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Abstmct-In the choice of an eduutor for the spectnrm of a ation- 
~rythlleseriestrom~fiaitesunpleoftheprocecs,theprobkmsofb~ 
control and codstency, or “moothiug,” are dominant. 

L n t h i s p . p e r w e p n s e n t a n e w w t h o d b ~ o n a “ l o a l ” e i g e n -  
errp~ntoestinutethespectnrmmtermsofthesolutionofaain- 
tegd equation. Comprrtationdly this method is equivalent to k g  
the weighted .vera@ of a aeries of direct- estimates based on 
orthogonal data widows (discrete  prolate Spher0id.l sequences) to 
treat both the bias and moothing problems. 

Some of the a t h e t h  t e a m  of this estimate are: thexe are no 
mbimay windowr;it is  asmaUgmpietheory;itisconsistent;itpro- 
videsauaualysin-of-nriinQtestfor~componeng;andithnshigh 
resolution. 

We also show relations of this estimate to maximum4ikelihood esti- 
mates, show that the esffmotion cqwcity of the estimate is high, and 
show appticationa to cohe~nce md polysphum estimates. 

I .  INTRODUCTION 
MAJOR PROBLEM in time series analysis is choosing 
an algorithm to estimate  the  spectrum  from a finite 
observation of the process in such a way that  the esti- 

mate is not  dominated by bias, is consistent  and statistically 
meaningful, and maintains  these properties  in  the presence of 
minor variations of assumptions. Our emphasis is on  the case 
where the  data available are a finite sample from  an almost 
stationary ergodic process containing relatively few outliers. 
We assume that  the range of the  spectrum may be large and 
that  the  spectrum may contain line components in addition 
to a continuous background. In  addition, we are interested 
primarily in nonparametric estimates as opposed to those 
where  a  specific functional  form is assumed. For  such cases, 
the procedures  described  in Thomson [ 3241,  and Kleiner et  al. 
[ 1901, [ 1911  work well. It should  be noted, however, that 
these techniques  are heuristic and  that,  despite  its long history, 
the  “best” existing solutions to  the  spectrum  estimation  prob- 
lem are  still not  completely satisfactory. In particular, when 
the series is short,’  the  spectrum is mixed,  or  the range of the 
spectrum is large, problems  are likely. If all three of these  con- 
ditions  are  true, problems are guaranteed. In  the following,  a 
new method is developed  which gives a more efficient solution 
to such problems. 

In  addition to  the basic estimation  procedure, we show  its 
applicability to estimating coherence  and polyspectra. In this 
paper we also define estimation  capacity which is a  logarithmic 
information measure  and  show that  the estimates  proposed 
here have a much higher capacity than  do  estimates based on 
the sample  autocovariances. We also show  that  the proposed 
estimates have a highlikeiihood  and  some  connections  between 
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the  number of data points in a “short” series may still be large. 
order as the  reciprocal series length. If the true  spectrum is complex, 

these  estimates,  maximum  likelihood, and  extrapolation 
estimates. 

In  the case where “outliers”  or missing values are present, we 
assume that  their influence will be controlled  by a “robust 
f i ter” in an iterative  modeling and  fitering  approach of the 
type described  in the papers mentioned above. Since  this paper 
is addressed to  the modeling  aspects of the overall problem, we 
will assume that  the  data  are nearly Gaussian and are exactly 
so for variance  expressions. We also assume that  the  data are  a 
finite sequence of samples, equally spaced in  time,  and  that 
the  computations will be  done digitally. 

A .  Existing  Nonparametric  Estimates 
Traditionally, nonparametric  spectrum estimates have been 

divided into  two classes, direct and  indirect. Of the  two,  the 
direct estimates  are  older,  dating to Schuster’s periodogram 
[2931. Because of the  computational  burden imposed  by 
direct  estimates  before the discovery of the  fast  Fourier trans- 
form [79]  and also by  analogy with classical multivariate  sta- 
tistics, indirect estimates, i.e., those based on estimates of the 
autocovariances of the series, were commonly used from  the 
work of Bartlett  [281,  1291, Parzen [2461-[2481, Blackman 
and  Tukey [4 11, and  are still occasionally used. However, 
since the autocovariances  may  be obtained as the discrete 
Fourier  transform of the  extended periodogram, for  the pur- 
poses of this discussion we assume the following  steps: first, 
forming  a  direct spectrum  estimate 

at radian frequency w by  tapering the  current  data sequence 
x ( n )  (typically  either  the raw data  or  the residuals from a ro- 
bust  prewhitening operation)  with a data_window D,, trans- 
forming,  squaring; and second, because S ( W )  is inconsistent 
in the sense that  its variance does not decrease with sample 
size, smoothing it, typically  by convolution  with a  second 
window G(w) ,  giving the  smoothed  spectrum  estimate, 

$w)  = SD(w) * G(w). 

Implicit in this equation is the  connection  with  indirect esti- 
mates: do  the  convolution bX multiplying the sample auto- 
covariances (the  transform of S , ( f ) )  by  the lag window  corre- 
sponding to G in  the  time domain. Since the  data window D 
primarily controls bias while- the  smoothing primarily effects 
variance, the two operations  are usually considered to be un- 
related. (Note  that,  for a given data window D, the  optimum 
smoothing window G may be obtained by the  methods of 
Papoulis [ 243 I .) 

