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SOME COMMENTS ON FOURIER ANALYSIS, UNCERTAINTY
AND MODELING*

DAVID SLEPIANTY

Abstract. Investigation of the problem of simultaneously concentrating a function and its Fourier
transform has led to some interesting special functions that have widespread applications in engineering. They
provide a means of proving a rigorous version of an engineering folk theorem called the 2WT-Theorem. Many
generalizations of these ideas seem to possess a similar elegant mathematical structure. A brief descriptive
review is given of these developments.

Introduction. Let me begin by giving my thanks to Professor Parter and to the John
von Neumann Lecture Committee for bestowing this honor on me. I was truly moved by
this unexpected recognition.

I am going to use this occasion to tell you in detail about a problem in Fourier
analysis that arose in a quite natural manner in a corner of electrical engineering known
as Communication Theory. The problem was first attacked more than 20 years ago
[1]-[3] jointly by me and two colleagues at Bell Labs—Henry Pollak and Henry Landau.
It differed from other problems I have worked on in two fundamental ways. First, we
solved it—completely, easily and quickly. Second, the answer was interesting—even
elegant and beautiful. (Usually I struggle for months or years with a problem. If I do
“solve” it, it is usually only in part, and the answer itself is rarely interesting. The interest
generally lies in the fact that I have proved that this is the answer.) In the case of this
problem, however, the answer had so much unexpected structure that we soon saw that we
had solved many other problems as well. We had answered questions we had not meant to
ask in optics, estimation and detection theory, quantum mechanics, laser modes—to name
a few.

There was a lot of serendipity here, clearly. And then our solution, too, seemed to
hinge on a lucky accident—namely that we found a second-order differential operator
that commuted with an integral operator that was at the heart of the problem. Soon
afterwards, a number of obvious generalizations of the original problem [4] yielded to the
same techniques. They had answers with the same elegant structure, and again there was
by good luck a commuting second-order differential operator.

We had scratched the ground a bit and had unknowingly uncovered the tip of a rich
vein of ore. Off and on for the next 20 years I came back and mined a new piece of it
[5]-[10]. Nor is it exhausted yet. In recent years Professor F. A. Griinbaum and his
students have dug their shovels in and have unearthed interesting novel generalizations
and ramifications of the original problem [11]-[15]. The mystery of this serendipity
grows. Most of us feel that there is something deeper here than we currently
understand—that there is a way of viewing these problems more abstractly that will
explain their elegant solution in a more natural and profound way, so that these nice
results will not appear so much as a lucky accident. But more of that later.

The role of Fourier analysis in electrical engineering. I would like to motivate my
discussion of the problem by saying a few words about the use of Fourier analysis in
electrical engineering. It is of paramount importance in that discipline.
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slightly expanded version of the John von Neumann Lecture given July 20, 1982 at the SIAM 30th Anniversary
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Communication engineers are much concerned with the class of functions they call
signals. These are real functions, r(¢), defined everywhere on a real line that they call
time. They are square-integrable there,

(1) fwrz(l)dt=E<oo

and the quantity E is called the energy of the signal r(¢). It has an important physical
interpretation. Typically, r(¢) will represent the voltage difference at time ¢ between two
points in an electrical circuit or device—say the voltage difference between the terminals
of a microphone, for example. Signal space S, is the set of all signals, r(z). It is, of course,
just the space L*(—, ) of the mathematician.

Signals possess Fourier transforms,

@) R(f) = [ e*r(t) dt,
which themselves are integrable in absolute square, and from Parseval’s relation we have
3) SR Ar= [Ir@)Pdt - E.

The quantity R( f') is known as the amplitude spectrum of the signal, and plays a key role
in the engineer’s analysis. He often works more with R( f) than with the original signal.
The inverse Fourier transform

@ r0) - [ "R df

allows him to think of the signal r(¢) as a sum of sinusoids of different frequencies. The
sinusoid of frequency f, namely >, has amplitude| R( f )| and phase arg R( f).

