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Jackknifed Error
Estimates for
pecﬂa.CIﬁmﬂences
and Transfer

Functions

David J. Thomson and Alan D. Chave

2.1 INTRODUCTION

Most frequency-domain methods for analyzing time series are copies of classical
statistical procedures parameterized by frequency. Once Fourier transforms of a data
sequence are taken, estimating a power spectrum involves similar steps to computing
a variance, coherence is analogous to correlation, and transfer functions correspond
to linear regression. An essential feature of accepted statistical methods is that they
provide both an estimate and a measure of its accuracy. Traditionally these accuracy
estimates, or confidence intervals, were determined analytically. However, because
“analytically” commonly involved distributions derived from the Gaussian, the
resulting error estimates were frequently unsatisfactory in practice. Following
Tukey’s [1] suggestion that Quenouille’s [2] method of bias reduction could be
extended to estimate variances, the jackknife method was developed and began to
depose distribution-based methods in many statistical problems. Among the reasons
for this displacement were the simplicity of the jackknife, its applicability in compli-
cated situations, and its lack of distributional assumptions, resulting in greater reli-
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Sec. 2.1 Introduction 59

ability in practice. Since then, other nonparametric and distribution-free methods
for describing the statistical properties of estimated parameters, notably the boot-
strap and cross-validation, have also come into common statistical use.

In the simplest form of the jackknife, we take a set of N observations {x,, x5, . . .,
xx} and form estimates of a parameter by deleting each observation in turn. Thus, in
addition to the usual estimate based on all N observations, we have N estimates each
based on N — 1 observations {x3, x3, ..., Xz}, X1, &3, ..., 20} ..o, X, 22, ..o,
Xy - 1}. Combinations of these give estimates of both bias and variance valid under a
wide range of parent distributions. For an introduction to the jackknife, see R. G.
Miller [3], Mosteller and Tukey [4], or Efron [5]. An elementary review can be found
in Efron and Gong [6].

Like any other statistical procedure, it is obvious that no time-series analysis is
complete without placing reliable confidence limits on the result, and that an esti-
mation procedure for which these cannot be found should be regarded as of limited
use. Among other problems, spectrum estimates have the same susceptibility to
deviant distributions as other statistics and so should be natural candidates for jack-
knifing. However, the usual requirement that the data used in the jackknife be inde-
pendent, and the obvious fact that we cannot take a time series of N points, delete an
interior point, and treat it as a series of N — 1 points, has had an unfortunate result
summarized in Miller’s [3] review paper:

An area in which the jackknife has had little or no success is time series analysis. This is
an ironic twist because it was for a time series problem that Quenouille originally
proposed the idea. ... For example, no one has successfully found a way to make it
provide valid estimates of the variability of smoothed estimates of the spectral density.

It is the purpose of this chapter to supply such methods.

Why use the jackknife for time-series problems in preference to more estab-
lished” methods? It is widely claimed that Fourier transforms of data are nearly
Gaussian, so standard multivariate theory should provide accurate tolerances. Fur-
thermore, distribution theory provides “optimum” estimates for a given problem,
whereas the jackknife, being a general-purpose tool, is suboptimal in many cases.
While these arguments are undoubtedly true for some time series, we claim that they
can be grossly misleading and will give examples of this with real data. Trouble often
begins when distribution-based confidence limits are used for spectral estimates
computed from data. The following list is a short compendium of reasons why such
calculations can go astray.

® Because of the serial correlations present in time series, it is difficult to assess
the data distribution using common statistical tests devised for independent
and identically distributed (IID) data in the time domain. These correlations

*That is, Pre, 1960s.
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typically cause such tests to indicate short-tailed distributions even when mod-
erate-sized outliers are present. Independence of the Fourier transforms of
windowed sections of data at a given frequency is a better approximation for
reasonable subsection offsets, so that most distributional tests could be
employed in the frequency domain if the series were stationary. Unfortunately,
this also implies that an N-point distribution test requires N segments as
opposed to N samples, so much more data is required and sensitivity to non-
stationarity is increased. Thus, in either domain, the results of distribution tests
are likely to be unreliable.

Even when it is granted that the original, time-domain, data are not Gaussian, it
is almost invariably assumed that Fourier transforms of them are multivariate
normal. It is commonly argued that the discrete Fourier transform is simply a
sum of many terms, and hence should be nearly normal by a loose central limit
argument. While this argument appears to be reasonably valid in many series, it
fails in the presence of moderate nonstationarity and when outliers are present,
particularly when the process has a complicated (i.e., nonwhite) spectrum.
Even for stationary Gaussian processes, most of the probability distributions
associated with spectra are complicated, especially for multivariate problems
(e.g., the complex Wishart distribution and the derived distributions of coher-
ence and phase, the complex multivariate-# distribution for transfer functions in
Brillinger [7] or Goodman [8].) Consequently, asymptotic forms or limited
simulations of the true distribution are generally used. The range of validity of
these approximate forms is often difficult to establish, and their undetected
breakdown can lead to significant errors.

Many of the approximate distributions are x* or f characterized by a “degrees-
of-freedom” parameter, and accurate computation of the degrees of freedom is
essential to obtain useful confidence limits, especially when few degrees of
freedom are available. While this is straightforward in the absence of estimator-
induced correlations and heteroscedasticity (heterogeneity of variance), com-
putation of spectra from real data can encounter pitfalls. The use of a data taper
or window causes significant correlation of nearby frequencies within a given
raw estimate, and, when the Welch method with overlapped subset estimates is
used, the estimates from different subsets are serially correlated. In addition,
any signal whose bandwidth is comparable to the reciprocal series, or even
subset, length will be highly correlated between subsets. Quantitative correc-
tion for these effects is usually difficult, and the use of simplifications for the
degrees of freedom can be misleading,

The best developed theory is for stationary processes, often with ergodic or
mixing conditions attached, so that in modeling it is almost invariably assumed
that the data are at least locally stationary. Real data, in contradistinction, are
typically moderately nonstationary. One consequence of a stationarity assump-
tion is that information at different frequencies is uncorrelated; in a nonstation-
ary process such correlations can be significant.



Sec. 2.1 Introduction 61

® The presence of a deterministic component or spectral line at a given frequen-
cy introduces noncentrality into the distribution model. While the standard
distributions for spectral quantities are complicated, their noncentral counter-
parts are almost hopelessly so, and parametric confidence limits in the presence
of line components are not usually computed. Note that deterministic ele-
ments in data are common: trends, diurnal, seasonal, and calendar effects (with
aliases) are common; and true periodic phenomena such as tides in geophysical
data or intentional carriers in engineering data are often encountered.

® Less commonly recognized, but even more serious, leakage from high energy
portions of the spectrum caused by poorly chosen or ad hoc data windows can
significantly change the distribution in low-energy portions of the spectrum. In
the simplest case of a spectrum estimate, such leakage can convert nominally
independent x? distributions into noncentral distributions with highly corre-
lated (but random) noncentrality.

® Finally, and obviously, the presence of outliers can dramatically alter the effec-
tive degrees of freedom in an estimate.

These complications generally reduce the effective degrees of freedom, and unless
properly accounted for, standard distribution-based confidence limits will be too
small. Jackknifing or similar methods are not a guarantee against all possible errors:
there can be, for example, no method, statistical or otherwise, to predict the behavior
of a nonstationary series when only a short, apparently stationary, realization is
observed. The principal disadvantages cited against the jackknife procedure are an
increase in computational burden, possibly poorer performance than the more gen-
eral bootstrap, and the imagined loss of efficiency compared to utopian statistical
estimators. We do not find the arguments in favor of the bootstrap compelling for
spectrum estimation work: first, it is not established that the bootstrap’s performance
is uniformly better than the jackknife; primarily, however, it is the intent of this paper
to describe methods to, at a minimum, get error estimation for spectrum estimates
into the correct decade, and the error estimates themselves perhaps within a factor of
2. Changes of a few percent on such tolerances are largely irrelevant and, at present,
usually not worth the large increase in computation overhead entailed by the boot-
strap. Moreover, once the proper entities for jackknifing have been identified, the
extension to the bootstrap is conceptually trivial.

In this chapter, the jackknife is adapted to the estimation of confidence limits
on spectra, coherences, transfer functions, and some related quantities. The jack-
knife procedure is first outlined and computational procedures are described, espe-
cially for complex entities. An emphasis is placed on the use of jackknifing trans-
forms because of the marked nonnormality of many of the distributions associated
with spectral quantities. The jackknife is then applied to the computation of confi-
dence limits on power spectra, coherences, and transfer functions using the Welch
method, and to Thomson’s [9] multiple-window method of spectral analysis. We
have used two kinds of data. The first consists of simulations and are not presented;
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here we have checked that the ensemble average of the jackknife variance estimates
agrees with ensemble variances, and, when possible, that estimated variances agree
with Gaussian theory. The examples given illustrate the advantages of jackknifed
confidence limits when the data distribution is complicated (and unknown) and the
degrees of freedom are not readily apparent; these all use real data. Because of the
relative simplicity of the method and its greater reliability with real data, it is rec-
ommended that the jackknife be used routinely as a replacement for, or preferably, in
parallel with parametric estimates. In many of the examples we use both methods;
when they differ careful study is required, but we believe the jackknife.

Finally, before turning to details we note that it has been proposed, Swanepoel
and van Wyk [10], to bootstrap spectrum estimates by fitting a parametric model and
treating the prediction residuals as permutable. Why not do this in preference to the
frequency-domain techniques advocated here? Our answer is simply that each of the
present authors has analyzed many different time series from scientific and engineer-
ing problems and neither of us has yet seen an example which could reasonably be
described by an autoregressive model. This is not to say that such examples do not
exist, but rather that the probability of encountering such an example appears to be
so low that starting with the assumption that a given time series can be described by a
low-order AR or ARMA model is a prescription for trouble.

.2 THE JACKKNIFE

Let {x;}, i = 1, ..., N be a sample of N independent observations drawn from some
distribution characterized by a parameter 6 which is to be estimated, and let 0 be an
estimate of 6. Denote an estimate of 6 made using all N observations by 5,,;,. Further,
suppose that the data are subdivided into N groups of size N — 1 by deleting each
entry in turn from the whole set, and let the estimate of 6 based on the /th subset (the
subset with the ith observation deleted) be

bn=01{xy, ..., 5% - 1, X4 1, .-, XN} (21)
Much of the literature on the jackknife uses pseudovalues
Pi=Nlyy—(N—1) 0, (2.2)

with the idea that they serve as substitute data in standard statistical procedures. The
Jackknife estimate of 0 is the mean of the N pseudovalues:

fms S
=N ——— > b (2.3)

Thi‘5 quantity was originally introduced as a lower bias replacement for the standard
estimate éa.ur- Specifically, if the expected value of 0., can be written as
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1
E (8} = 0 + §,+ 0GR 2.4)

where E is the expectation operator, then (2.3) removes the a/N term, so that the
bias of 6 is reduced to O(1/N?). Unfortunately, the variability of the jackknife esti-
mate (2.3) can be large for some statistics, Hinkley [11], and it should be used as a
substitute for the standard value 6, only with caution. In addition, if 6, is a linear
unbiased efficient estimate, in the sense of the Gauss-Markov theorem, 6 being dif-
ferent requires var{d} = var{f.,}.