Both  operations pose problems. In  the direct estimate,  the 
use of a data window is essential (Brillinger [ 581). If the  data 
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are unwindowed (all Dn = constant) or,  equivalently, if SD(O) 
is based on  the sample autocorrelations,  the  estimate is likely to 
be too badly biased to be  useful. Conversely, when a data win- 
dow is used, bias is reduced but so is the variance efficiency. 
One may also be distressed by  the  thought  that a data window 
weights equally valid data  differently. This  dilemma  has cre- 
ated considerable  controversy [ 581, [ 2351,  [360]. 

In a similar way, the  smoothing  operation is unsatisfactory 
unless there is reason to believe that  the underlying spectrum 
is smooth.  If, howeyer,  as  appears to be the  more  typical case, 
the  true  spectrum is “mixed,”  that is, it  contains line  compo- 
nents  on a smooth background,  acceptable “smoothen”  are 
nonlinear.  Since  these smoothen  operate  on  the raw spectrum 
estimate, phase information present in  the original data is not 
used and,  consequently,  the line detection  operation is much 
less efficient than  it should be. 

As a  replacement for  the  two  independent  estimation stages 
described above, we propose a  unified  algorithm having several 
interesting features:  first, it is a small sample theory  with  the 
sample size entering  explicitly into  the  methods  and perfor- 
mance bounds; second, it justifies the use of data  windows; 
third,  the estimate is consistent;  fourth,  the  procedure is data 
adaptive and,  in difficult situations where the range of the 
spectrum is large, will  give more  stable  estimates  in  regions 
where -the  spectrum is large without being excessively biased 
where it is low;  fifth,  it provides an analysis of variance test  for 
line components (including the‘ process mean); and sixth,  for 
multivariate data, it results in new classes of estimates. As a 
particular  example of the  latter,  the  technique results  in two 
distinct  estimates of coherence, one  for line components,  one 
for  the  continuum.  In  addition, these  estimates  are closely 
related to rqaximum-likelihood  procedures. We also give an 
example  showing their  utility  for analyzing nonstationary  data. 
In  the following  sections we define the basic estimation  and 
the adaptive weighting procedures.  (Earlier versions of this 
method  appear  in [ 3251 , [ 3261 .) 

B. Notation 

A 

We assume that  the data  consist of N contiguous samples, 
x(O) ,  x ( l ) ,  * , x ( N  - l) ,  which  are an observation from a 
stationary, real, ergodic, zero-mean, Gaussian time series. The 
sample size N is supposed to be finite and  typically “small.” 
For  notational convenience we shall generally write  Fourier 
transforms  with  the observation epoch  centered  at  the  time 
origin. We assume that  the  time between successive samples is 
1 so that  frequency f and  radian frequency o = 2nf are  defined 
on  their principal  domains (-4, $1 and (-n, n] , respectively. 
Boldface letters are used for vectors  and  matrices with com- 
ponents given by the corresponding italics, superscript * indi- 
cates complex  conjugate,  online * denotes  convolution, super- 
script + conjugate  transpose,  and 8 denotes  the  expected value 
operator. We denote  the  true  spectrum of the sampled process 
by S ,  including possible aliasing effects. For processes intrin- 
sically defined  in continuous  time, we assume that  adequate 
antialiasing filters and sufficient  resolution  and  sampling rate 
have been  used, so that  the  spectrum of the sampled process 
reasonably approximates  the original over the Nyquist band. 

C. Outline of the  Estimation Procedure 
We begin with  the general Cram&  spectral  representation  for 

a stationary process 

x ( n )  = 
112 

L 2  

, i znu[n-(N-1) /2]  dZ(v )  

in  which d Z ( f )  is a zero-mean orthogonal  increment process. 
d Z ( f )  is related to  the  spectrum S(f) by definition 

S(f) d f =   8 { ( l d Z ( f > I 2 ) .  

The problem of spectrum analysis is that of estimating the 
statistical  properties,  particularly the  moments, of d Z ( f )  from 
thefinite sample x(O), - 9 , x ( N -  1). 

In  the  time domain, to say that  the sample { x ( t ) } ; t  = 0, - * , 
N - 1 represents  a projection  from  the  infinite sequence { x ( t ) }  
generated by d Z ( f )  is trite; in the  frequency  domain  the same 
expression  has  some profound implications. Since we are  in- 
terested  in  the  properties of a frequencydomain  entity, it 
is natural to begin with  the  Fourier transform y(f) of the 
observations 

,,(f) = e - i z f l f [ n - ( N - 1 ) / 2 1  
N - 1  

x @ ) .  
n=o 

Using the spectral representation in place of the  data in the 
finite discrete Fourier  transform gives the  fundamental equa- 
tion of spectrum  estimation 

as the  equation expressing the  projection  from dZ(u) onto y(f) 
in the  frequency domain. We will treat it as a  linear Fredholm 
integral equation of the first kind. 

The problem  considered in this paper is the approximate 
solution of this equation,  spectrum  estimates based on  these 
approximate  solutions, their  sampling properties, and thew 
relation to  other  spectrum  estimation  procedures. 