Engineers build devices and networks that transform signals into new signals of some
desired form. They think of their devices as operating on an input signal »(¢) to produce an
output signal s(t),

s(t) = M[r(2)]

where M is an operator. s(t) is often called the response of the system M to the input r(z).
Fortunately, it is frequently the case that large portions of the structures of interest to the
engineer can be well approximated by operators that are linear and time-invariant. If L is
such an operator, this means that

) s;(t) = L[ri()], i=1,2
implies that

(6) as,(t) + bs,(t) = Llar,(t) + bry(2)]
and

(7 si(t = T)=L[r(—T)]

for all real T, all complex constants a and b, and all inputs r,(2), r,(¢).
The response s,(¢), of a linear time-invariant system to the sinusoidal input e
easily calculated. We have

2wift is
sf(t) = L[e21rifl]’

so that

(8) Sf(t + T) _ L[eZm;f(l+T)] _ L[eZm'fTeZm'ﬁ] _ e21rifTL[eZ1rift] _ eZm‘fTsf(t)
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from (7) and from (6) with b=0 and a=¢e"/". Set t=0 in (8) to obtain
s;(T) = €7 s,(0). Since this must hold for all 7, replacing T by t we get

) s(t) = L[] = Y, (f) e

where I have written Y, (f) = s5,(0). The response to e is a sinusoid of the same

frequency but with a complex amplitude Y, ( f') characteristic of the operator in question.
Thus we have the fundamental fact (9) that all linear time-invariant operators have the
complex exponentials ™, —w < f <, as eigenfunctions. Different linear time-
invariant operators are characterized by their eigenvalues Y ( f) (called the transfer
Sunction of L). This fact is the true genesis of the widespread applicability of Fourier
analysis to electrical engineering.

Since every r € S can be expanded in the eigenfunctions of linear time-invariant
operators in the sense of (4), the response of such an operator to any signal r is easily
calculated from (9):

s@) = LI0) = [ R)LIE] df

= [TRUNY(f)e df.
The amplitude spectrum, S'( f'), of the response of L to input r(¢) is therefore
(10) S(f) =Y. (SIR(S),

and so the effect of a linear time-invariant operator is described in terms of the amplitude
spectrum of signals by a simple multiplication by the transfer function Y, ( f).

Bandwidth and uncertainty. Physical devices do not transmit sinusoids of arbitrarily
high frequency without severe attenuation. The transfer functions Y,(f) used by
engineers tend to zero with increasing f. It follows from (10) that the amplitude spectra of
the responses of these systems to signals of finite energy also are negligibly small beyond
some finite frequency.

Examination of the most natural classes of input signals shows that they too have
amplitude spectra of finite support. For example, Fourier analysis of recorded male
speech gives an amplitude spectrum that is zero for frequencies higher than 8000 hertz
(= cycles/second). Conventional orchestral music has no frequencies higher than 20,000
hertz, while the output of a television camera (vidicon) has an amplitude spectrum
vanishing for | f| > 2 x 10° hertz.

Thus, both because of the frequency limiting nature of the devices he uses and
because of the nature of the signals he is interested in transmitting, the communication
engineer is soon led to consider the space By, of bandlimited signals. These are the r € S
whose amplitude spectra vanish for | f| > W. Each member of B,, can be written as a finite
Fourier transform:

(11) @)= [ RO df.

Here W > 0 is a parameter which I shall regard as fixed in our further discussion.
Members of B, are said to be of bandwidth W or are said to be bandlimited to the band
(— W, W). In an analogous manner, r(2) is said to be timelimited if for some T > 0, r(t)
vanishes for all|¢| > T/2.

It follows readily from (11) that bandlimited signals are extremely smooth. Indeed,
one can allow ¢ to be complex in (11) and it is easily seen that this extended (¢) is an
entire function of the complex variable ¢. It has no singularities in the finite ¢-plane, is
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infinitely differentiable everywhere, and has a Taylor series about every point with an
infinite radius of convergence. From this it follows that a nontrivial bandlimited signal
cannot vanish on any interval of the z-axis. For if it did, it and all its derivatives would be
zero at some interior point of the interval, and a Taylor expansion would require it to be
the trivial everywhere-zero signal. The only signal that is both bandlimited and
timelimited is the trivial always-zero signal.

Now, in addition to transmitting smooth signals like speech or music, communication
engineers would like to deal with short pulses such as the dots and dashes of telegraphy or
the time markers of radar. As we have seen, such a signal of finite time-support cannot be
bandlimited—it must contain sinusoids of arbitrarily large frequency. And bandlimited
signals cannot have finite time-support—they must wander on forever. This dilemma has
long plagued the communication engineer as he has sought signals that are somehow
concentrated in both the time and frequency domains.