A more important application for the jackknife is in the nonparametric estima-
tion of the variance of an arbitrary statistic. The jackknife variance of 841 is obtained
simply by using the pseudovalues in the standard formula

1 o 2
var {0} = NV - 1)2. (pi—0)
or, more conveniently, dieectly from the delete-one estimates
2
N1 §&
var {0, = —— 2 [ﬁm 5 ﬂm] . (2.5)
N =]
where
;
0~ == > b (26)
N, =,

While (2.5) was originally introduced as a variance estimate for § by Tukey [1],
simulations with small samples suggest that it more accurately predicts the variance
of 8, Hinkley [11]. An important property of the jackknife estimate of variance is its
conservatism; Efron and Stein [12] have shown that the expected value of the jack-
knife variance is always larger than the true variance even when the data are not
identically distributed; see also Shao and Wu [13]. Moreover, Cover and Thomas [14]
have shown that for generally correlated data, the differential entropy

H = E{~In p(x)} = — [ p(x) In p(x) dx,

where p(x) is a multivariate probability density function that satisfies the inequal-
ity

N
Hay < H,
Ny

the quantity H,, is the differential entropy of the N-dimensional distribution, and
H~ is the average of the N-differential entropies H/7, of the N—1 dimensional distri-
butions obtained by deleting the jth variate. Recall that among distributions with
equal covariance matrices C, entropy is maximized by the Gaussian with the max-
imum value being ‘2 In(2me)” det C. This again demonstrates the conservative
nature of the jackknife.
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Another advantage of the jackknife approach is computational simplicity with
complicated statistics. For example, compare the parametric form for the variance of
the magnitude-squared coherence implicit in (2.54) to (2.5). In addition, many jack-
knife procedures may be done by a simple one step downdating procedure. In these
cases we compute the full model 8 , first, then compute each of the éq\‘s by down-
dating the original calculation.

While the special case of one-at-a-time data omission has been described, the
more general instance of k-at-a-time omission is well defined. It is not usually applied
because the delete-one jackknife is more efficient and does not depend on an arbi-
trarily chosen subdivision for the groups. The computational burden of the delete-
one jackknife is greater, but is not excessive unless large data sets are under consid-
eration. Moreover, in a time-series context, the number of data points in the time
domain is irrelevant; the jackknife is applied over independent Fourier transforms
occupying a small part of the frequency domain, typically a greatly reduced number.
The delete-one jackknife will be used exclusively in the remainder of this chapter.

Under general conditions, it has been shown that both (8 — 6)/ and (8 — 6)/c
are asymptotically normally distributed, Miller [3]. This allows approximate confi-
dence limits to be placed on 8 using normal-theory statistics in the usual way.
However, asymptotic behavior does not necessarily guarantee an accurate estimate
for small samples. While Tukey [1] suggested that (§ — 6)/& would be distributed as
Student’s t with N — 1 degrees of freedom for small N, a general proof of this has
proven elusive. Hinkley [15] has investigated the small sample behavior of the jack-
knife in some detail, and suggests that substantial errors can accrue if the Student t
approximation is used blindly on statistics having markedly nonnormal distributions.
However, if the statistic is transformed to one with a more normal form, as is com-
monly done in applied statistics, then the Student t model is reasonably accurate.
There is also some evidence that confidence limits obtained with the delete-k jack-
knife are more reliable with small samples and when the statistic is markedly non-
normal, Hinkley [15], and it may be useful in cases where extreme accuracy is impor-
tant.

The use of transformations with the jackknife are essential when the statistic
being jackknifed is bounded or its distribution is strongly non-Gaussian. A heuristic
justification of this statement follows from examining the pseudovalues (2.2) when 6
is a variance estimate. There is nothing to prevent negative pseudovalues from
occurring, and the jackknife does not know a priori that the variance must be posi-
tive. Large or frequent negative pseudovalues will result in badly biased confidence
limits. However, jackknifing the logarithm of the variance eliminates this problem,
and negative pseudovalues simply appear as small estimates of the variance. A more
rigorous justification of transformations with the jackknife was given by Cressie [16],
and a general procedure to find the correct transformation is now available, justifying
statistical lore on variance stabilizing transformations that make the distribution
more Gaussian. Examples include the logarithmic transformation for variance and
the inverse hyperbolic transformation for the correlation coefficient. These forms
carry over directly when jackknifing power spectra or coherences.
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Some additional complications appear when the jackknife is applied to the
regression problem
Y=AB+e (2.7)

as in the computation of transfer functions. Regression problems are unbalanced,
since the sample sizes and possibly their variances are different for the vector Y and
the matrix A. Miller [17] used the ordinary balanced jackknife (2.1)-(2.5) on (2.7),
deleting rows of the matrix to form the pseudovalues B;, and proved the asymptotic
normality of the jackknifed solution vector and its variance under general conditions.
Hinkley [18] examined the small sample properties of the unbalanced jackknife, and
suggested that the ensuing estimate of the variance was biased. This occurs because
the pseudovalues (2.2) are defined symmetrically (in the sense that ordering is irrel-
evant), while the model (2.7) is asymmetric because the different rows have different
leverages. (This is simply because elements of A far from their column means have
much more effect, or leaverage, on the estimated B’s than elements close to the
means.) He proposed the use of a weighted pseudovalue

B:i=B-N1-5b)B-B7), (2.8)

where the {h,} are the diagonal elements of the hat matrix H = A(A"A) ' A". His
the projection matrix from Y onto the column space of A. Its diagonal elements

b; = aj (A'A) 'a, (29)

(with a, as the ith row of A and ' denoting conjugate transpose) measure the dis-
tance of single model points from the center of the model, and the lack of balance is
reflected in their size. When b; = 1/N, the ordinary pseudovalue (2.2) is obtained.
The weighted jackknife estimate is just the mean of the weighted pseudovalues (2.8),
and is identical to the solution of (2.7). The variance estimate is

o Ly Ak L T e — Ayt
var(f3} V=5 ‘gl(Bi BB - B, (2.10)
where p is the number of columns in A. Hinkley [18] also proved that (2.10) was
robust in the presence of inhomogeneity of error variance in (2.7), in contrast to the
standard estimate of variance. This property is useful when computing confidence
limits on transfer functions in the frequency domain.

For several parameters, a long-tailed (possibly infinite variance) distribution of
the estimate is expected even when the original data are Gaussian. In such cases, the
trimmed jackknife of Hinkley and Wang [19] applied directly to the pseudo values
{p:} appears to offer a distinct improvement. It is easy to show that for simple sta-
tistics using ordinary averages, the pseudo-values and original data are identical and,
consequently, a single outlier affects only the corresponding pseudo-value. Note,
however, that this implies that not only is the usual estimate 8 .,; contaminated, but
also all but one of the delete-one estimates have compensating errors. Forming the
trimmed mean on p, reduces the severity of this problem. The formulae for trimmed
mean and variance estimates from Hinkley and Wang [19] for real p; are as follows:
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Denoting the sorted values of p; by p¢, the a-trimmed mean is

1 N—r
Ul N = 2r, =§+ lpm o
where a = r/N and the corresponding Winsorized variance is given by
var ) = = |1 S (o - 02 212
o= =27 N, &, 0~ Ya (2.12)

o el L ORI L — ém]

Note that r values from each end of the distribution are “pulled in,” analogous to
using a Huber influence function. For complex parameters sorting is undefined so
simple estimators of this type are unavailable and it is perhaps easiest to embed
explicit robust estimators of the type discussed in Chave et al [20] in a jackknife
procedure. Also, with complex data it appears possible to contaminate all the pseudo
values by an outlier in 8., without corresponding problems in all the delete-one
estimates so one should heed Tukey’s advice “The proper place to put the robustness
is in the definition of 6.”

Finally, an important paper by Reeds [21] shows that under a set of conditions
which appear to be reasonable for most time-series data encountered in the physical
sciences, jackknifed maximum likelihood estimates behave properly. Specifically, the
jackknife mean and variance estimates converge (in several senses) to the population
values under only slightly weaker conditions than are required for maximum likeli-
hood estimates. Almost sure convergence of the jackknife variance estimate, how-
ever, requires 2 moment condition; for the estimators considered here this is satis-
fied. Parr [22] shows that stringent conditions on the Fréchet differential of the
functional form of the statistic being jackknifed will ensure consistency of the jack-
knife variance and bias estimators. Shao and Wu [23] show that for sufficiently
smooth functionals the deleted jackknife is consistent and asymptotically unbi-
ased.

2.3 SPECTRUM ESTIMATES

A major problem in time-series analysis is the choice of an algorithm that yields a
spectrum estimate from a finite sequence of data such that the result is not badly
biased, yet remains statistically consistent and reasonably efficient. In this chapter we
use three types of spectrum estimates: conventional section averaging estimates, the
newer multiple-window methods, and combinations of these. At first glance, the first
two appear to be distinct approaches, but, as will be seen, they are mathematically
similar. We do not use periodograms, smoothed periodograms, or any of the equiv-
alent methods based on autocovariances: these are all hopelessly obsolete. In this
paper the use of band averaging is restricted to secondary quantities, such as the
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phase of a coherence estimate. Also, we do not use AR, MA, ARMA, or other para-
metric methods: in our experience, their performance is typically even poorer than
that of the preceding group. Indeed, we attribute the failure of the jackknife in spec-
trum estimation problems noted in the introduction largely to the use of defective
spectrum estimation methods. With such methods jackknifing will probably fail: this
is hardly an indictment of the jackknife as the basic estimates are so badly biased that
estimation of their variance is irrelevant.

We assume that a run of 7’ contiguous samples of a stationary time series x(%) is
available. The sampling times are takentobe 0, 1, . . ., T—1, frequency is denoted by
f, and radian frequency is denoted by w = 2mf. The spectrum of the sampled process
will be denoted by S(f) on the semiclosed interval [—'%, '2) and is extended peri-
odically. We are primarily interested in processes where the spectrum is highly
colored, (i.e., not in point processes) and we do not treat estimation of periodic or
mixed processes explicitly in this chapter. Frequently, the T data samples are the
result of a prewhitening operation applied to a slightly longer series: a final step of
correcting for the prewhitening filter must be taken. Finally, in formulas for proba-
bility distributions of various parameters given for comparison purposes, we will
invariably assume that the original process is Gaussian.

In the section-averaging method introduced by Welch [24], the available data
are divided into N subsections each containing L samples and offset by b samples
from the previous subsection. A general average (and possibly trend or known peri-
odic components) is subtracted, the data in each section are multiplied by a data
window or taper D, and Fourier transformed. The superior performance of prolate
spheroidal, or Slepian, sequences as low-bias data windows is well established, Thom-
son [25]; they are used exclusively here. These windows are characterized by a
time-bandwidth product ¢ and have the property that the energy concentration of
their Fourier transform in a bandwidth W = ¢/L is the maximum possible. Note that
W is defined by the subset length L, not the total datalength 7. AsT =L + (N — 1)b,
we obtain

_d1+ V- 1))
T

for the bandwidth in units of the Rayleigh resolution 1/7 of the complete data set. As
we will see below, the stability or effective degrees of freedom of such an estimate
depends on both the number of subsets N and their overlap ratio b/L.

It is useful to think of spectrum estimation in terms of the information con-
tained in a given frequency band, and we recall that the sampling theorem requires at
least 2 W-T samples to represent it. Thus, except near frequencies 0 and 2 where the
coefficients are real, we may ideally obtain an estimate with 4W7T degrees of freedom.
Consequently, we attempt to represent the information in the band (f— W, f + w)
by the set of N complex coefficients

W (213)

L—-=1
x(f)= 3 D(Ox([t+ (k— )ble 2 (2.14)

t=0
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where £ =0, 1, ..., N — 1; these coefficients are used for inferences. As a simple
example, consider the problem of estimating the spectrum of a univariate series, for
which we form:

IN_ 1
Sl ) = Enzo | x:C I (2.15)

An alternative is to define a set of N data windows, D,,(t) as D[t + (k — 1)b] = D(1)
for 0 =t =L — 1 and 0 otherwise, as shown by

7 et |
xe(f) = D x(t) Dy(t) e ", (2.16)
t=0
We may then consider the D,’s to be a set of basis functions with the x(f) as the
expansion coefficients of the process in the given band. If the windows are nonov-
erlapping, that is, if b = L, the windows are orthonormal:

T =1}
> Dy(1) Di(t) = dp.

t=0
Moreover, under reasonable conditions, the x;'s are uncorrelated so that inferences -
are simpler. This condition also implies that the basis is incomplete (ie, N << 2
W-T') and statistically inefficient, so overlapped sections are generally used. The con-
sequence is that the x;’s are serially correlated, so that inferences are more difficult.
This will be discussed in Section 2.4, where we will also show that despite the
violation of the usual independence assumption, the jackknife is still applicable.