Using the integral equation  approach we adopt a  weighted 
eigenfunction expansion  for  its  “solution” in the locality (fo - 
W ,  fo + W) of some frequency of interest fo.  The  equation 
and general considerations  leading to this decision are discussed 
in Section 11. We also summarize some  properties of the eigen- 
functions  (discrete  prolate spheroidal wave functions) which 
satisfy the integral equation 

These  are  described in Section 11-A. 
Having established these preliminaries and notation,  the 

basic solution  technique is given in Section 111. This solution 
results in  the local  high-resolution  estimate 

I 
where the expansion  coefficients are given by 

112 

Y k ( f 0 )  = uk(N,  w ; f ) Y ( f -  f o )  d f  

These  may be simply computed using the fast Fourier  transform 

of the  data, windowed  by the discrete prolate spheroidal se- 
quences, u$~)()(N, w). Based on  the  moments of these  estimates 
(Section IV), the coefficient weights d k ( f ) ,  necessary to obtain 
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a  convergent solution, are described in Section V. Section VI 
consists of an example of the  estimation procedures discussed 
in Sections I1 through V including  plots of the  data, individual 
eigenspectrum  estimates I y k ( f )  Iz, weights, and  the stabilized 
estimate 

- 
SUO) = I d k ( f 0 )   . Y k ( f O ) l 2 .  

K - 1  

k=O 

Section VI1 presents further sampling properties  and some 
efficiency  calculations. In  Section VIII we show  a relation be- 
tween  the eigenspectrum  estimates and  the periodogram. 

Section IX is addressed to  the general problem of the effi- 
ciency  in spectrum  estimation. Using mutual  information con- 
cepts, we defiie estimation  capacity and show that  the esti- 
mates based on  prolate spheroidal wave functions are very 
good  in this respect. 

Section X presents  a new high-resolution  estimate based on a 
free  parameter expansion. Section XI is concerned with  the 
characteristics of frequency-translated prolate  spheroidal wave 
functions as basis sets and  properties of basis sets suitable  for 
spectrum estimation. In  the  next  Section, XII, we show  a 
close relation  between prolate  spheroidal wave functions, 
Karhunen-Lobe expansions, and maximum-likelihood spec- 
trum estimates. We also show  a general double  orthogonality 
property and soms relations  between  these  and extrapolation 
estimates. 

In  Section XI11 we discuss some aspects of harmonic analysis 
for which these estimates are particularly well suited. This in- 
cludes  a new analysis of variance test  for line components  and 
some  results on resolution. 

The  subject of Section XIV is coherence and, by  similarity, 
polyspectra.  (In  both,  one  attempts  to estimate cross mo- 
ments: in coherence, between different series; in  polyspectra, 
between different  frequencies. Both  are subject to  the same 
problems resulting from rapid phase changes.) Again, new 
classes of estimates  are obtained. Among  these is a technique 
for  identifying related frequency  components in nonstationary 
data.  Section XV is a brief summary and a reminder of the 
place of this  theory in the larger problem. 

Because the  literature applicable to spectrum  estimation is so 
immense, it is very difficult to give complete references. There 
are many general references: [4] ,   [14] ,   [31] ,   [43] ,   [S l ] ,  
[ % I ,  1571,  [741,  [811,  [831,  [861,  [951,  [1111,  [1121, 
[1371,  [1431,  [1511,  [1551,  [1681,  [1801,  [1851,  11871, 
[1961,  [2281,  [2421,  [2481,  [265],  [353]. 

As a  final introductory  point we mention  the range of the 
spectrum. I have frequently been told by time series analysts 
that  spectra  with ranges of over 40  or SO dB approach  the 
pathological. In  contrast,  my personal  experience has been 
that when  data  are  carefully  collected  and  analyzed,  spectra 
from physical origins rarely have less than SO-dB range. I have 
also experienced some  situations when  perfectly  reasonable 
communications  problems led to a desire to estimate spectra 
with ranges of from  160 to over 200 dB. In most of these 
cases, the sampling rates required prohibited digital analysis; 
however, it is now possible to buy commercial digitizers with 
analog bandwidths of 1 GHz, and while quantization accuracy 
is still  a limitation  for  many problems, there are others where 
the  limitation is the range of the  algorithm. 

11. THE BASIC INTEGRAL EQUATION 

The basic motivation  for  studying  the power spectrum of a 
process is that any stationary process has a Cram& spectral 
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representation 

112 
x ( ? )  = IlI2 e i z n f t   d Z ( f )  

for all  t. The  random orthogonal-increments measure d Z ( f )  
has, for zero-mean processes 

8 { d Z ( f ) }  = 0. 

Its second moment,  the power  spectral  density or simply the 
spectrum S( f) of the process is defined  by 

This defiiition defines our problem-estimation of the  stamti- 
cal properties,  in particular the  moments, of d Z ( f ) .  

While details of this representation are available in [82],  
[95],   [193],   [286],  and  [3515, it should be recalled that 
dZ(u)  is an orthogonal  increment  process, that is, for distinct 
frequencies, f and u ,  d Z ( f )  and dZ*(u) are statistically uncor- 
related. (Note  that  uncorrelated does  not imply independence 
as d Z ( f )  = d Z * ( - f )  for real processes.) For  notational sim- 
plicity, it is convenient to  translate  the  time origin to  the cen- 
ter of the observation epoch  and, changing the  definition of 
d Z ( f )  by a phase factor, to write 

112 

x ( t )  = I,,, 
e i z n u [ t - ( N - 1 ) / 2 ]  dZ(u) .  (2.1) 

Since we wish to estimate  the  statistics of d Z ( f )  ffom  the 
sample ofNcontiguousobservations,x(O),x(l), * * * , x ( N -  l),  
we transform to  the  frequency  domain using the  finite discrete 
Fourier  transform defined, again for  notational convenience, 
in  time-centered form 

In these transforms we consider frequency to be a continuous 
parameter  with principal  domain (- 3, 31 and functions of fre- 
quency to be  periodically extended  outside this  domain. Note 
carefully that, since y ( f )  may be  inverted to recover the data 

112 
x ( t )  = , i 2nf [n - (N-1)121  I,,, v ( f  1 d f  

it  constitutes a trivially sufficient statistic  and, hence, no  infor- 
mation is lost  by  the  transform  operation. Because of this 
equivalence, we shall use either {x(?)}  or y ( f )  interchangeably 
as “data.” 