There are many ways of mathematically expressing this impossibility of simulta-
neous confinement of a signal and its amplitude spectrum. The most famous is the
Heisenberg uncertainty principle of quantum mechanics. Its mathematical content is as
follows. Let the signal r(¢) have unit energy, so that

Jorwdi- [CIR(OP-1.

Both r?(¢) and |R( f')|* can be regarded then as probability densities and their variances
o> and o% can be regarded as measures of the extent to which the densities are

concentrated. The Heisenberg uncertainty principle simply states that

1
0'20'% = W .
This result follows directly from the Schwarz inequality and the definition of variance
(12) 2= [T-t)lr@id,  n= [Tr@d

The concentration problem. The measure (12) of concentration fits nicely into the
concepts of quantum mechanics, but has little physical significance for the communica-
tion engineer. A more natural and meaningful measure of concentration of a signal for
him is

f 2 p2(4) dt
(13) oA(ry=22"72__ |

f: ri(t) dt

i.e., the fraction of the signal’s energy that lies in a given time slot. Similarly

LRGP df
(14) gy ="
SIRGOP af

is an appropriate measure of concentration of the amplitude spectrum of r(z).

If (¢) were indeed timelimited to (— 7/2, T/2), o*(T) in (13) would have its largest
value, namely unity. A nontrivial bandlimited signal cannot be so timelimited, however,
and a very natural question is to determine how large o*(T') can be for r(¢) € By,. This,
finally, is the problem Landau, Pollak and I considered these many years ago. To answer
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it, first express 7(¢) in (13) in terms of its amplitude spectrum R( f) via (11) and (3)
7/2 w " 2mif "t ” w 1 ,—2mif 't "\ %
t R
S [ Vapre ROy [ dfe RS

aX(T) = -T2 -
S 1RGP s
w w inaT(f — f"
[ [ ) ar I n I v Ry
LA RUORG
Here now R( f) is an arbitrary function in L?(— W, W), and the problem of maximizing

a*(T) has been reduced to a classic form [16]. A maximizing R must satisfy the integral
equation

as [ RG a-amrn. 1=,

a homogeneous Fredholm equation of the second kind. To investigate it further, we make
the substitutions and definitions

16) S W =W RO =90), @(T) =
(17) c=xWT

which reduce (15) to

(8) [EEim d -, Ixls

in which a single parameter, ¢, appears instead of W and T separately as in (15).

The prolate spheroidal wave functions. It is easy to show that the symmetric kernel
(sinc(x — p))/m(x — y) is positive definite, so that from standard theory [16] we know
that (18) has solutions in L?(—1, 1) only for a discrete set of real posiuve values of A, say
A=A =N, 2, --- and that as n— o, lim A\, = 0. The corresponding solutions, or
eigenfunctions, yo(x), ¥,(x), ¥,(x), - - - can be chosen to be real and orthogonal on
(—1,1). They are complete in L’ there.

The variational problem that led to (18) only requires that equation to hold for
|x| = 1. With ¢/(») on the left of (18) given for|y| = 1, however, the left is well defined for
all x. We use this to extend the range of definition of the ¢’s and so define

_ 1 1 sin¢c(x — y)
Yn(x) = WA

The eigenfunctions ,(x) are now defined for all x and a simple calculation shows that
they are orthogonal on (—, ») as well as on (—1, 1) as already noted. We normalize
them to have unit energy, so that

(19) [T 0¥ () dx = By
and it then follows that

(20) S () dx = Ny

() dy, x> 1
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This remarkable double orthogonality of the ¥, is useful in many applications. Note that
\, is the fraction of the energy of ¥, that lies in the interval (-1, 1).

It is difficult to obtain much detailed information about the ¢’s directly from (18).
Fortunately they are also solutions to a second-order differential equation eigenvalue
problem,

@1 Loy -y,

dx dx
and from this equation one can deduce much about them. Equation (21) had been much
studied previously [17]-[18] since it arises on separating the 3-dimensional scalar wave
equation in a prolate spheroidal coordinate system. It has solutions bounded everywhere
only for discrete real positive values of the parameter x,say 0 < xo < Xx; <X, < + + + . The
corresponding solutions ¥, ¥, ¥, + - - are known as prolate spheroidal wave functions
(pswf’s). They are also solutions of (18) and, when indexed by increasing values of x, they
agree with the notation of indexing by decreasing values of A as already indicated. That
the solutions of (21) satisfy (18) can be deduced from the fact that the ’s are complete in
L*(—1,1) and the fact that the differential operator
2

d d
P = 1 o2 2 2
x dx( X )dx “x
commutes with the kernel of (18), i.e. that for all signals 7(y), and all real x,

1sine(x — p) 1 sinc(x — p)
Px[l ———w(x ) r(y) dy =~[1 _—_w(x 5 P,r(y)dy.