In multiple-window analysis of time series, the use of an orthogonal basis is
formalized. Specifically, we expand the part of the signal in a fixed bandwidth f — W
to f + W in a series of discrete prolate spheroidal wave functions, hereafter referred
to as Slepian functions. The coefficients of this expansion are given by the Fourier
transform of the data windowed by the corresponding Slepian sequence:

=1
xl(N= 2, x()f*N(T, W)e 2", (2.17)

t=0
These are then used to make inferences about the process in the band. In this
approach the effects of energy at frequencies outside the band may be regarded as

noise, and a least-squares solution in the selected band is obtained.

The Slepian sequences are orthonormal and have the property that, of any set of
N sequences of duration T, their Fourier transforms have the maximal energy con-
centration in the bandwidth (—W, W). Indeed, it was precisely the study of such
problems that resulted in the famous Slepian and Pollak [26] and Landau and Pollak
[27] papers. In spectrum estimation terms, they provide a set of data windows with
low sidelobes and leakage. These data windows depend on 7, and the chosen band-
width W, with the sidelobe behavior of the corresponding spectral windows outside
the band (—W, W) asymptotically exponentially decreasing with W-T. There are
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| 2 W-T'| windows having most of their energy in this band but, as the higher order
windows become less concentrated, N is usually taken to be slightly smaller than
this.

The Slepian functions are defined as solutions of the integral equation

w
sin Tn(f = f")

Ae Un(T, W) = W.fdf!, 2.18
« Un(T, W) _Lsinw(f—f’)u'(TWf)df (218)

where the eigenvalues A\, give the fraction of the energy of Uy(7, W; F) in the
bandwidth (— W, W). Their Fourier transforms are the Slepian sequences

P

w
T, W) = ;lT j U(T, W; [ )e~ 2% ¢ =5 af, (2.19)
ki\ke
-W

with g, = 1 for k even and ¢ for k& odd. They are orthonormal on [0, T — 1]. For
details on the many fascinating properties of these functions, see Slepian [28].

If there are no line components in the band”, we compute a simple multiple-
window spectrum estimate by solving the nonlinear equation

0t 1 Al = S i,
oSN + A -t ° (2.20)

for 3( f) with o, the process variance, and Sx(f) = |xx(f)[%. Typically, this equa-
tion is solved iteratively starting with 3( f)= [So( Sk 3:( f)V/2. The solution S( f)
is not a simple windowed transform of the data, but the root of a rational equation in
such forms. Thus the autocovariance function obtained by Fourier transforming
S(f) is not necessarily zero for lags greater than 7. Note that this is an approximation
in that the (1 — \;) o terms are a bound on bias from out-of-band energy, used
instead of a more complicated convolution. For details, see Thomson [9] and Chap-
ter 1.

To understand the behavior of this estimate, recall that the eigenvalues A\ are
exceptionally close to 1 (e.g, NW = 4 gives 1 — A\, = 3 X 107 '9), so for many prob-
lems the above estimate $( f) becomes

N-—1
Sl L) B }v > Se(f). (2.21)
k=0

Each term in this series is a direct spectrum estimate, and so distributed as 3.
Furthermore, if we assume that the true spectrum is flat over the interval (f — W, f +
W), the §;’s are uncorrelated by the orthogonality of the Slepian functions, so the
estimate (2.21) will have a x? distribution with 2N degrees of freedom.

* Simultaneous estimation of line and continuous spectrum components is covered in Thomson [9,
Section XIII).
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In the comparison of section-averaging and multiple-window methods, two
practical problems have been ignored, namely, robustness and nonstationarity. For
both problems overlapped section processing often permits use of robust estimates
at a slight cost in efficiency, Chave et al. [20]. A method appearing to be both effi-
cient and robust is to combine the two methods: use multiple windows on each
section, then combine the results of different sections robustly. We take B sections
of length L, but now with K windows on each section, K= [2W L], and N =B - K
Clearly much less section overlap is needed for efficiency than when a single low-
order prolate window per section is used. Also, different robust estimators are pos-
sible; for example, we may estimate a transfer function on each section, then use a
robust location estimate on the transfer function estimates directly. The smoothing
may be performed using either simple or robust procedures; the latter are preferred
owing to their inherent immunity from outlier contamination, Chave and others [20].
A further refinement is possible: in addition to simply obtaining an estimate on each
section, we may also obtain its variance (obviously by jackknifing over the K win-
dows within the section!); then combine sections by minimizing

where ﬁj and §; are the parameter and its error scale estimates for the jth section and p
is a loss function. While the treatment of robust estimators is outside the scope of
this chapter, we note that jackknifing such robust estimates is valid provided the
influence function corresponding to p is sufficiently smooth.

A technical point concerns the exchangeability of the x,( f)’s necessary for the
validity of the jackknife. In section averaging, the covariance between coefficients
from the intervals [0, L — 1] and [b, b + L — 1] using a data taper D is given by

1/2

Bl (), £20)) = f S(n)e~2™0|B( f — )|, (2.22)

-1/2

where § is the true spectrum of the process and D is the Fourier transform of the data
window. This formula, which depends on the spectral representation of a stationary
process and not on distributional assumptions, shows two sources of covariance in
such estimates: first, a peak in S significantly sharper than D will generate covariance
for b > L; second, the overlap of the windows generates a convolution term D * D,
where * denotes convolution. In the first instance, about all that can be done is to
attempt to detect its presence or get a larger sample: theoretically, we count on
ergodic, or better, mixing assumptions as in Rosenblatt [29]; practically, we test the
coefficients from successive sections for abnormal autocorrelation or examine a Q-Q
plot of the individual section spectrum estimates. The second topic is the subject of
the next section.

In multiple-window methods the exchangeability requirement is that the band-
width W be small enough that the spectrum is approximately resolved in the sense
below. The equivalent of (2.22) becomes
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w
E{xj(ﬂf.(f)}=$ j UKTWOULTWOS(f + Dl + 7, (223)
-W

where g;is 1 for j even and { for j odd and 7 is bounded by the eigenvalue properties
of the Slepian functions and asymptotically decreases exponentially with W T.
Again, only the spectral representation is used, so that if the spectrum is resolved (i.e.,
§ is constant over ( f — W, f + W)) the coefficients are uncorrelated and have equal
variance except for O(1 — A,) terms. Mallows [30] has shown that the distribution
of narrow-band processes such as this one (think of the x ( f)’s as time series with
“time” defined as the start of the observation interval) must be nearly Gaussian in a
certain sense; since the first two moments agree, the distributions of the coefficients
must be close in his sense. In practice, we may apply a distribution test to the dif-
ferent coefficients at a given frequency.

In the combined multiple-window section averaging method the assumptions
and checks are the same as sketched above. In addition, the resolution assumption
may be checked. The basis for this test is (2.23): if § is constant over (f — W, f + W)
the different coefficients will be uncorrelated, and we simply form their sample
covariance matrix and test it for diagonal form. Let x,( f) be the vector of coeffi-
cients from the K windows on section / and

B
&N =g 2 MWD 224)

be their sample covariance matrix at frequency f. For this problem, the formal Gauss-
ian likelihood ratio test for diagonal form is the complex sphericity test. (The sphe-
ricity test, as it’s name implies, tests the hypothesis that the multivariate distribution
is the same along all coordinates against the alternative of a general elliptical shape.
Thus the null hypothesis is that the covariance matrix is diagonal with equal vari-
ances, or proportional to the identity matrix, and consequently rotationally invari-
ant.) Distributional theory for this test and a short table is contained in Nagarsenkar
and Das [31]. In practice, the moderate nonstationarity found in much data make this
test unrealistic and better results are obtained if the individual terms in (2.24) are
normalized by power, that is, we compute

N & X
&N =5 2, 3w At

in place of (2.24). The test of C,, for diagonal structure is known as one of uniformity
(of directions on the K dimensional complex hypersphere) and is similar to the real
case treated in Watson [32], Chapter 2. In applying these tests, remember that like-
lihood ratio tests (including the sphericity test) are notoriously sensitive to the
assumption of normality so that theoretical values should not be taken too seriously.
Also the complexity of the distribution of the test statistics makes determining the
test significance by jackknifing over sections an attractive alternative to computing
the distribution! For this application we recommend a log log transformation; the
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first because log C is asymptotically x?, the second to make the approximately x>
variates more nearly normal. Again the underlying distributions are perverse enough
that the usual # approximations for tail probabilities may be unreliable and it is prob-
ably safer to simply check situations where the test statistic is several jackknife stan-
dard deviations from the origin carefully.

Finally, one must remember that the spectrum is rarely, if ever, exactly resolved
s0, as usual, one must balance some lack of resolution against statistical stability of the
estimated spectrum. This balance is also reflected in the sphericity test where the
trade is between detecting serious lack of resolution and the sampling distribution of
the test. The sampling distribution of the sphericity test when the null hypothesis is
false is very complicated and beyond the scope of this work, however, some insight
may be gained from following argument: First, assume that the spectrum is almost
resolved so C is nearly proportional to I and low order Taylor series approximations
to various statistics are valid. Second, note that the sphericity test is essentially Bart-
lett’s M test applied to the eigenvalues of C( f). Third, denoting the eigenvalues of C
by ¢; and assuming that their distribution is approximately x? with p degrees-of-
freedom M is approximately 2 K p var{c}/ave*{c}. Fourth, because the matrix Fro-
benius norm is invariant under orthogonal transformations, K var{c} = | C/S,, — 1| #
where S, (f) is defined to be the “average” value of S(f) over (f— W, f+ W).
Finally, using quadratic inverse theory, it may be shown that

w
WO = Sl D= 3 [ 1G+ ) = Sk NP &

-w
with near equality for K= 2 W L and the spectrum varying “slowly” over the local
bandwidth. For “equal-energy” ripples in the spectrum the term on the right
decreases approximately linearly with ripple frequency and essentially disappears for
details in the spectrum finer than half the Rayleigh resolution, that is for §f < 1/2 L.

.4 CORRELATION AMONG ESTIMATES

Among the problems mentioned in earlier sections are those of obtaining the correct
equivalent degrees of freedom and those of correlation between estimates. Not sur-
prisingly, the two are related. The concern is that covariance terms of the type
E{xj( xe( )} violate the usual jackknife assumption of independent errors. Note
that this is distinct from the covariance arising in unbalanced problems where the
error variables in (2.6) are assumed to be independent and identically distributed,
but, because the different inputs have different leverages, the rows of A are not
strictly exchangeable (in that diagonals of the hat matrix differ significantly) and the
residuals will have different variances; here we assume that elements of € may be
correlated. We give a brief outline of a method for computing the effective stability
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of a spectrum estimate and of determining the effect of overlap covariances on vari-
ance estimates.

We assume B subsections each of length L samples, offset by b samples and K
windows on each section, so N = B - K. Define a N X T matrix D of basis functions
(shown schematically in Fig, 2.1) whose Jth row is given by

f——Total Duration of Data———‘

n=1
Data windows on
segment 1
n=2
n=3
|
| |
| | | Data windows on
| | | segment 2
I |
n=4

|
e S rp—

Data

--——segment—-l
1
l-_— segr;ent—-l n=N-1

Data windows on
segment B

Figure 2.1 Schematic representation of
a multiple-segment, multiple-window es-
Data timation process. Here two windows are

|-—ugnB-|ent—>| used on each of N/2 overlapped seg-
ments.
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Dij,t+ 1+ (= 1)b]=vfLW)e 2" g<p=<f-1 (226)

forj=K(I—-1)+k+1withl=1,... ,B;k=0,...,,K~- 1and 0 otherwise.
(For band-averaged estimates, the rows are simply D(#)e ?" forj = 1, ...,N.) Let
z be a T'vector of zero-mean complex Gaussian random variates with E {zz'} = I « 7,
the T X T identity matrix, and define the N vector x as

x = Dz. (Z27)
The covariance matrix of x
G = E {xx"} (2.28)
is the Grammian matrix of the basis; that is,
G = DD'. (2.29)

Clearly, by the symmetries of the windows, G is a Hermitian N X N block-Toeplitz
matrix consisting of B? K x K submatrices with the diagonal submatrices Ix x x.
When a single frequency is used, G is real. An important special case occurs if the
offset is more than 50 percent of the subset length so that only estimates in adjacent
blocks are correlated, and G also becomes block tridiagonal.