Combining the preceding two  equations gives 

J - l l z  r = o  

from which, on recognizing the sum as the Dirichlet  kernel 

one arrives at  the  equation 

l’a sinNn(f- u )  

y(f) = I,,, sin n(f - u )  
dZ(u). 



1058 PROCEEDINGS OF THE  IEEE, VOL. 70, NO. 9,  SEPTEMBER 1982 

We consider this t o  be  the basic equation of spectrum esti- 
mation. 

The most  obvious interpretation of this  equation is as a  con- 
volution  describing the “window  leakage,”  “smearing,” or  “fre- 
quency mixing,”  which is a  consequence of using the finite 
Fourier  transform. As a  result of this  effect,  there is no obvi- 
ous reason to  expect  the  statistics  of ~ ( f )  to  resemble those  of 
d Z ( f ) .  It should also be noted  that,  unlike y(f), the basic 
periodogram: P,(f) = I y(f) 1 2 ,  is not a  sufficient  statistic  for 
the  data, which  implies that  the phase information  abandoned 
in periodogram-based  estimates is essential [237],  [267], 
[ 3221.  Consequently,  the  periodogram is a  poor  choice as a 
starting  point  for  any serious data analysis  technique. While 
problems  with  the  periodogram  are well known [30] ,  [ 941, 
[ 173 I ,  [ 27  1 I ,  etc., the  importance of this  equation is such 
that  it  merits  further  attention  and we make  the following 
observations: 

1) The insufficiency  of the periodogram is clearly inherited 
by  any  estimate  based on  or  equivalent t o  the  periodogram. 
This  obviously  includes both  smoothed  periodograms  (and  it 
is irrelevant if the  smoothing is done  directly  on  the  periodo- 
gram, on  the log  periodogram,  or  by  fitting  a  spline  or  rational 
polynomial t o  it),  and, because the transform of the periodo- 
gram is the sample  autocovariance  function,  autoregressions, 
moving-average representations,  and  other  decompositions 
based on sample  autocovariances. In  addition,  deconvolution 
methods based on  the periodogram or  autocovariances  are 
intn’nsically more  difficult,  owing to  the eigenvalue  behavior 
of the sinc’ kernel [ 1291 .3 

2)  The  problem has  much  in  common  with the classical sta- 
tistical  general  linear  model [ 2691,  [292], [ 3371 

y = x ’ B + e  

where y represents  the  observations, X the  model, 6 the coeffi- 
cents to  be  estimated,  and e the error  between the  hypothe- 
sized  model  and the observations.  In the  spectrum  estimation 
case, the  Fourier  transform  corresponds to  the observations, 
the model is specified by  the Dirichlet  kernel, and  the  model 
coefficients  generate  the  spectrum  estimate.  In classical re- 
gression  and  analysis of variance  problems,  the  approach is 
normally first, to  solve the  equations  (either by least squares 
or  some  other  approximation  technique)  and second, t o  ex- 
amine the statistics of the estimated coefficients. Judging  from 
the  number of papers  published on  periodogramequivalent 
estimates, it is apparent  that,  for  spectrum  estimation prob- 
lems,  a  different  approach  has  been  fashionable: first, square 
the  observations (i.e., compute  the  periodogram); second, 
ignore the  model; and third, use the  squared  observations as 
the  solution, which is then possibly  tested for significance. If 
we specialize the linear  model  analogy to  a  simple  regression 
problem,  what we  have done is equivalent to  using the data 
themselves for  the regression line. If the signal-to-noise ratio is 
high enough,  this  may  be  a  good  approximation to  the line  but 
gives no  information  about  the coefficients. Further,  on  the 
logarithmic  scale  necessary  for  spectrum  estimation, the  finite 
sample  Dirichlet  kernel is very  different  from  a  Dirac  delta 

term periodogram to  mean the  magnitude-squared  Fourier  transform 
a Both  because  it is useful and for  historical  reasons  we reserve use of 

of  the unwtndowed, or rectangular windowed,  function. When a non- 
uniform  data  window is invoked, we refer t o  the  squared  magnitude of 
the  fmite Fourier  transform of  the data  times  window as either a win- 
dowed perlodogturn or as a direct  spectrum  estimate. 

lent  of  the Dirichlet  kernel  used  here. 
3sinc x = sin A X / U X .  The sine  kernel is the continuowtime equiva- 

function  (which it approaches  asymptotically)  and,  conse- 
quently,  the  approach based on using the  model  and solving 
the resulting  equations has some  appeal. 