This is the seemingly lucky accident referred to in the Introduction.
From (18) and (21) one can deduce many properties of the y,(x) and A, which I now
state with no indication of proof:

N>AN>A> e,
¥,(x) is even or odd with n,
(22) ¥,(x) has exactly n zerosin (—1, 1),

sin cx
Yau(x) ~ k,,—;c——,asx—wo,

(23) [ e, 1) di = b, (2mx/e), —o < x <,
-1
where k, and «, are independent of x. This last equation states the curious fact that the
Fourier transform of y,(t) restricted to|z| < 1 has the same form as ¥, except for a scale
change. The equation can also be written

L fepr o
(24) Va(x) = — [ ey, (2t c) dt,

n ¥ —c/2x
which shows ¥,(x) to be bandlimited of bandwidth ¢/2w. The y,(x) are complete in
—o < X < o in the L? sense among signals r(x) of bandwidth ¢/ 2w or less, i.e. complete in
Bc/Zx‘

It should be noted that both the ¥, (x) and A, depend on the parameter c, although I

have suppressed this fact by my notation. Indeed, the dependence of these quantities on ¢
is of considerable interest. Figure 1 shows y5(x) for 0 = x = 1.5 for 5 different c values.
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FIiG. 1. yg(x) for ¢ =1, 10, 20, 40, 80. Note changes in vertical scales for x > 1 for each c and in
horizontal scales for x > 1 for ¢ = 40, 80.
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1
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FI1G. 2. Dependence of \, onc.

The behavior of y5(x) for x in (0, 1) is very different from its behavior for x > 1. Instead
of following the convention (19) of giving ¥; unit energy, I have in Fig. 1 normalized it so
that y5(0) = .27 which permits observation of the detail within the interval 0 = x < 1.
There are 4 zeros of ¥(x) in this interval in accordance with (22). As ¢ increases, the zeros
move closer to the origin. Note well for x > 1 the change of scale with ¢ in Fig. 1. For
¢ = 1, Yu(x) becomes enormous around x = 2 before finally falling away like k(sin x)/x.
When ¢ = 10, 5 rises only to a value approximately 2 before it decays. For the larger
values of ¢ shown, y is minuscule for x > 1.

The foregoing has illustrated that for large ¢ almost all the energy of 5 lies in
(—1, 1); for very small ¢, almost all the energy of s lies outside (— 1, 1). This dependence
of concentration on ¢ is made more transparent by noting how A\, depends on ¢. Figure 2
shows the \’s for ¢ = 5x/2, 10w/2 and 25« /2. The arrows on Fig. 2a give the values of Ay,
A, « + +, A¢. I have drawn a smooth curve through the tops of these arrows. The analogous
curve alone is shown for two other ¢ values in Figs. 2b and 2c. It is seen from these curves
that for n « 2¢/w most of the A, are close to unity while for # » 2¢/x most of the A, are
nearly zero. When n =~ 2¢/w, N\, ~ 5. It is also seen from the figure that as ¢ gets large the
width of the n-interval in which A, falls from one to zero increases. It was established very
early [3] that this interval grows like log ¢, and a few years later [6] I “showed” that
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( 2
0, n=a +n)—c],
™
2 b
(25) limA, ={ [l + ™17, n= —c+—10gc,
c—x T g
2
1’ h= (1 _n)_c]a
\ T

where 7 > 0 is an arbitrarily small fixed number. Here [x] = largest integer = x. My
demonstration was far from rigorous; asymptotic series were manipulated without regard
for convergence, etc. But numerical work left little doubt about the validity of the
formula. It was finally established rigorously by Landau and Widom in 1980 [19].

Concentrated bandlimited functions. The prolate spheroidal wave functions y,(x)
just discussed provide a very useful set of bandlimited signals for the communications
engineer. Let W > 0 and T > 0 be given. Define

_ /2 2t _
r,(t) = \/;% (—T—) c=7WT.