Consider a spectrum estimate $ defined by

N
g N R (2.30)

n=1

Using the fourth-moment formulas for complex normals from Miller [33, p. 82], we
obtain the variance of § as

var{S} 5‘, S "
S} = Gum
n= lm2= Il | (231)
= lisliz

which represents the squared Frobenius norm of G. Since the mean of Sistr[G] = N,
approximating the distribution of $ by x? and matching the first two moments gives
the “equivalent” degrees of freedom for § as

2
Veg = ﬂz (232)
IGlIF
or, in the eigenvalues {n;} of G as
e 2
2( Xy
=1
T i, ¢ (2.33)
DEH
=1
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Turning to the reliability of variance estimates, it can be shown that the esti-
mated variance of § = $/N, given by

2/
W)= v -1 )jz (xf* - )%, (2.34)
has the expected value:

E(V(S} } = {S} ( i). (2.35)
| Vegq
Hence, if veq = 2, the variance estimate is biased toward zero. In particular, for
estimates based on band-averages with the essential data taper included, Brillinger
[34], the equivalent degrees of freedom increase slowly with bandwidth (see Fig. 7 of
Thomson [25]), so that any naive variance estimate is likely to be misleading,
Before treating the block-Toeplitz case, consider the special case of ordinary
single-window section averaging with less than 50 percent overlap. Here G will be
an ordinary Toeplitz tridiagonal matrix, so

[|G:]I = N + 2(N — Dp, (2.36)

where p is the correlation between adjacent spectrum estimates and depends on b
and D. Here the expected value of the variance of § becomes

Bvs) ) = S8 (1 - 22) 237)

and shows how the effect of covariance between adjacent subsets decreases as N
increases. With less than 50 percent offset, estimates two (and possibly more) apart
become correlated and additional terms must be added. As an incidental note, the
effective degrees of freedom here (with the approximation N — 1 = N), is

2N

~— 238
Y%\ 1+ 20 (238)

In the general case with less than 50% overlap, write G in submatrices as

I R 0O - 0
RFI R O -
G=|0R" I RO (2.39)
- ORI R
0 o R I}
The squared Frobenius norm of matrix G is
IG|| = B-K + 2(B — 1)||R||Z (2.40)

The most intuitively pleasing form for ||R||Z is in the canonical correlations between
spectrum estimates on adjacent blocks and is.simply the sum of the singular values of
RR'; see Anderson [35, p. 492]. This gives
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E{(V{S} } = Lz 23 [ _ 26— uB)|Rls ] (2.41)

(N-1)
which is asymptotically unbiased with N,

In both cases described by (2.37) and (2.41), the banded Toeplitz structure
implies that the equivalent degrees of freedom increase with the block count, so that
the estimate of the variance of § converges to E*{§}/N. Because the jackknife esti-
mate of variance is identical to (2.34), it also converges to E*{S}/N. Also, as shown in
the next section, jackknifed variance estimates are usually done with a logarithmic
transfonmition, so, because the correlations between log x3 variates are essentially
identical to those between the original x, variables, the jackknife variance estimate
remains asymptotically unbiased.

.5 JACKKNIFING UNIVARIATE SPECTRUM ESTIMATES

At this stage the jackknife can be applied to obtain approximate confidence intervals
on a power spectrum cstlmatc for a univariate series. Taking the complex coeffi-
cients of (2.14) or (2.17) or a hybrid, denote a raw spectrum estimate by

Se(f) = (I

for either a section-averaging or multiple-window estimate. For the standard model
of a stationary Gaussian process, estimates of power spectra are the sums of squares of
normally distributed variates, and hence distributed as x* or gamma. (For a com-
bined multiple-window, multisection estimate, we take an average over the windows
in each section, yielding 2K degrees of freedom per section.) For reference, the
probability density function of such a spectrum estimate s with v = 2m degrees of
freedom may be written as

(m/a)™
I'(m)

where ['(ni) is the gamma function. The mean and variance of s are @ and @*/m. For
comparison with the corresponding jackknife results, we have for the mean

E{lns} = Ina + B,(m),

p(s) = 1y (2.42)

where the bias B,(m) is given by Bartlett and Kendall [36] and Wishart [37] as

B,(m) = Y(m) — In m, (2.43)
with ¢ being the digamma function. Similarly, for the variance we have
var {In s} = '(m), (2.44)

where ' is the trigamma function. Formulas for computing both s and 1’ are given
in Abramowitz and Stegun [38]. Because this variance is independent of the mean,
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gross departures from the nominal model may be readily seen. The maximum-like-
lihood estimate of @ given N independent samples from distribution (2.42) is, regard-
less of m, their arithmetic average

= — E 5 (2.45)
jsl

Turning to the jackknife with more typical and less utopian data, statistical
tradition implies that a logarithmic transformation of the variance (or power spec-
trum) stabilizes the estimation procedure by giving a more symmetric distribution
than y%. We take our statistic to be the logarithm of the power spectrum 0 = In Sat a
single frequency and denote an estimate of it from a finite data sample by 8 = In 3.
The delete-one values In 3‘/;\ from (2.1) are

: N
In3p=In (Ni =% “,,) (2.46)
k+j
with their average
1 N
In§~ = EE. NP (2.47)

defining a spectrum estimate InS,~. We will examine the differences between the
jackknife estimate of the log power spectrum and In § from (2.45) below. This dif-
ference is related to the jackknife estimate of the variance of the log power spectrum
given by

&% = var {In 5}

N-1
== 3 (n¥m -5 (2.48)

i=1
Because of the logarithmic transformation, (In S —In S‘m)/& is nearly distributed
as ty — 1, and approximate confidence intervals on either In § or S can be constructed.
The double-sided 1 — a confidence interval for the power spectrum is

Setn-1(1 — W2) ~ ¢ <Fpiv-1(1 — W/2)5 (2.49)

For setting confidence intervals, see Hall [39]; Izenman and Sarkar [40] give improved
classical expressions.

The foregoing formulas for jackknifed spectrum (or variance) estimates have
interesting interpretations as the classical tests for homogeneity of variance (and
simultaneously Gaussianity of distribution) of Bartlett and Lehmann (see Sugiura and
Nagao [41], Ghosh [42]). Rewrite (2.47) as

1 N
s = In$ + In < Fr E In B/, (2.50)
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)
B = iji‘ (2.51)

The distribution of the B’s is individually beta and jointly Dirichlet when the original
data are stationary and Gaussian. Denote the last term in (2.50) by M}

N
My= Y InBj,
ji=1
and recall that Bartlett’s statistic for homogeneity of variances with equal degrees of
freedom v may be written as M = — vM,, with

N
J=1

Except for a scale factor, M}, is a Bartlett test applied to the delete-one averages 57
The Bartlett test assumes that the 3} are independent, while the 3(7\ are obviously
highly correlated; nonetheless, M' appears to convey similar information and empir-
ically the correlation between M and M’ is high." Thus the difference between In§
and the average of the delete-one values InS,~, may be interpreted as a downward
“correction” term based on the homogeneity, or lack thereof, of the estimates. A
second interpretation of this statistic is that when both @ and m are estimated from
(2.42) by maximum-likelihood, we obtain

12X
By = 3 Infy
i=1
for the degrees of freedom, where B, is the x? bias function (2.43). Thus the M’ term
can also be thought of as an “effective degrees-of-freedom” correction.
Turning to the jackknife estimate of variance, we write (2.48) as

N
L= (InB)- M),
J=1

which is identical in form to Lehmann’s test for homogeneity of variance:

N
L=vY (InB; - My)*
=1
again with delete-one averages in place of independent variates. Hence, the jackknife
estimate of variance provides a test of homogeneity of variance and Gaussianity of
distribution. The presence of both the Bartlett and Lehmann forms is not surprising:

* See Han [43] for a formal discussion of the Bartlett test with correlated variances.
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asymptotically M is distributed as x%._,, so its mean and variance are coupled. What
is interesting is that, with the logarithmic transformation, the jackknife does not
estimate mean and variance in the traditional sense, but something closer to the scale
and degrees of freedom typically used to describe such distributions. Also, the jack-
knife bias and variance estimates provide a classical homogeneity test. We should
consider this carefully because such tests are exceptionally sensitive to departures
from normality: excesses in these estimates compared to the nominal values of (2.44)
may well indicate nonnormality instead of heteroscedasticity and a need for robust
procedures. Indeed, it is in Box's [44] discussion of such tests that the term “robust”
appears to have been introduced into the statistical literature.

The usual explanation of larger than expected variance is nonstationarity. With
multiple-section methods, this dependence is obvious, and the jackknife variance
becomes essentially the stationarity test described in Thomson [25, part II]. Multi-
ple-window methods are also sensitive to nonstationarity, but, as quadratic inverse
theory is necessary to explain the dependence, details are not included here.

It should be noted that the logarithmic transformation discussed here is not the
only type that can be used when jackknifing variances. While the logarithm tends to
relieve problems associated with the abrupt termination of the sampling distribution
at the origin, the application of a cube root transformation is better for producing a
symmetric one. In limited simulations both work well, even at 2 degrees of freedom.
Estimates based on the cube-root transformation had slightly lower bias while those
based on a logarithmic transform had slightly lower variance, but the differences
between the two were negligible. For critical applications, symmetry effects can be
checked by examining the distribution of the pseudovalues using quantile-quantile
plots; if they are markedly skewed with the logarithmic transformation, then prob-
lems can occur with the #y — ; approximation for small N, and the cube-root trans-
formation should be substituted. Cressie [16] notes that the logarithmic transforma-
tion is only valid when the kurtosis is independent of the variance, as occurs with the
normal and x? distributions. Under ordinary circumstances, raw estimates of the
power spectrum are exponentially or x3 distributed, with the possible presence of a
small fraction of outliers, and this shouldn’t pose problems. However, if strange
results are obtained with the jackknife, then the distributions of the data, of the raw
power estimates, and of the pseudovalues should be examined to detect anoma-
lies.

Figure 2.2 illustrates application of the jackknife to power spectra. The data
consist of one month of the north-south component of the Earth’s magnetic field
variations recorded at the Victoria, B.C., Observatory in July 1982. The geomagnetic
field was particularly active during this time, and frequent short-duration magnetic
storms and other events were observed, so that the data are locally nonstationary.
Raw spectra were computed by Fourier transforming 71 percent overlapped two-
day-long pieces of data after tapering with a prolate data window of time-bandwidth
product 4, yielding 42 raw spectra. Correcting for the correlations caused by this
overlap gives about 30 degrees of freedom (instead of the 84 obtained by counting
sections), so the classical 5 to 95 percent points are 0.64 to 1.56 times the estimate.
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These estimates were section averaged using both an ordinary arithmetic average,
Figs. 2.2(a) and 2(b), and a robust mean described by Chave et al. [20], Fig. 2.2(c).
The two curves shown in each frame correspond to 5 and 95 percent confidence
limits, Fig. 2.2(a) representing the classical 0.64 to 1.56 factors mentioned, and those
in Figs. 2.2(b) and 2.2(c) obtained by jackknifing. Note, first, that there is a decade
between the conventional and robust spectrum estimates, reflecting the dominance
of the arithmetic mean by brief, energetic storm events that are eliminated by adap-
tive weighting during robust processing. Second, the width of the jackknife confi-
dence bands in Fig. 2.2(b) is again about a decade larger than the classical ones of Fig.
2.2(a). Third, the width of the jackknife confidence intervals for the robust estimate,
Fig. 2.2(c), are close to the distribution-based value. In this example, the problem is
that the conventional average is dominated by a few outliers, the population heter-
ogeneous, and a standard estimate of the equivalent degrees of freedom meaningless.
Analysis of the data using the section-by-section multiple-window technique shows
that a single event of roughly one-day duration dominates the data, so that the arith-
metic average is controlled by 1 to 3 subsections and has only a few degrees of
freedom. The jackknifed confidence limits account for this, as well as providing a
correction for the overlap-induced correlation which is significant when the degrees
of freedom are small. Note, however, that the jackknife confidence limits of Fig.
2.2(b) do not include the robust estimate, of Fig. 2.2(¢), particularly at high frequen-
cies. This is because the two estimates are of fundamentally different physical quan-
tities: the first is simply the average power at a given frequency, storms included; the
robust estimate gives the power that one would usually observe.

