 9, such that 

where 

m = [( 1 - q)2WT]. (40) 

For  then, from the  definition of N( W, T ,  e, e’), we have 

N ( W ,  T ,  e,  e’) > m + 1 2 (1 - q ) 2 ~ ~  

which is the  left  inequality of (25). 

which 
Let ee be the set of strictly  bandlimited  functions ĝ  for 

ET 2 J g^’(t) d t  = E .  (4 1) 
Itl>TP 

$, is a  subset of ge. We shall  find a g  ̂ in 5 for which (39) 
and (40) hold. 

We shall show below that  the  quantity 

K = sup  min 1“ [ĝ  - 2 
&ee ai -TP 0 

is smallest when the  are the  functions \ k o ,  \kl, - - , \km . 
Thus 

m 

[ĝ - &ee ai -TI2 0 

2 

K 2 sup  min ai\k&t)l dt  

2 min ai IT’2 -T/Z [ f -  $ ai\ki(t)l d t  E L  

where f is a  particular  member of Be. We now choose 

1 - x, 
p = [ ( I  - 3 7 1 2 ~ ~ 1  > m .  

by (2) and (3). Furthermore, since p > m,  then f i s  orthogonal 
to \ko , \k1 ;** , \km,so tha t  

f2  d t  = E  -. x, 
1 - x, 

But by (9), for large enough WT, h, is arbitrarily  close  to  1 so 
that L becomes  arbitrarily  large.  Thus we have shown that  for 
every e’ > 0 for large enough WT we have e’ < L < K. There 
then  exists  a ĝ  E 9, for which (39) is true  and  the  left of (25) 
is established. 

There  remains now only the task of showing that K attains 
its smallest  value, say KO, when the cp’s in (42) are  the m func- 
tions \ k i / K ,  i = 0, 1, * * - , m - 1. We note  first  that  the 
functions \kj/fi are  orthonormal in ( - T / 2 ,  T/2) and  com- 
plete in a ,  the class  of strictly  bandlimited  functions.  Thus for 
any ĝ  E e,, we write 

and  the  condition (41) is 

(44) 

From (8) we see that 

o < y , < y ,  < * * a .  (45) 

Suppose  now  that  the  linear  span  of cpo, cp1, * * 9 , (Pm in (42) 
does  not  coincide  with  the  linear  span 5 of \ko/&, $I/&, 

, \km/K. We can then  find  a  function  in 5, say h ( t )  = 
Zrhi\ki(t)/& that  is  orthogonal on (-T/2, T/2) to  each of 
~0 , ~p1, * * . , (pm . Assume h( t )  scaled so that 

m 

0 

so that h E 8,. For  this  function we have 

= h:.  (47) 
m 

0 

From (46) and (47), however, 
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Therefore, 
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and is attained when 

Since 

we find K 2 E / T ~ + ~  also in this case where the cp’s are the W s .  
We now have 

E 
K o E m i n K Z - .  (49) 

vk ’Ym+l 

Now it is easy to  see from (43) and (44) that 

Since KO is the minimum of (42) over all  cp’s, we now see that 
KO < ~/y , , ,+~ .  Combined  with (49), this  yields K O  = E/Ym+l, a 
value achieved when cpi = *i/fi, i = 0, 1 , * * * , m. 

The proof of (25) is thus  completed. 
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