Then
rn(t) € BW9
LT 1)t d = Ao,
-T/2
70ty dt = 6,0,
the r,(¢) are complete in By, for —oo <t < oo,
the r,(t) are complete in L ( —),
(26)
T
®  2xift (_i |f| =W,
f ey (tydt — ¢, "\2 W/
0, Iflz w.
T/2 21r1fl T f > w
f/2 r(t)dt—dr(ZW) <f<o,
in 27 W(t —t'
I SN2WU 1) ey p ), i<
-1/2 w(t—1t)

Among signals in By, ry(¢) is the most concentrated in (—7/2,7T/2) and its
concentration is a?(T) = A,. Among signals in By, that are orthogonal to ro(z), r,(2) is
most concentrated; for it, «*(T) = A,. In general, r,(¢), whose concentration is A,,, is the
most concentrated signal in By, that is orthogonal to rg, 7y, « « -, 7r,_;.

These special signals have many extremal properties and provide ready solutions to
many natural problems. I mention only two here.

i) For r(z) € S, what are the possible values of «*(T) and 8*(T) in (13) and (14)?
They cannot both be unity, for example, for this would imply a nontrivial signal that was
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FiG. 3. Possible combinations of o® and 8 for different QT. Here Q = 2w W. Reprinted with permission
from The Bell System Technical Journal. Copyright 1961, AT&T.

both bandlimited and timelimited. The answer [2] is shown in Fig. 3 for several values of
WT. The excluded region of the square 0 = &” = 1,0 = 82 = 1 lies above the ellipse

arccos a + arccos 3 = arccos vA.

ii) A bandlimited signal () € By, is observed on the interval (—7T/2, T/2). We
wish to extend it beyond this interval. Since the r,(¢) are complete in By,

1) = 3 eora(t).
0

Multiply by r,,(¢), integrate over the interval (— 7/2, T/2) and use (26) to find

1 /2
o=y S ()

where only the observed values of 7(¢) are used. The desired extension from (—7/2, T/2)
is then obtained as

©

1
(1) = 50: ra(t) - [ TZZ r(t')r(2) dt'.

See [1] for more on this problem.

On models. To describe one of the most important results arising from this work, I
must digress again for a moment, this time to say a few words about models. Most of us in
this audience are very aware of the distinction between the mathematical models we
construct and study and the real-world phenomena that these mathematical structures
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are intended to explain or describe. Unfortunately, the engineer and the physicist
sometimes overlook this distinction and attribute an objective reality to all the constructs
of our models. This can lead to seemingly knotty paradoxes.

Our models of physical phenomena are merely games we play with symbols on paper,
manipulating them according to well-defined rules. Certain quantities in our models will
correspond, we hope, to observable measurable entities in the real-world situation we are
attempting to describe. I call these principal quantities of the model. Almost always,
however, there will be other quantities or constructs important to the model that have no
counterpart in the real-world situation under study. I call these secondary constructs of
the model. It is my contention that in useful, trustworthy models the principal quantities
must be insensitive to small changes in the secondary constructs.

For example, in real laboratory notebooks the only numbers ever found are rational
ones. The reading of meters or of dial settings in the real world always results in a finite
string of symbols drawn from a finite list, usually a string of fewer than a dozen decimal
digits. I do not see how a real measurement can yield an irrational number. Yet in our
models both rationals and irrationals abound as we freely use the real number continuum.
If a principal quantity of a model changes abruptly as we change some other quantity in
the model from a rational value to an arbitrarily nearby irrational value, I would be very
suspicious of the utility of the model. Rationality of quantities is a secondary construct of
a model.

Continuity is also always a secondary construct. It makes no sense to ask whether the
needle of a real voltmeter on a laboratory bench moves continuously with time in the sense
that continuity is defined in mathematics. Observing the needle at millisecond intervals,
or nanosecond intervals, comes no closer to answering that question than observing it at
weekly intervals. Continuity is not a verifiable notion in the real world. However, it is
useful in models. But in a satisfactory model, the introduction of tiny discontinuities into a
continuous function should not change appreciably the principal quantities of the
model—those parts of the model that we want to correspond to measurable real-world
quantities.

And so it is with points at infinity and the detailed behavior of functions as their
arguments become infinite. These are all generally secondary constructs of our models.
They do not correspond to verifiable constructs in the real world. We introduce them for
convenience in our mathematical game, but in modeling the real world we must see that
principal quantities are properly insensitive to them.