A particular feature of multiple-window estimates is that the result (2.20) is the
solution of a rational equation. The behavior of this estimator is to downweight
badly biased eigenspectra so that, effectively, the resulting spectrum has variable
stability. As mentioned earlier, the estimate is x3x when all bias terms are negligible
but, in general, is only known to be bounded between x3 and x3x. The statistic is thus
an ideal candidate for jackknifing. That the solution of (2.20) is found by an iterative
process rather than by an explicit estimator illustrates another strength of the jack-
knife; it may be applied to complicated estimation procedures! Formal justification
of the jackknife's applicability in such iterative procedures is given in Jorgensen
[45].

Figure 2.3 shows a spectrum with jackknife estimates of the 90 percent confi-
dence intervals (based on 5 and 95 percentage points) computed using a multiple-
window estimate. The data consists of 360 samples of one component of the Earth’s
magnetic field recorded on a magnetometer at Frobisher Bay, Northwest Territories,
with one sample taken every 10 seconds. Because Baffin Island is both far from most
sources of urban noise and also in a region of intense magnetic activity, we expect the
spectrum to have a large range: for this hour’s data the extremes are 10 *and 1073
in units of (nT)?/Hz (nT is nano-Tesla). In this example, 8 windows were used with a
time-bandwidth product, N - W of 4.5. Thus details spaced closer than 4.5/3600. or
1.25 mHz are not resolved and, in particular, the spectrum near zero frequency
typically increases as ¢ / f* with v = 1-2 instead of flattening as it does here. In this
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Figure 2.3 Multiple-window estimate, of the spectrum of an hour’s data, of the
vertical magnetic field in Frobisher Bay. The 90 percent confidence intervals were
computed by jackknifing (2.20) and include effects of the decreasing degrees-of-
freedom shown in Fig. 2.4. Note that a straight-line fit to the spectrum between
about .03 and 0.10 Hz is outside the confidence region only over about 13% of this
interval, and so is a reasonable approximation except near the “absorption band”
around .08 Hz.; excluding this region only 6% of the region is missed.

example (2.20) was jackknifed directly with dramatically different results from those
expected under Gaussian theory. In particular the maximum jackknife variance esti-
mate for In § of 15.4 exceeds the nominal value ¥'(8) = 0.1331 from (2.44) by a
factor of 116. We emphasize that this factor i< spplied to the logaritbm of the spec-
trum! (For plotting purposes the variance estimates have been smoothed over a span
of *+3 points.) This may be surprising, but recall that the spectral representation of a
time series only constrains the variance of the orthogonal increment process: it does
not constrain either its distribution or its fourth moments. Neithér is it required that
the distribution be frequency independent. In this particular example there is,
excepting the usual Fourier transform argument, no good reason to expect Gaussian
statistics: on the contrary, the “dips” near 0.04 and 0.08 Hz. are peculiar and, in later
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data segments, evolve into peaks, implying that complicated dynamics are involved.
In addition to the large jackknife variances, the jackknife bias correction (not shown)
also becomes large at higher frequencies having a range of (—3.2, +0.4); given their
other interpretations as homogeneity statistics given earlier, this is not surprising.

A second aspect of this example worthy of note is that both variance and
degrees of freedom (the latter obtained from the coefficient weights) vary with
frequency. An estimate of the degrees of freedom is shown in Fig. 2.4 from which it
may be seen that they vary between 16 and 4.5, so when setting confidence intervals
using (2.49) both frequency dependent variance and degrees of freedom must be
used. At the high-frequency end of the spectrum, we have both a large jackknife
variance and low degrees-of-freedom so that the extreme 5 to 95 percent confidence
intervals cover five orders of magnitude.

Estimated Degrees of Freedom

a 1 1 | 1

0 0.02 0.04 0.06 0.08 0.10
Frequency (in hertz)

Figure 2.4 The estimated degrees-of-freedom used to compute the confidence
intervals for the magnetometer data shown in Fig. 2.3. In this example, prewhitening
was deliberately nof used so that the uncertainty in the estimate used to generate the
filter can be seen.
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Our last univariate spectrum estimation is related to the problem of autore-
gressive modeling. As mentioned earlier, Swanepoel and van Wyk [10] have pro-
posed bootstrapping ARMA spectrum estimates by treating the estimated innovations
as interchangeable, and the idea has been elaborated on by Bose [46]. Our objection
to this approach is simply that present ARMA modeling techniques usually result in
oversimplified descriptions for most spectra encountered in practice. As a conse-
quence, the estimated innovations contain significant information on details of the
spectrum and so are not interchangeable. As an example of this effect we take data
consisting of logarithms of daily counts of 0.5 to 1.5 Mev protons measured by the
Voyager 1 spacecraft starting on day 250 of 1977 and ending 800 days later, just
before entering Jupiter’s magnetosphere. For details, see Maclennan et al. [47].
Superficially, these data are well approximated by a fourth-order autoregressive mod-
el, specifically a product autoregression of the type discussed in McKenzie [48].
Figure 2.5 is a plot of a spectrum estimate and an AR-4 approximation. By standards
appearing to prevail in the AR community, this approximation is excellent. Using the
AR model as a prediction-error filter and computing a multiwindow spectrum of
these residuals together with jackknife 90% confidence intervals (based upon 5 to 95
percentage points) gives the results shown in Fig. 2.6, and it is clear that the spectrum
has significant low-level structure. However, because the range of this spectrum
(max/min) is only 3.55, and the estimated innovations 95.2 percent of the residual
variance, the choice of a higher-order AR model by any of the standard criteria is
extremely improbable. Thus an AR modeler would conclude that AR-4 was appro-
priate and the residuals interchangeable, and proceed to “confirm” the model by
bootstrapping. He would, of course, miss the fine structure in the spectrum. This
detail is, incidentally, well reproduced in spectra computed from Voyager 2 data.

.6 JACKKNIFING ESTIMATES OF COHERENCE AND PHASE

In the analysis of multivariate time series, it is common to describe the complex,
off-diagonal elements of the spectral matrix with a normalized polar representation.
Given two series {x} and {y}, we estimate elements of the spectral matrix motivated
by maximum-likelihood analogies: the two autospectra S,.( f) and §,,( f) and the
cross-spectrum S, ( /) are formed; then S, ( f) is described by the subordinate enti-
ties coherence and phase. We use Tukey’s nomenclature: coberency is the complex
quantity

Sx([f)
[Sxx(f) S (]
while coberence, y is the magnitude of coherency. To avoid confusion we normally

use “complex coherency” and “magnitude-squared coherence” or MSC. For simplic-
ity we usually drop the explicit frequency dependence and write

() = (2.52)

vy =l
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Figure 2.5 An estimate of the spectrum of logarithms of daily counts of protons
with energies between .5 and 1.5 Mev measured by Voyager I The data used for this
estimate begin on day 250 of 1977, when the spacecraft is just outside Earth's mag-
netosphere, and ends 804 days later, just before entering Jupiter’s. The solid line is
the spectrum obtained by a fourth-order autoregressive approximation to the non-
parametric estimate, and is the reciprocal of the prewhitening filter used to obtain
the results shown in Fig. 2.6. Note that the frequency scale is also logarithmic and
that the spectrum is typical of a simple filter with a break point of about 100
days.

for coherence with y? for the population value of MSC. Sample values of coherency
will be denoted by ¢ and sample coherence by ¢ = |é|.

There is a significant literature on coherence estimation (see Carter [49] for a
recent review), including one of the few time-series papers making use of the jack-
knife. In that work, Lee [50] jackknifes MSC estimates directly without making use of
variance stabilizing transformations and with an emphasis on bias reduction.

For an estimate of MSC based on m independent samples (or approximately for
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0.5

Estimated Residual Spectrum with
5 and 95% Jackknife Confidence Limits
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Figure 2.6 An estimate of the spectrum with 5 and 95 percent confidence limits for
the Voyager data prewhitened with the filter shown in Fig. 2.5. Note that despite the
apparently excellent fit in Fig. 2.5, the 5 and 95 percent levels overlap, so the pre-
whitened filter output cannot be considered white. Note also that the low frequency
spectrum does not increase rapidly as would be the case for a power-law process, so
that fractal interpretations of the data can also be excluded.

2m equivalent degrees-of-freedom) from a stationary Gaussian process, the proba-
bility density function of ¢? is given by Hannan [51, p. 259] as

(1= 4y
o et |

p(c®) = (A=~ 2F(m m;1;yc), (2.53)
where , F, is Gauss’s hypergeometric function. It is well known that the ordinary

estimate of MSC is biased, with pth central moment given by Carter and others [52]
as

T'(m)I'(p +
Blc™) = st (L= " sl + L ) (254)

Like numerous other statistics, transformed estimates of coherence are more
suitable for jackknifing (not to mention plotting) than are the raw estimates. The
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transform must be chosen with some care. As an example, the standardized F-trans-
form, Koopmans [53, p. 284]:

CJ
Joac=(m—1) T2 (255)

has, in contrast with (2.54), moments given by the closed-form expression

1+ 42
E{foud=(m+ 1" 'B(m-b-1,b+1)PP™ -2~V (—1 _:’,2),

where P is the Jacobi polynomial. In particular, the mean is

S dom 1+(m-1)‘yz]
E{f’”"‘}_m-z[ 1-42 g
which is not of the form (2.4). The problem may be avoided by the use of
2
= In
Y 1-¢
or by “fixing” the scale factor m — 1 in (2.55). In practice, we prefer
Q= V2m - 2 tanh” '(c) (2.56)

as, under standard conditions, this transform is known to convert estimates of MSC to
an almost Gaussian distribution with mean

ik /A Tha -1 !
E{Q} 2m — 2 tanh™ '(y) + 72?-_—2
and unit variance, Koopmans [53], Amos and Koopmans [54]. If a plot of the trans-
formed coherence and the * 1 jackknife deviation limits is made, it is immediately
obvious if the jackknife tolerance is not close to 1.

To jackknife coherence and phase estimates, we assume that N complex trans-
form pairs, x,( f) and y,(f), & = 1, 2,. .., N are available. These may be the result of
a multiple-window analysis on a single section with N windows, from N distinct data
segments, or from a combination of K windows on B segments, so N = KB. We then
form the basic deleted estimates of coherency from the corresponding delete-one
estimates of the spectral matrix

N

_g, xe( S )ye(f)
k]
cn= (2.57)

N N 2
2. OOEZ 5P

k#j k#f
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forj =1, 2,..., N plus the standard estimate with nothing omitted. From these, we
transform to the almost normal variates

Q7 = V2m — 2 tanh™ '(|é7\) (2.58)

and proceed to find estimates and tolerances as in Section 2.2. Because the mean and
variance of Q do not depend on v, and hence not on frequency, simple averages over
frequency of the jackknife bias and variance estimates are sensitive problem indica-
tors.