In  this  context  one  must  emphasize  that,  for processes  with 
spectra  typical  of  those  encountered  in  engineering,  the  sample 
size must  be  extraordinarily  large  for  the  periodogram to  be 
reasonably  unbiased. While it is not clear what  sample size, if 
any, gives reasonably  valid results, in  my  experience  periodo- 
gram  estimates  computed  using  1.2  million  data  points on  the 
WT4 waveguide  project,  see [ 11,  were too badly  biased to  be 
useful. The  best  that could  be  said for  them is that  they were 
so obviously  incorrect as not  to be  dangerously  misleading. In 
other  applications where less is known  about  the process, such 
errors may not be so obvious. Thus while the  estimates de- 
scribed in this paper  are  certainly  more  difficult  and  expen- 
sive to  compute  than  the periodogram,  this  expense  must  be 
weighed  against the cost of a  wrong  answer. 

3) The  kernel has  been  occasionally  referred to  as a  Fejer 
kernel  although  this  terminology is better used for  its square. 

4)  The  integral  equation  (2.3)  appears in [ 561.  In  addition 
similar equations  appear  in  numerous  optical and  radar  inverse 
problems.  Because this  kernel  serves  as  the  identity  element or 
reproducing  kernel  in the space of Fourier  transforms of index 
limited  sequences, [ 191,  [2331,  [2501  are relevant. 

A.   An  Alternative  Viewpoint 
A more  constructive  viewpoint is to  regard  (2.3) as a  linear 

Fredholm  integral  equation of the f i t  kind  for dZ(u)  with  the 
goal  of  obtaining  approximate  solutions  whose  statistical p r o p  
erties  are, in some  sense,  “close” to  those of d Z ( f ) .  Since this 
equation is the  frequency-domain  expression of the projection 
from  the  infinite  stationary  sequence  generated  by  the  random 
orthogonal  measure d Z ( f )  onto  the finite sample, it  does  not 
have  an  inverse;  hence  it is impossible to  obtain  exact  or  unique 
solutions.  What  we  desire  are  the  statistics  of  those  approxi- 
mate  solutions  that  are  both  statistically  and  numerically 
plausible. Throughout  this  procedure,  one  must bear in mind 
that  the essential  problem of  spectrum analysis is t o  estimate 
the  statistical  properties of dZ(u)  as opposed to  those  of y(f). 
Despite the  effort  spent  on  the  statistical  properties of y(f), 
e.g., periodogram-based spectrum  estimates,  it is not clear that 
they  are  often of much  interest. 

While the  indeterminacy of the basic  integral equation pro- 
hibits  exact  solutions,  several  approximate  solutions  have  been 
defined. For  this  purpose,  numerous  methods  and  criteria 
have  been  proposed: 

1) Regularization  methods,  such  as  Tikhonov’s,  which  add  a 
mean-square-curvature constraint,  and  other minimum  mean- 
square-errormethods[221,[1161,[1491,[2541,[2551,[3171. 
Proust  and  Goutte  [266] use prior  information to  convert to  
a  Fredholm  equation  of  the  second kind. 

2) Methods dependent  on  explicit  representations:  for ex- 
ample,  the sampling theorem [ 1541 ; prolate  spheroidal wave 
functions  1261,  [611,  [1171,  [2871,  13561; and  on-spline 
representations, [6] ,  [ 961, [ 971.  Sjdntoft [ 3001  uses  a Taylor 
expansion of the  reciprocal kernel. 

3)  Iterative  methods,  for  example [ 171 1, [ 1841, [ 2591 ; and 
iterative  extrapolation  techniques [ 1221, [ 221 I and  further 
references given in  Section XII. 

4)  Methods  dependent  on specific  time-series  representa- 
tions  and  properties [ 891, [ 1061, [ 2531, [ 2781, [ 2791. 

5) The problem is also  closely  related to ridge  regression 
problems [ 105 I ,  [ 2361. 

6) References [ 141 I ,  [ 1691  and  those  cited in Section X 
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contain general information. See also [ 231 , [63] ,  [ 921 , [ 3 151 
for  recent numerical work. 

The choice of a technique  for  computing  approximate solu- 
tions  depends primarily on which  characteristics  are desired in 
the  solution  and, while these  are to some extent subjective, 
they are as follows: 

1)  The  solution should be “local,” that is the  estimated 
spectrum  at  one  frequency should not  depend strongly on de- 
tails of the  spectrum  at  “distant” frequencies; see [ 121 , [ 36 l ]. 
Philosophically similar ideas are used for  subsection  moment 
solutions in  electromagnetic theory [ 1501 and in  spline theory 
[49] ,  [ 851 ; see also [ 3051. 

2) The  solution should  be easy to compute. This  implies 
numerical stability  and closed-form or convergent  iterative 
procedures. To characterize  “easy” see [ 1041. 

3)  It must  be possible to characterize the statistics of the 
solution. 

4) Because spectrum estimates  are commonly an intermedi- 
ate  step in a complete analysis which  may involve subsequent 
design of filters  or  predictors based on  the estimated spectrum, 
both  the estimated spectrum and its logarithm should be 
“good” estimates.  (Recall, for example, that  the one-step 
prediction variance is exp [/ In S ( f  dfl .) See [ 1751,  I25  11, 
[ 2521, [ 3431.  Note  that this requirement  on  the logarithm of 
the  spectrum effectively  precludes  “unbiased”  estimates based 
on equivalent lag windows, as such estimates  may  be negative. 