The bandlimited signals and timelimited signals I have been discussing are cases in
point. It is senseless to ask if real signals are bandlimited, or timelimited. Verification
requires real measurements at arbitrarily high frequencies or at arbitrarily remote or
future times, experiments that can never be carried out. The notions of bandlimitedness or
timelimitedness belong to the engineer’s model, not the real world. They are secondary
constructs. As it suits him, he can assume in his model either that his signals are
timelimited, or that they are bandlimited, or neither. But he should take care that the
deductions he makes from his model about the real world do not depend sensitively on
which assumption he has made.

The 2WT-theorem. The “philosophy” I have just enunciated is discussed in more
detail in my paper, On Bandwidth [8]. It ties in well with the spirit of the version of the
2WT-theorem I now wish to discuss.

For years electrical engineers have espoused a folk theorem that asserts that if WT is
large “the space of signals of duration 7 and bandwidth W has dimension 2WT.” Those
who recognized that only the signal r(¢) = 0 has both finite duration 7 and finite
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bandwidth W preferred a version that stated: “for large WT, the space of signals of
approximate duration 7 and approximate bandwidth W has approximate dimension
2WT.” With this amount of fuzzy hedging in its statement, the “theorem” is rightfully
belittled by the mathematician. But there is truly substance behind these foggy notions; it
has just been very difficult to clear away the mist and state this vague idea in a precise and
useful way. To do so has been very important in setting limits to the rate at which one can
communicate information in the real world [20].

Many different routes have led to this folk theorem. I mention two. i) A signal of
duration T, say of support on (0, T'), has a Fourier series representation

27) r(t) = Z a, cos 2wf,t + Z b, sin f,t,
0 1

n
fi=z,

valid for 0 < ¢ < T. Here f, is the “frequency” of the elementary sinusoid cos 2xf,t or
sin 27 f,t that is found in r(2). If r(¢) “contains no frequencies higher than W,” all terms in
(27) must vanish when f, = n/T > W, i.e. when n > WT. Then there are WT nonzero b’s
and WT + 1 nonzero a’sin (27). Thus our “bandlimited and timelimited” r(¢) is specified
by 2WT + 1 ~ 2WT constants.

ii) The Shannon-Whittaker sampling theorem [21] states that if r(¢) € By, then

= in 27 —
(28) r(t) = Y_r(n/2w) Sl;ﬂWIZ(t_ n/n2/5:;/)

~o0

If now r(¢) vanishes outside the interval (0, T'), the nonzero terms in (28) occur only for
0=n/2W=T,ie.forn=0,1,2, ..., [2WT]. Thus the “space of bandlimited and
timelimited functions” is asymptotically 2WT-dimensional.

I will not demean you by pointing out what is fallacious in each of these arguments.
But, if you will examine these “‘demonstrations” at your leisure, you will see that, in some
sense, the lies I have told become less and less flagrant as either 7' becomes large ini) or W
becomes large in ii). There is clearly some way in which this folk theorem is true.

To formulate it in a manner consonant with the philosophy of the preceding section, I
will redefine the notions of bandlimited and timelimited so that they do not depend on the
detailed behavior of signals or spectra at infinity. To this end, let us suppose that there is a
smallest amount, say €, of energy that we are able to detect by any means in the real
world. In our model we now say that a signal r(t) is timelimited to the interval
(—T/2,T/2) at level € if

f r(t)*dt <e,
1> 7/2

i.e., if the energy outside this time interval is less than we could measure in the laboratory.
Similarly, in our model we way that a signal is bandlimited with bandwidth W at level €
if

[ IR(UNEdf<e,
IfI>=w

i.e., if the energy lying outside the frequency range is less than we can measure.

These notions of signals bandlimited and timelimited at a level € are really quite
different from the notions I spoke of earlier and which I henceforth refer to as absolutely
timelimited or absolutely bandlimited signals. Now every signal is both timelimited and
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bandlimited at level € (for some T and some W), whereas we saw before that only the
always-zero signal is absolutely timelimited and absolutely bandlimited. The smallest
value of W for which r(¢) is bandlimited at level € is called its bandwidth at level €. Note
that changing a signal by a multiplicative scale factor in general changes its bandwidth at
level €. The bandwidth of a signal absolutely bandlimited is uneffected by such scale
changes.