Figure 2.7 is a coherence plot for the gas furnace data, series J in Box and
Jenkins [55). As this set is short (296 samples) we used a multiple-window estimate
with 9 windows and a time-bandwidth product of 5. In this figure the inner axis on
the left is the normal transformed scale, plotted linearly, and represents values from
(2.56). In these units, coherence estimates have unit standard deviation. The outer
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Figure 2.7 Estimated magnitude-squared coherence with =1 jackknife deviations
between the input methane feed and output CO; concentration for the Box and
Jenkins “gas furnace” data. Jackknifing has been done on the approximately normal
variates (equation 2.58), with results shown on the inner left ordinate. The outer left
ordinate shows conventional values of MSC, while the right ordinate shows the
cumulative distribution function assuming the true coherence to be zero. Here the
jackknife estimates of standard deviation are about one, the expected level. Note the
abrupt change in character at .0028 Hz.
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left axis gives the corresponding values of magnitude-squared coherence obtained by
inverting (2.58). The vertical axis on the right shows corresponding values of the
exact cumulative distribution function of the magnitude-squared coherence assum-
ing zero true coherence. These are computed using transformation (2.55) and cor-
respond to integrals of (2.53) for y = 0. The three curves plotted are the jackknifed
estimate of MSC from the normal transform (2.58) and the jackknife estimates of * 1
standard deviation again estimated after using transformation (2.58). Because the
data used in this example are reasonably well behaved, they are, as expected, about
*+1 unit from the estimate on the transformed scale. At frequencies below 0.02 Hz
the coherence is reasonable but, above that frequency, not significantly nonzero so
that estimates of transfer functions and .phascs would be unreliable in this band.
Applying the same method to the prewhitened series using the filter given by Box
and Jenkins [55, p. 381] yields the same results.

For a second example, we compute the coherence between the north-south
components of the Earth’s magnetic field between a magnetometer at the Victoria,
B.C., observatory and an ocean-bottom instrument located in Queen Charlotte Sound
off the west coast of Canada during a geomagnetically active period of 1982. Here
we used a combined method with two windows on each of five sections. The coher-
ence is shown in Fig. 2.8 using the same transformations as before: note that the
jackknife standard deviation is about 2, so that the coherence is considerably less
significant than it would appear. Also, despite the fact that 1000 sample data seg-
ments were used, we must conclude that the Fourier transforms are far from Gaus-
sian. Again, the cause of this is similar to that discussed with Fig. 2.2, where nonsta-
tionarity results in dominance of the estimate by a subset of the time series.

2.6.1 Phase Estimates

Coherency is characterized by both magnitude and phase with phase frequently
being a more sensitive parameter than MSC. For example, measurement noise atten-
uates MSC but only increases the variance of a phase estimate, so averaged phases
from different runs will converge where averaged MSC’s will be biased downward. As
a basis for comparison, Goodman [8, eq. 4.58] gives the probability distribution for
the phase ¢ of a coherency estimate made using 7 independent samples from a
population with true coherency §. Then with

¢ = phase(§) — E{phase(9)},

where phase (2) = atan(Im{z}/Re{z}) is the four quadrant complex arctangent (the
Fortran function atan2)

R e~ Im + (/21 + (k/2))
P(®) = 5 orom hgo(Z‘y)"H———iY’kj']_)‘—‘—'—-ﬂcosﬂb, (259)

where 8 = 1 — y%. However, because it is circular, phase is a more complicated
quantity to estimate and we use the circular variance for a unimodal phase distri-
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forj=1, 2,..., N plus the standard estimate with nothing omitted. From these, we
transform to the almost normal variates

Q= V2m — 2 tanh™'(|é7|) (2.58)

and proceed to find estimates and tolerances as in Section 2.2. Because the mean and
variance of Q do not depend on v, and hence not on frequency, simple averages over
frequency of the jackknife bias and variance estimates are sensitive problem indica-
tors.

Figure 2.7 is a coherence plot for the gas furnace data, series J in Box and
Jenkins [55]. As this set is short (296 samples) we used a multiple-window estimate
with 9 windows and a time-bandwidth product of 5. In this figure the inner axis on
the left is the normal transformed scale, plotted linearly, and represents values from
(2.56). In these units, coherence estimates have unit standard deviation. The outer
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Figure 2.7 Estimated magnitude-squared coherence with =1 jackknife deviations
between the input methane feed and output CO; concentration for the Box and
Jenkins “gas furnace” data. Jackknifing has been done on the approximately normal
variates (equation 2.58), with results shown on the inner left ordinate. The outer left
ordinate shows conventional values of MSC, while the right ordinate shows the
cumulative distribution function assuming the true coherence to be zero. Here the
jackknife estimates of standard deviation are about one, the expected level. Note the
abrupt change in character at .0028 Hz.
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left axis gives the corresponding values of magnitude-squared coherence obtained by
inverting (2.58). The vertical axis on the right shows corresponding values of the
exact cumulative distribution function of the magnitude-squared coherence assum-
ing zero true coherence. These are computed using transformation (2.55) and cor-
respond to integrals of (2.53) for y = 0. The three curves plotted are the jackknifed
estimate of MSC from the normal transform (2.58) and the jackknife estimates of = 1
standard deviation again estimated after using transformation (2.58). Because the
data used in this example are reasonably well behaved, they are, as expected, about
=1 unit from the estimate on the transformed scale. At frequencies below 0.02 Hz
the coherence is reasonable but, above that frequency, not significantly nonzero so
that estimates of transfer functions and ‘phases would be unreliable in this band.
Applying the same method to the prewhitened series using the filter given by Box
and Jenkins [55, p. 381] yields the same results.

For a second example, we compute the coherence between the north-south
components of the Earth’s magnetic field between a magnetometer at the Victoria,
B.C., observatory and an ocean-bottom instrument located in Queen Charlotte Sound
off the west coast of Canada during a geomagnetically active period of 1982. Here
we used a combined method with two windows on each of five sections. The coher-
ence is shown in Fig. 2.8 using the same transformations as before: note that the
jackknife standard deviation is about 2, so that the coherence is considerably less
significant than it would appear. Also, despite the fact that 1000 sample data seg-
ments were used, we must conclude that the Fourier transforms are far from Gaus-
sian. Again, the cause of this is similar to that discussed with Fig. 2.2, where nonsta-
tionarity results in dominance of the estimate by a subset of the time series.

2.6.1 Phase Estimates

Coherency is characterized by both magnitude and phase with phase frequently
being a more sensitive parameter than MSC. For example, measurement noise atten-
uates MSC but only increases the variance of a phase estimate, so averaged phases
from different runs will converge where averaged MSC’s will be biased downward. As
a basis for comparison, Goodman [8, eq. 4.58] gives the probability distribution for
the phase ¢ of a coherency estimate made using 7 independent samples from a
population with true coherency §. Then with

¢ = phase(y) — E{phase()},

where phase (z) = atan(Im{z}/Re{z}) is the four quadrant complex arctangent (the
Fortran function atan2)

(/2)IT[1 + (R/2))

Im +
2 (2y)* e+ 1)

p(d) = os*d, (2.59)

2al(m) <

where 8 = 1 — y%. However, because it is circular; Phase is a more complicated
quantity to estimate and we use the circular variance for a unimodal phase distri-
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Figure 2.8 Estimates of magnitude-squared coherence and * 1 jackknife deviations
between the north-south, H, magnetic field recorded at Victoria Observatory, and by
a seafloor magnetometer in Queen Charlotte Sound on day 188 of 1982. Note that
here the jackknife standard deviation estimates are about twice as large as expected.
The variance being four times larger than expected implies that one cannot trust
simple inferences from this data.

bution p(d) having expected value 0, Mardia [56]:
ai = [ 201 - costpe)a (2.60)

Because 2(1 — cos &) = &? for small &, the circular variance is intuitively satisfying
for small errors and is more reasonable for large ones. The integration to obtain the
first cosine moment

C.= J-P(¢') cos ¢ db

is done by Wallis’s formula. The result is

_ w2 T(m + 1/2)

Cy = h /2, 3/2; 2; ¥
1% e Tom) Fi(m + 1/2, 3 Y



Sec. 2.6  Jackknifing Estimates of Coherence and Phase 917

Here, the circular variance is given by
0 =2(1-GCy).

As an example y? = 0.64 and m = 5 give 0§ = 0.076962 or, changing to degrees,
oo = 15.895°.
The corresponding phase estimates are obtained by minimizing

N
r= 2 21 - cos(¢; —$)]
j=1
with respect to é. Manipulating the resulting condition

N
0= 3 sin(d;— )
=1
by the usual trigonometric identities results in several equivalent formulas for b, 1,
and To.
The specific approach used here is to compute the phase factors

b 2.61
7 e s,
from (2.57) and their average
1 L
=N ; E em (262)
j=1

Define ¢~ = phase{e~}, and the jackknife variance estimate comes from the mean
resultant

VibA) = 20m = 1)(1 = le~) (2.63)
For small phase errors, this is equivalent to

m=1

"

2 phase? {ee~),

J=1

but is more meaningful for large errors. (Note that this form is just a simple way to
compute £ (¢ — &~ )* while allowing the difference between phases of 1° and
359° to be 2° apart.)

Figure 2.9 shows the phase estimate for the gas-furnace data whose coherence
was shown in Fig. 2.7. The general slope corresponds to a delay of about 5.3 samples
between input and output, in general agreement with the 5 sample delay given for
the peak of the cross-correlation of the prewhitened series by Box and Jenkins [55].
Below 0.02 Hz, where the coherence is high, the phase is well determined but,
particularly in the 0.02 to 0.05 Hz band the phase is essentially unknown. Curiously,
the phase near the band edge has returned to nearly the same slope as the low-
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Figure 2.9 Phase of the complex coherency for the “Gas Furnace” data corre-
sponding to the coherence estimate shown in Fig. 2.7. The approximately linear
phase dependence on frequency below .02 Hz corresponds to a simple delay and is
well determined. At many higher frequencies, however, the phase is essentially inde-
terminate as the jackknife * 1 deviation limits exceed 360 degrees. Between .037
and .054 Hz, the estimate should likely be 360° higher.

frequency portion so that, without the jackknife tolerances, we might be tempted to
believe the apparent structure at intermediate frequencies.

Figure 2.10(a) shows the phase estimated between global temperature (as esti-
mated by changes in '®0 from the deep sea sediment core V22-174, see Imbrie et al.
[57] and the seasonal difference in solar insolation due to changes in the eccentricity
of the Earth’s orbit over the last 730,000 years. The data consists of 156 samples
spaced about 4977 years apart. Eccentricity of the orbit was computed using the
trigonometric series expansions in Berger [58]. Because of the limited data and pres-
ence of much structure in the spectrum, a multiple-window approach with six win-
dows and the relatively low time-bandwidth product of 4 were used. As before, the
figure shows the estimated phase and the jackknife +1 standard deviation curves.
These, however, are somewhat tighter than might be expected from the coherences,
Fig. 2.10(b). The difference is that here the eccentricity is deterministic so that the
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Figure 2.10 The upper panel shows the estimated phase and * jackknife standard
deviations between the 8 '® O proxy global temperature record, from core V22-174,
and the eccentricity of the Earth’s orbit for the last 730,000 years. At very low
frequencies, periods of 400,000 years and more, the record is probably nonstation-
ary, details in the spectrum are unresolved, and there is confounding with the
unknown mean value, so the coherences (shown in the lower panel) are low and the
phase errors are large. The increasing phase errors at high frequencies are a result of
poor signal-to-noise ratio, again reflected in poor coherences.
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formulas given above do not apply. Formulas for phase distributions with a deter-
ministic reference are common: see, for example, Rice [59], Middleton [60], or Munk
and Cartwright [61].