Of the  methods  mentioned above, the most successful ap- 
proaches have been  eigenfunction  expansions  combined  with 
a  least  squares error  criterion. We adopt this approach  with a 
local least  squares error  criterion. Recall that,  formally, solu- 
tions of integral equations of the  type 

y = K * z  

where K is a kernel with eigenfunctions 

hm$m = K  * $m 

standardized‘by 

JIm JIn =Sn,m 

is  given by 

where the sum is over the  set of eigenfunctions and  the expan- 
sion  coefficients y m  are given by  the usual Fourier-Bessel 
formula 

J 

(see [ 3  11 1, [ 3301, [ 3341 for  further  information). Since the 
eigenvalues typically  decay exponentially [ 2401,  such  solutions 
are of no practical  use. Consequently,  the class of realizable 
solutions is restricted to those corresponding to “large” eigen- 
values. These  may  be obtained  either  by simply truncating  the 
sum, or, as will be done in Section V, by weighting the expan- 
sion  coefficients so that  the  solution may be  written 

A 

z = D ( h m , Y m ) . J I m  
m = o  

where D ( A m ,  y m )  is a weight function. 
In a  remarkable series of papers, of which the most recent is 

Slepian [ 3061, it has been shown that  the eigenfunctions of 

the Dirichlet  kernel (and  its  continuous  time  counterpart), 
known as prolate  spheroidal  wave  functions, are fundamental 
to  the  study of time- and frequency-limited  systems. We thus 
contemplate “solving” the integral equation  in some  local in- 
terval about f ,  say ( f  - W ,  f + W), using discrete prolate spher- 
oidal wave functions as a basis. We shall refer to this  interval 
as the local or interior domain and  the remainder of the prin- 
cipal frequency domain as exterior. 

B.  Background:  Discrete Prolate Spheroidal Wave Functions 
and Sequences 

In  this  section we  give a short list of formulas  and  properties 
of these eigenfunctions from Slepian’s paper. The eigenfunc- 
tions,  denoted  by  uk(N, w ;  f ), k = 0, 1, * - N - 1 are known 
as discrete  prolate spheroidal wave  functions (DPSWF) and  are 
solutions of the  equation 

(2.4) 

where W, 0 < W < 4 is the  bandwidth defining “local” and 
here is normally of the  order 1/N. The  functions are ordered 
by their eigenvalues 

1 > hO(N, W )  > hI(N, W )  > * ’ ’ > hN-l(N, W )  > 0. 
The first 2NW eigenvalues are extremely close to 1 an.d, of 
particular relevance here, o f  all functions  which are the  Fourier 
transform o f  an indexlimited  sequence  the  discrete  prolate 
spheroidal  wave  function, Uo(N, W ;  f )  has the greatest  frac- 
tional  energy concentration in (-W, W). For small k and large 
N the degree of this concentration is given by Slepian’s asymp- 
totic expression (in slightly different  notation) 

or,  for  largerN  withNnW = c ,  and k < [ 2NW] 

From a conventional  spectrum  estimation viewpoint,  this 
expression gives the  fraction of the  total energy of the spectral 
window outside  the main lobe  (i.e,,  outside (- W, W)). 

The eigenfunctions, uk(N, W ;  f ), k = 0, 1, * * N - 1 are 
doubly  orthogonal, that is they are orthogonal over (-W, W )  

I” uj(N, W ;  f )  * uk(N, W ; f )  d f  = 6j,k  (2.6) 
hk(N, W )  -w 

and  orthonormal over (- 4, i), 
112 

1,,, uj(N,W;f)’Uk(N,W;f)df=6j,k. (2.7) 

The  Fourier  transforms of the discrete  prolate  spheroidal 
wave functions are known as discrete  prolate  spheroidal  se- 
quences (DPSS), 

(2.8) 

v a l i d f o r k = 0 , 1 ; . . , N - l a n d a l l n .  E k i s l f o r k e v e n a n d  
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i for  k  odd. Because of the  double  orthogonality,  there is a 
second  Fourier  transform 

va l id forbothn ,R=O, l ;* - ,N-  1. Asonewouldexpect,the 
finite  discrete  Fourier  transform of the  prolate  spheroidal se- 
quence  results  in  the  discrete  prolate  spheroidal wave functions 

It  should also be noted  that  the  discrete  prolate  spheroidd 
sequences  satisfy  a  Toeplitz  matrix eigenvalue equation 

(2.9) 

and so are easily computed  for  moderate values of N. Like  the 
wave functions  the { v i }  are  doubly  orthogonal,  being  ortho- 
gonal  on (--, 0) and  orthonormal  on [0, N -  11.  Detailed 
information  on  these  functions is contained  in Slepian's 1978 
paper  [3061 andin[1141,[2011,[2021,[2451,[2801,[3031- 
13081,  [335],  [358]. A method  for  computing  the  functions 
for  larger values of N is given in  the  Appendix. 

III. EIGENESTIMATES 
Using the  background  material  outiined  in  the  preceding two 

sections, we now construct  estimates of the  spectrum  from 
approximate  solutions  of  the  integral  equation (2.3). We begin 
by  considering the  discrete  prolate  spheroidal wave function 
Fourier-Bessel expansion  coefficients of dZ in (f - W, f+ W )  

While unobservable, the z k ( f )  are of considerable analytic 
interest in that  they  are  the  expansion  coefficients which 
would  be  obtained if the  entire  sequence were passed through 
an  ideal  bandpass  filter,  from f - W to  f + W, before truncation 
to  the finite  sample size. The  normalization  implicit in this 
definition  results in 8 {lzk(f)12} = s when the  spectrum s is 
white. 