A final definition is needed in order to state the 2WT-theorem. A set F of signals has
approximate dimension N at level € during the interval (—T/2, T/2) if there is a set of
N = N(T,¢) signals ¢,, ¢,, - - -,y such that for each r(t) € F there exists a,, a,, - - -,

ay such that
f T/2
—-T/2

and there is no set of N — 1 functions that will approximate every r € F in this manner.
Stated otherwise, every signal in F can be so well approximated during —7T/2 <t < T/2
by a signal in the linear span of ¢,, ¢,, - - -, ¢, that in the real world we could not detect
the difference between the signal and its approximation.

The 2WT-theorem now reads:

Let F_ be the set of signals timelimited to (— T/2, T/2) at level € and bandlimited to
(=W, W) at level €. Let N(W, T, ¢,€’) be the approximate dimension of F, at level €'.
Then for every €' > €,

(29) lim N, T,e,¢) 20, lim

T—e T W— o

r(t) — Z a;¢;(t) 2dt <€

1

N ’
(w, T,e,e)=2T'
|14

Note that the result (29) does not really depend on €. If at some later date we can
measure much smaller quantities of energy than we can todayj, still asymptotically the set
of signals which in the real world we must consider to be limited to duration 7" and
bandwidth W will be only 2WT-dimensional.

Proof of this theorem can be found in [8]. It depends heavily on properties of the
pswi’s Y, ¥y, - - - and the eigenvalues \g, A, -+ - -

Concluding remarks. In closing I want to point out a few of the generalizations of
these ideas that exhibit much of the same structure. First of all, there is the obvious
extension of the concentration problem to functions of several variables [4]. The
two-dimensional signal r(¢,, t,) has bandwidth W if its Fourier transform

R(fif) = [“dt, [*dne™ /e r(n, 1)

vanishes for f? + f2 > W?2 How large can the quantity

a2=f[ . rz(tl,tz)dtldtz/[: [mwrz(tl,tz) dt,dt,

be for signals of bandwidth W? The problem eventually works out much like the
1-dimensional case. First introduce polar coordinates f; = p cos ¢, f, = p sin ¢. Then
write

1 .
R(fi,fy) = — N,
() = 2 dno)e
One finds (see [4] for details) that Y must satisfy

L Intexy) Vexy dn(y) dy - M), 0=x=1
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where Jy(x) is the usual Bessel function and now ¢ = 2xWT. Further progress can be
made since we have the lucky accident that this eigenvalue problem has the same
eigenfunctions as the differential equation problem

d 5 Ay , , 1/4_-N? 3
E;(l—x)21;+(x—cx +——x2 ¥ =0.

Double orthogonality and many other properties carry over. The work generalizes easily
to functions of D > 2 variables. By luck, the case D = 2 is of importance in the theory of
lasers [22].

Generalizing in another way, the amplitude spectrum of a double infinite L
sequence {r,} = - + +,r_,, 70,7y, - - - isdefined as

= . 1
R() =3 ne™,  Ifl=3.

The sequence {r,} is bandlimited with bandwidth W < if R(f) vanishes for
I 2| f|> W. The concentration problem for these bandlimited sequences looks much the
same [10]. There is an integral equation formulation and a differential equation
formulation, and in addition, here there is also a difference equation approach. The
solutions are called discrete prolate spheroidal sequences; their amplitude spectra are
discrete prolate spheroidal functions.

Still another discrete version comes from considering the concentration problem for a
finite sequence and its discrete Fourier transform [12]. The general structure is
unchanged.

E. N. Gilbert and I [9] considered a related problem. We sought the nth degree
polynomial, f(x), which maximizes

o = [I@dx| [ 11 dx

where I, and I, are intervals on the real x-axis. A family of doubly orthogonal
concentrated polynomials results. There is an integral equation formulation of the
problem and, in certain cases, a differential equation formulation. These cases are when I,
and I, are adjacent, and when I, is centrally located within 7,. With the intervals related
otherwise, we could not find a differential equation formulation. An analogous depen-
dence of the differential equation formulation of these problems on the nature of the
regions of concentration had been noted very early [23].

Other generalizations are to be found in [11], [13]-[15].

In closing I wish to call attention to two valuable papers by my friend and colleague
H. J. Landau [24], [25]. The first of these examines part of the theory in a very general
setting. The second is a brilliant application of the theory to a problem that has received
much attention in the engineering literature—sampling and the Nyquist rate.

Many other references to applications of the work can be found in the papers cited
here.
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