.7 APPLICATIONS TO MULTIVARIATE SPECTRUM ESTIMATION

For several reasons, the analysis of multivariate time series is disproportionately more
difficult than is that of univariate or even bivariate time series. First, the number of
functions to be estimated increases quadratically as the number of series even with-
out considering higher-order spectra. Second, we are now dealing with p-dimension-
al matrices instead of vectors and so the number of estimates N must be greater than
D to prevent their being singular. Usually more data are required, in turn making data
screening more laborious and the probability of outliers and subtle nonstationary
effects higher. Third, the number of questions we may ask, and the number of things
that can go wrong with model assumptions is dramatically increased. Fourth, many
of the series encountered represent vectors (in the physical sense) so the problem is
one of multivariate-vector time series. Complexity increases rapidly: compare the
problems encountered in estimating a bivariate spectral matrix with real data dis-
cussed in the previous section to those in Mooers [62] where the north-south and
east-west measurements of an ocean current are treated as a single complex series
and the coherency between stations computed. For this problem both inner, the
usual ave {x7}, and outer, the unconjugated ave {xy} coherences are required and
both positive and negative frequencies must be considered. This approach is impor-
tant, however, because rotations are readily identified, while they are not as clear
given the 16 real functions of the spectral matrix for four real series. Finally, because
many of the functions involved are restricted to specialized areas, available estima-
tion procedures are limited to ad-boc, moment methods, or at best, Gaussian max-
imum likelihood. For many, perhaps most, of these problems, sampling distributions
are unknown and the careful comparison of numerous different estimators (as in
Andrews et al. [63], where 68 estimates of location were studied) that have been
made for less specialized problems are unavailable.

All these are reflected in graphical problems; it is one thing to show a page of
multiple scatter plots between, say, 5 sets of real, scalar variables and another to try to
display equivalent information between 5 time series (remember the equivalent data
is now complex) at perhaps 1000 different frequencies. If this seems extreme, con-
sider the problems in the analysis of data from the EMSLAB experiment, see EMSLAB
Group [64], where 29 such five-component vector time series were recorded simul-
taneously with an additional 118 three-component series. As a result, each problem
tends to have its own programs tailored specifically to the physics of the problem and
to the estimation of parameters of physical interest. Because the distributions of
many of these parameters are unknown, even with Gaussian data, they are ideal
candidates for jackknifing. The remainder of this section gives three examples of
such problems: the first is a brief discussion of transfer function estimation by least
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squares; the second covers transfer function estimation by a singular value decom-
position; and the third is on the estimation of polarization parameters.

2.7.1 Transfer Functions

The computation of transfer functions is the frequency-domain equivalent of multi-
variate linear regression. As such, the problem inherits both the difficulties of regres-
sion (with the added complication of being complex) and the techniques devised to
treat them. The latter includes numerous jackknife and resampling methods: see
Miller [3], Hinkley [ 18], and the recent survey paper by Wu [65]. Details of complex
least-squares problems are described by K. S. Miller [66]. Also, before attempting to
compute transfer functions, we should be familiar with the usual regression prob-
lems, in particular those caused by collinearity and leverage: see Belsley and others
[67], Cook and Weisberg [68], and Mosteller and Tukey [4].

The method we prefer for estimating transfer functions is to use the basic
complex coefficients from the various series directly as elements of Y and A in (2.7),
then solve it using a stable method such as QR decomposition, or singular value
decomposition (SVD)." In addition to avoiding the numerical ill-conditioning of the
normal equations encountered when the spectral matrix is explicitly computed, this
facilitates the application of the jackknife by allowing the use of downdating proce-
dures. In such methods, see, for example, Lawson and Hanson [71, Ch. 24], or Don-
garra et al. [72, Ch. 10], we typically compute a QR decomposition for the full prob-
lem. This decomposition is saved and each of the delete-one estimates, where each
row of both Y and A is deleted simultaneously, derived from it by a downdating
operation. For the SVD, one may begin with a Cholesky factorization of the N X P
matrix, downdate it, and use a SVD on the resulting P X P matrix. Because only a
one-stage downdating operation is used, roundoff error does not accumulate.

Figure 2.11 shows the ratio of the jackknife variance estimate to the conven-
tional regression variance estimate for the complex transfer function between the
north-south (H) component of the geomagnetic field and the voltage induced on a
225-km section of the TAT-6 trans-Atlantic cable where induction from both the
north-south and east-west (D) components are considered simultaneously and a con-
ventional least-squares method is used. This data is part of that used in Lanzerotti
et al. [73] and is for the first 2.5 hours of day 116, 1985. The magnetometer is lo-
cated near the shore end of the cable in Greenhill, Rhode Island. Specifically, let

M(f) be
H,(f) D\(f)
Ma(f) = | B0 DAL ), (264)

HW(f) DNCS)

*For a detailed discussion of singular value decomposition, QR decomposition, and Cholesky fac-
torization, see Golub and Van Loan [69] and Haykin [70].
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Figure 2.11 The ratio of variance estimated by the jackknife to the conventional
(normal-theory) variance for the part of the complex transfer function between the
north-south, H, component of the geomagnetic field, and voltage induced on the part
of the TAT-6 cable on the continental shelf. Note that the average, across frequency,
of this ratio is greater than one, and also that the ratio shows signs of systematic
behavior.

and taking the corresponding voltage coefficients to be

V() = Vi), Va(f), -, VD) (2.65)

we solve
V(f) =M(f) T2 f) + R f), (2.66)

where T,( f) is the transfer function vector and R; the residuals. The conventional
variance estimate for this problem is

1 ”1‘2”2

var{T,} = (M} M;)~ 7o T

(2.67)

and was computed using all N coefficients. From this figure it may be seen that the
jackknife variance estimates usually exceed the conventional ones for this problem



Sec. 2.7  Applications to Multivariate Spectrum Estimation 97

by 20 to 30 percent but factors of 2 are common. Considering both components and
several hours shows that factors of 4 and 5 are not unusual. A possible explanation is
simply the nonstationarity and nonnormality of the geomagnetic field: this is unsat-
isfactory as this data period appears reasonable. A more likely explanation is that
systematic oscillations in the spectrum and transfer functions suggest the presence of
long time delays: this would imply that the spectrum is not resolved and the variance
is being increased by the presence of correlations of the kind given by (2.23). See
the appendix of the paper by Lanzerotti et al. [73].

A more interesting use of these methods is to determine if the model is two or
three dimensional. For this problem it is known that usually the incident geomag-
netic field has two independent components, H and D, and that the vertical compo-
nent, Z, is linearly dependent on H and D. It is, however, possible for there to be an
independent Z component and its presence and effect on the cable voltage is of
interest. Thus we may consider the three-dimensional problem

H\(f) Di(f) Z:(f)

My(f) = Hz(:f) Dz(:f) Zz(:f) I
Hy (f) Dx(f) Zn(f)
and solve
V(f) = Ma(f) Ts(f) + Rs(f). (2.69)

Clearly the additional energy explained by the assumption of an independent Z com-
ponent is [R|* — ||Rs|* with two degrees of freedom for the complex coefficiens, so
the partial F test (see, e.g., Draper and Smith [74]) is

/2 Rq|* — [Rs|®
(172(N = 3)] |Rs|*

Such a test is shown in Fig. 2.12, and it may be seen that the levels are indecisive.
(Here N = 15, so the 99 percent point is 5.61, larger than any of the values plotted.
The original data segments are 900 samples long and a multiple-window estimate
with a time-bandwidth of 10 was used, so the levels obtained could happen easily by
chance.) Itis well known, see, for example, Box [44], that an F statistic is sensitive to
nonnormality. Figure 2.13 is a plot of the jackknife variance estimates of In F,, and
clearly they are both extremely unstable and often much larger than the expected
value of 1.732. For this problem, the measurements available are insufficient for an
unambiguous decision: in addition to the problems discussed, the magnetic field
almost certainly contains gradient terms and, worse, the magnetic measurements are
not noise free. Before concluding this example, we note that if additional measure-
ments were available, the problem of deciding which regression terms to include
would be even more difficult. In standard regression problems, the method of choice
for making such decisions appears to be Mallows’s [75] C,, statistic, see Thompson
[76). Like many other statistics considered here C, depends on ratios of quadratic
forms and could be similarly jackknifed or bootstrapped with the points on the usual

() = (2.70)
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Figure 2.12 A partial F test for the presence of induced voltage of the TAT-6 cable,
due to an independent vertical, Z, component of the geomagnetic field. The statistic
is based on normal theory and is indecisive (see Fig. 2.13).

C, plot replaced by error bars or boxplots. We have not solved the problem of
including frequency dependence in such a plot!

2.7.2 Errors in Variables Regression

In many multivariate problems it is unreasonable to make the usual least-squares
assumptions and assume that all the noise is in the “response” channel and that the
“explanatory” series is noise free. A typical example occurs in magneto-variation
studies where three orthogonal components of the Earth’s magnetic field are record-
ed simultaneously with the two horizontal components, H and D, regarded as “input”
and the vertical component, Z, as “output.” The usual least-squares assumption that
all the instrumental noise occurs additively on the output and the inputs are noise
free is clearly ridiculous: the most reasonable assumption is that the instrument noise
power is identical on all three channels. (But note that the relative noise can be
significantly different.) For real data this problem has been treated by numerous
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Fig. 2.13 A jackknife estimate of the variance of the logarithms of the partial-F statistic, shown
in Fig. 2.12. The expected variance here is 1.73, shown by the dashed line. Note that the
jackknife variance of the log F tests is plotted on a logarithmic scale (an additional logarithm) so
the average is much higher than normal-theory would indicate.

authors, see Anderson [77] for a recent review and Fuller [78], but of particular
relevance to the problems considered here are Park and Chave [79] and Golub and
Van Loan [80]. The idea of applying the jackknife to such problems appears in Bril-
linger [81].

For this problem we consider the N X 3 matrix Ms( f) noted earlier and com-
pute its singular value decomposition:

M; = UZV', (2.71)

The transfer function is given by the right singular vector, V3 corresponding to the
smallest singular value o3 Explicitly, we assume o3 is small, so that

V3| H+ V32 D+ V53 Z = 0, (272)

where U is the matrix of left singular vectors, V is the matrix of right singular vectors,
and 2 is the diagonal matrix of singular values. Thus, for example, the H to Z transfer
function is given by —V3,/Vss.

Figure 2.14 shows the H to Z and D to Z pseudo-values of single-frequency
components of this transfer function for the Greenhill, R.I. magnetometer mentioned
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Figure 2.14 Upper left panel
shows the pseudo-value estimates
of the complex H to Z transfer
functions for the Greenhill, Rhode
Island, magnetometer at 1.95 mHz.
The corresponding D to Z transfer
function is shown in the lower pan-
el. A multiple-window method
with a time-bandwidth of 10 and 15
windows was used on a single two-
hour data segment with the trans-
fer functions computed by the SVD
method. In these figures, both the
pseudo-values and standard esti-
mates are shown by X's, the central
+ is the complex median, and the
circle the radial MAD.
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in the preceding example. The coefficients were obtained from two hours of data
(720 samples) in a single section using a multiple-window method with a time-
bandwidth product of 10 and 15 windows. The frequency is 1.95 mHz correspond-
ing to a period of 512 s. The axes represent the real and imaginary parts of the
transfer functions, the X’s the individual pseudo-transfer functions obtained by delet-
ing each row (or window) in turn and combining with the full estimate via (2.2) the
central + the complex median determined by minimizing

N

Z

J=1

The radius of the circle is the complex median absolute deviation or MAD. Note
that this is not the same as taking separate medians of the real and imaginary parts and
is preferred because it is phase-invariant. However, as usual there are an equal num-
ber of points inside and outside the circle and, because N is odd, one on it. There are
also two “outliers,” which are somewhat mysterious as only one data segment is used
and it appears to be stationary. Figure 2.15 shows the cross-validation errors for this
example against the minimum eigenvalue, oy5. The cross-validation error is
obtained by finding the delete-one transfer function from V7, as usual, then com-
puting the misfit on the deleted jth row:

L) Figure 2.15 The cross-validation vari-

; ance for predicting Z, from the SVD de-
1 1 1 L 1 1

‘%(.;015 0.016 0.017 0.018 0.019 0.020 0.021 0.022

lete-one transfer function estimates
shown in Fig. 2.14, against the corre-
Minimum Eigenvalue sponding minimum eigenvalue.
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07 = [VaugHy + VaaDy + VaanZ .

Observe that omitting an outlying point from the SVD calculation both decreases the
minimum eigenvalue and increases the cross-validation error. The nearly straight-
line behavior seems to be coincidental.