Now consider  an estimate of these  coefficients  obtained  by 
expanding  the  Fourier  transform of the  sample y(f) over the 
interval (f - W, f + W )  on  the same  set of  basis functions 

1 W 
Y k ( f )  = &W, W )  I, Uk(N, W ;  ~ ) y ( f  + U) du. (3.2) 

Using the basic integral  equation  (2.3) fory (f), which  expresses 
the  projection  operation  from dZ onto y ,  together  with  the 
integral  equation d e f i g  the  discrete  prolate  spheroidal wave 
functions, Y k ( f )  may be expressed  in terms of dZ as 

112 

Y k ( f )  = Lll2 uk(N, W ;  5 )  d Z ( f +  5).  (3.3) 

Since  this  expression, used with  the  properties  of  the orthoge 

various moments of the  estimates,  it  should be noted  carefully. 
In  addition,  the  differences  between  the idealized  coefficient 
(3.1)  and  the  estimated  coefficient  (3.3) are important.  Note 
particularly  that  the domain of integration is bandlimited  in 
the idealized  coefficient  but  includes  the  complete  principal 
domain in the  estimate. We call the (Yk(f)} the eigencoeffi- 
cients of the sample. 

An alternative  form of this estimate  may  be  obtained using 
the   def i t ion  of the  discrete  prolate  spheroidal sequences, 
(2.8), given above  and  writing  the  Fourier  transform y(f) di- 
rectly  in  terms of the  data  to  obtain 

Thus  the  kth eigencoefficient is the  discrete  Fourier trans- 
form of the  data  multiplied  by  the Rth discrete  prolate  sphe- 
roidal  sequence  acting as a  data  window. We note  that, in 
practice, it is simpler t o  regard the uf ) (N ,  W)'s as real  and the 
uk(N,  W ;  f)'s as complex so that  the phase offset  factors dis- 
appear  and  the  calculations can be done  with  standard  fast 
Fourier  transform  algorithms. 

In Fig. l(a)-(e) we show  a  set of K = 5 such  data  windows, 
which we will be using for  the  examples  in  this  paper.  In  these 
windows N = 100  and W = 0.04. In  this  figure  only  the  order 
zero  window is "typical" of data  windows in common use 
in  that  it is strictly  positive. For  the  remainder,  note  that  the 
Rth data  window has k zeros. I t  is of interest  that  windows of 
this  type, i.e., having zeros  in the  domain of interest,  are  not 
new but  were  proposed by Lord  Rayleigh  in  1879, [270]. 
Note,  however,  that  the  higher  order  windows have a larger 
fraction of their  energy  near  the  ends of the  interval. 

To continue  the  development of the  solution of the  integral 
equation  along  the lines outlined  in  the  preceding  section, we 
next  form  the high-resolution  estimate ;,(f; fo), which is valid 
forfo - W < f < f o  +Was  

In  this  expression we are using, temporarily,  unit  coefficient 
weights  for  the f i t  K = [2NWI terms.  Corresponding to this 
estimate of d Z ,  there is a high-resolution  spectrum  estimate 

While more will be said about  this  estimate  in  later  sections, we 
note  that, since it is the  absolute  square of a  complex Gaussian 
random variable, it is distributed as a multiple of d and, 
hence, is inconsistent. We thus  take  its average over the  inte- 
rior  frequency  domain (fo - W , f o  + W )  

which,  using  the  orthogonality  properties of the  prolate  func- 
tions,  becomes 

nal increment process d Z ( f +  C), is convenient  for evaluating  Since the eigencoefficients Y k ( f )  are computed by transform- 
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2 /' 

Fig. 1 .  Prolate  spheroidal  wave  function  data  windows  for  a  time-bandwidth 

(c)  Function 2,  k = 2. (d)  Function 3, k = 3. (e)  Function 4, k = 4. 
product = 4 and k = 0, 1, - - , 4 .  (a)  Function 0, k = 0. (b) Function  1, k = 1. 

ing the  data multiplied  by the  kth  data window vik)(N, W), 
their  absolute squares 

* 
S k u )  = IYk(f)12 (3.8) 

are individually direct spectrum  estimates [ 3381. We refer to 
them as the prolate  eigenspectmm  estimate of order k,  or sim- 
ply the  kth eigempectrum. Since the discrete  prolate  spheroi- 
dal  sequences are  orthonor@  on [ 0, N - 1  ] the eigenspectra 
are  normalized so that 8 { S k ( f ) }  = s when the  true  spectrum 
S is white. 