2.7.3 Homogeneity and Polarization

A third application in this area is the computation of complex multivariate bomo-
geneity statistics and polarization parameters used in electromagnetic and seismic
problems to describe transverse waves. For this example we use recordings of the
two horizontal components, H and D, of the geomagnetic field recorded simulta-
neously at three different, but closely spaced, stations. A major goal in making such
recordings is to infer properties of the earth, in particular the electrical conductivity,
underlying the stations. Making such inferences correctly, however, depends on
numerous assumptions, one of which is that the incident field is a homogeneous
plane wave. One test of this assumption is that the spectral matrices at the different
stations should be “similar.” Denoting the estimated spectral matrix at station j by
S$4), recall that it is simply the covariance matrix of the N = 2 matrix of coeffi-
cients

Hy(f) Dya())
G ()= Hf-’ff) Df-’ff) (2.74)
Hyn () Dyn ()
$() = 36N 6N @75)

computed at each of J stations. Wilks’ /ikelibood ratio test for statistical equality of
the estimated spectral matrices is

J
IT15HP
= 1

A =1 - (2.76)
l(p 3 8NV
J=1

For a derivation and background in the real case, see Anderson [35, Ch. 10]. The
distribution of this test under a complex Gaussian assumption is known, Gupta [82]
or Krishnaiah et. al. [83], and may be computed with sufficient labor. However, in
common with similar likelihood ratio tests, this one is so extremely sensitive to the
Gaussian assumption that the labor may not be warranted. A study of this problem
for univariate data is given by Conover et. al. [84]; see also Boos and Brownie [85]. As
a compromise, we have jackknifed the test, using a double log transformation.
(Double because asymptotically In A, is distributed as x7, so In {In A} is approxi-
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mately symmetric.) We then take the pragmatic approach that when the test is more
than two or three jackknife deviations from nominal, the data should be checked
more carefully.

As an example, we use a small fraction of the EMSLAB data mentioned earlier,
from stations 1, 2, and 4. These stations are located on a line running nearly east-west
near Lincoln City, Oregon, and are 10.6, 19.3, and 40.0 km, respectively, from the
coast. Figure 2.16 shows a homogeneity calculation for an 18,000 second data block
beginning at hour 5 of July 25, 1985 with coefficients calculated using a time-band-
width product of 10 and 15 windows. Clearly, the test fails over most of the fre-
quency band.

In this application, an informative diagnostic is given by the polarization param-
eters of the field at the different stations. A general description of polarization is

6

Likelihood Ratio Test for Across - Array Homogeneity

0.000 0.005 0.010 0.015 0.020 0.025
Frequency (in hertz)

Figure 2.16 The Wilks’ likelihood ratio statistic for homogeneity of the H-D spec-
tral matrices at stations 1, 2, and 4 of the EMSLAB array for hours 5 to 10 of July 25,
1985. The statistic 1n {1n A} was jackknifed, with the heavy center line showing the
average, and the lighter dashed lines the * 1 jackknife standard deviations. The plot-
ted curves have been nonlinearly smoothed, and it is obvious that in this time period
homogeneity is a poor assumption for most of the frequency band.
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given in Born and Wolf [86]. Means [87] describes the analysis of three component
transverse wave data, and Park et. al [88] discuss three component seismic data. In
this example, we are assuming that the direction of propagation is vertical downward
and consequently use only the two horizontal components so that the simpler anal-
ysis of Fowler et. al. [89] can be used, and we apply the jackknife both to estimate
variances of the parameters and to compare the results at different stations. Con-
tinuing the example, at each station we compute the polarization parameters and
jackknife variances of them; then, using the polarization estimates for the three sta-
tions, we compute a grand mean and its variance; finally, we compare the variance
between stations with the average jackknife variance at a single station. Specifically,
take D;(f) to be the smaller eigenvalue of $;(f) and let

P,(f) = Sj(f) -D;)(f)L (2.77)
The rotation, 0, of the major axis of the polarization ellipse from the H-axis is given
by
2ReiP
an20y( ) = ooy Db 278)

Py lj(f) b PZZj(f)'

Figure 2.17 shows the estimated rotation and jackknife *1 standard deviation
lines for the EMSLAB data. For stations 1 and 4 the rotation is small, similar, and
generally well constrained. At frequencies less than 2 mHz, variances are larger
because the spectrum is rapidly increasing and may not be resolved. Above 15 mHz,
the variance is larger simply because the signal-to-instrument-noise power ratio is
poorer. In the center of the band, however, the two stations agree within a few
degrees and their estimated deviations are also generally less than 20 degrees. Sta-
tion 2, however, differs markedly from 1 and 4 in that the mean rotation during this
interval is about 60 degrees although the jackknife deviation is similar to the others.
Figure 2.18 is a more formal comparison of these differences: in it we have divided
the between-station variance of the means, defined in the usual way, and here
assigned two degrees of freedom by the average of the three within-station jackknife
variances, the latter being assigned 3(N—1) degrees of freedom, with the result
presented as an F statistic. This F statistic is plotted in Fig. 2.18, and clearly the
difference between stations is highly significant. In this example the behavior of the
rest of the polarization pasameters was similar to rotation, and we should remark that
usually the assumptions are satisfied and the field appears homogeneous.

2.8 SUMMARY

The purpose of this chapter has been a detailed description of methods for comput-
ing the variances of estimates of the various frequency-domain functions commonly
used in time-series analysis without imposing unverifiable distributional or model
assumptions on either the basic estimate or on the variance estimate. Motivation for
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Figure 2.17 These three figures show estimates of the rotation of the polarization ellipse in
the H-D plane for the EMSLAB data of Fig. 2.16. As usual, standard and jackknife =1 standard
deviation lines are plotted. Note that the orientation is well determined between 2 and 16 mHz,
and that the estimates for stations 1 and 4 are essentially identical. The intermediate station, 2,
however, is significantly different, with a mean polarization rotation about 60 degrees.
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Figure 2.18 A summary of the discrepancies in polarization shown in Fig. 2.17.
The variance computed between the center estimates of rotation of the polarization
ellipse for the three stations, divided by the average of the jackknife variance esti-
mates. The differences between stations is much larger than would be expected
from estimates made at individual stations. It should be emphasized that this is a rare
condition and that, usually, polarization across such a limited geographic region
shows only small changes.

using nonparametric and distribution-free variance estimators was described in the
introduction; time-series data are typically neither stationary nor Gaussian, frequent-
ly contain outliers, and often contain deterministic components. Thus, exact analytic
expressions for the probability distributions of estimates for many physically inter-
esting parameters are impractical, and even the problem of estimating effective
degrees of freedom for approximate distributions in the unrealistic case of stationary
Gaussian data can be difficult. The need for a robust and generally applicable alter-
native method of evaluating sampling properties of estimators is, of course, not
restricted to time-series problems and several possibilities have been studied in the
statistics literature. These methods, however, are restricted to independent samples
and fail with correlated data. In our adaptation of these methods to time-series prob-
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lems we have concentrated on the jackknife, but the same adaptation can be used
with the bootstrap.

The basic idea behind our adaptation of resampling methods to time-series
problems is simple; use an analysis method that transforms the highly correlated
samples of the original time series into uncorrelated coefficients, then resample
these. The canonical example of such a transformation is given by the Karhunen-
Loéve expansion, but it is unsuited for most spectrum estimation problems. Of the
multitude of time-series methods available we found that multiple-window and mul-
tiple-section methods, plus their obvious combination, result in nearly uncorrelated
coefficients. If the true spectrum is simple, the basic complex coefficients obtained
with the multiple-window method are uncorrelated; with multiple-section methods
the coefficients have an easily described Toeplitz correlation structure. In both cases
we showed that the jackknife variance estimate is asymptotically unbiased. Thus, we
reiterate that the failures of the jackknife in time-series problems noted in Miller’s [3]
review paper are, in our opinion, an indictment of the poor time-series methods to
which they were being applied, not of the jackknife.

With multiple-section estimates we may argue that, because the form of the
correlations is known from (2.22), we may filter the multisection coefficients to
obtain uncorrelated estimates and improve on the results of Section 2.4. This is true
in a restricted sense, but, because such filtering also has the effect of spreading an
outlier originally restricted to one or two segments over many segments, it destroys
the robustness properties that were the original motivation for using multiple-sec-
tion methods in the first place. We remark, parenthetically, that if we expect mod-
erate nonstationarity or clumpy outliers, then multiple-section methods with a
robust section combiner are currently the estimators of choice; however, if we are
reasonably sure that the data are stationary and statistical efficiency is important, then
multiple-window methods are preferred. Much of Sections 2.3 and 2.4 were con-
cerned with properties of the basis set used to compute the spectrum estimate. In
multiple-window estimates the basis functions are the Slepian, or discrete prolate
spheroidal wave, functions that are time-limited, optimally concentrated in frequen-
cy, orthogonal, and complete. The multiple-section basis, on the other hand, is more
akin to wavelets and probably better described in terms of frames than bases; see
Daubechies [90] for details.

In Section 2.5 we described a close connection between the jackknife variance
estimate and the classical Bartlett and Lehmann tests for homogeneity of variance. It
is reasonable to ask why such tests cannot be applied directly instead of through the
jackknife; the answer is that adaptive methods, e.g., using (2.20) to determine
weights, as well as robust procedures require moderate sample sizes and so preclude
such direct application. Note that the use of delete-one estimates give the jackknife
and bootstrap a much wider range of applicability than common variance formulas
based directly on the uncorrelated coefficients. For instance most of the examples in
Sections 2.6 and 2.7 cannot be computed in any other way; single-coefficient coher-
ency estimates are all identically 1, and the eigenvalue distribution of rank-one matri-
ces is exceptionally uninformative. In these applications we have used delete-one
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formulas with complex data although these are usually treated as having two degrees
of freedom, the difference being absorbed either in circular variances or, as with
coherence, by estimating two real variances simultaneously. The problem of count-
ing degrees of freedom deleted was addressed by Dempster [91] but needs further
study with complex data.

Section 2.6 covered coherence and phase estimates in reasonable detail, with
emphasis on the use of transformations. For magnitude-squared coherence the
inverse hyperbolic tangent transform was used, and it was recommended that the
frequency-averaged jackknife variance be used as a diagnostic. For phase the circular
variance was computed.

In Section 2.7 a beginning was made on multivariate problems. Transfer func-
tion calculations were mentioned, but, as these parallel ordinary regression, our
emphasis was on problems where much less is available. These included hypothesis
tests, test of homogeneity across an array, polarization, and errors in variable regres-
sion. Similar examples of these methods appear in [92] and jackknife methods are
rapidly being adopted by the electromagnetic geophysics community because it
works well. Other recent examples in related fields are given in [93] and [94].

Finally, where does this paper leave the subject? First, several of the examples
given here depart radically from standard theory. We emphasize that these examples
were not specifically sought out to be particularly perverse, but were simply ones
that the authors had come across in the course of our work during the last few years.
Consequently, we believe that estimates of power spectra and related functions used
for scientific inference should always be computed using robust methods together
with jackknife or bootstrap confidence intervals and that this paper, taken together
with those on robust estimation of spectra, permit this to be done for most such
problems. Further, given such data, we must either seriously question the existing
folklore of the field saying that Fourier transforms of nearly stationary series must be
nearly Gaussian or find reasons for the discrepency. In these problems, a deficiency
of variance usually implies the presence of deterministic components, but explaining
excessive variance is largely an open problem. A start on this problem using the
singular value decomposition of the time-frequency matrix of log spectral estimates
made by a combined multiwindow, multisection method is in Thomson [95]. Other
possible explanations include unresolved fine detail in the spectrum and nonlinear
interactions.

Other outstanding problems are how to apply resampling methods to higher-
order spectrum estimates such as the bispectrum. We have not treated mixed spec-
tra in detail and only “scratched the surface” of multivariate problems. Progress on
multivariate and the extensions to array and multidimensional processes is hindered
by numerous problems: regression diagnostics for complex data; the degrees-of-
freedom problem mentioned needs work, particularly given that with electromag-
netic data we may, in effect, be deleting quarternions; not to mention the graphics
problems of displaying multidimensional functions of frequency with uncertain-
ties.
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