We note first that So(f) is the best known direct estimate of 
spectrumforagivenW[103],[182],[323],[327]. However, 
when used by itself,  as it always  has  been  in the  past, this esti- 
mate has had to be smoothed  to  produce a consistent result. 
This smoothing  operation has the undesirable  characteristic of 
increasing the effective bandwidth of the  estimate  to several 
times W with  the  concomitant increase in bias inherent in such 
smoothing operations.  This effect has, of course,  been known 
since Bartlett [ 281 and has  been treated extensively  since then 

[2481,[2641,  among  many  others.  In  addition  to  the increased 
bias and loss of  resolution intrinsic to such convolutional 
smoothing procedures, they  are  not  to be recommended as, 
although  the bias of So(f) is low,  its variance efficiency is also 
low. While more will be said about  this  effect in Section VII, 
it is apparent  from  the proliferation of special windows, e.g., 

A 

in  [41],  [871,  [1371,  [1681,  [2141,  [215],  [243],  [246]- 

[21],  [1211,  [1531,  [2601,  [2741  tonamebutafew,thatfor 
a small sample the use of a single data window is generally un- 
satisfactory; see also 1401, [ 1521. 

In  the  estimation  procedure proposed  here,  however, there 
is an important element missing in all preceding  windowed 
estimates-the additional eigencoefficients yl(f), * * , y ~ ( f ) .  
The presence of these terms has four  important  effects  on  the 
estimate: 

1) As will be shown in Section IV, the  different eigencoeffi- 
cients  are  almost uncorrelated  for locally  reasonably  white 
spectra  and, as they are  individually  complex Gaussian, their 
absolute squares are individually distributed as x:, and, con- 
sequently,  the  estimate  (3.7) has about 2K degrees of freedom. 
It is thus  consistent as, for fixed W, this is equivalent to 4NW 
degrees of freedom. 

2) This stability is achieved without the decrease in resolu- 
tion associated with  convolutional  smoothers. 

3) I t  will be shown  in  Section VI that  the variance efficiency 
of the  estimate is good, typically betterJhan  80 percent. This 
is because the  information missed by So(f) alone is largely 
recovered by  the  other eigencoefficients. 

4) Because of the  properties of the  prolate spheroidal wave 
functions  the unweighted frequencx average used to convert 
the basic high-resolution estimate S,(f;fo) to the stabilized 
estimate s(f), the effective spectral window  associated with 
S(f) approaches an almost "ideal" shape. 
- 
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IV. SAMPLING PROPERTIES: I-MOMENTS 
We next consider the  lower  order  moments of these  estimates. 

Because & { d Z ( f ) }  = 0, it is immediate  that 8 b k ( f ) )  = 0. 
The  second  moment 

112  112 

-112 -112 
8{q(f)~$(f‘)}= 8 {I 1 U j P ,  W;f) 

’ u k ( N ,  W ;  d W +  5 )  d z * ( f ’  + 5‘) I 
becomes,  by  the  properties of the  orthogonal  increment pro- 
cess, 

8bj(f)Y$(f’)I 
112 - 

- L 2  
u/(N,W;f+f)S(r)uk(N,W;f’+f)df. (4.1) 

For  the special case j = k  one  has 

8 { i k ( f ) )  = I u k ( N ,  W ;  f)12 * s(f). (4.2) 

Thus  the  expected value of the  kth eigenspectra S , ( f )  is the 
convolution of the  true  spectrum S(f) with  the  kth  spectral 
window I u k ( N ,  W ;  f ) 1 2 .  Since the  prolate  spheroidal wave 
functions have all but  a  fraction  1 - Xk of their  total  energy 
in  the  domain (-W,  W), all the  lower  order eigenspectra  are 
good  estimates  from  a bias viewpoint.  Looking  ahead to Sec- 
tion VI, Fig. 2(a)4e) shows  the  first five spectral  windows 
I u k ( N ,  W ;  f ) 1 2  for  the case N = 100 and NW = 4  from  which 
both  the low sidelobes  and  the  change  in  character near f = 
W = 0.04 are  apparent.  Note  that,  except  for  the  zeroth case 
which  resembles  other  windows  in  common use,’ the  spectral 
windows have multiple  “central  lobes”  interspersed  between 
the k zeros of uk(N,  W;f) in (-W, W). Also, as one  would 
expect  from  the  behavior of the eigenvalues, the sidelobes of 
the higher order  windows_increase  with  order.  The  spectral 
window  corresponding to  SUO) 

h 

is shown  in Fig. 3. B,y virtue of (3.4),  the individual eigen- 
spectrum  estimates s k ( f )  = I y k ( f ) 1 2  are  direct  estimates, 
hence,  inconsistent  and  distributed as a  multiple of x:. Their 
average, however, is distributed  approximately as a  multiple  of 
X4NW and so is consistent. 

It is convenient to  split  this  integral  into  two  parts,  the  first 
expressing the local bias 

W 

2 

* 
S k ( f )  = I u k ( N ,  W ;  f > 1 2  S(f+ r) d f  (4.3) 

and  the  second  the broad-band bias 

where the  cut  integral is defmed as 

+ - = I .   - I  
J J-112 J-w 

The  expected value of the  broad-band bias is 

8 { B k ( f ) )  = f ui(N, W ;  f) S(f+ f )  dc .  (4.5) 

Additionally,  the  broad-band bias may be bounded  by  use of 
the  Cauchy  inequality 

B*(f )~fI ( i t (N,W;f)12df’ fIdZ(f+r)12 .  

In  this  inequality  the  first  integral expresses the  energy in the 
delta  window outside (- W, W )  and so equals 1 - Xk (N,  W). 
The  second  integral has the  expected value 

f S ( f + f ) d f Q  lli2 S ( f + { ) d t = a 2  (4.6) 
-112 

so that  the  broad-band bias is bounded  by 

8 { B k ( f ) }  Q (1 - Xk(N,  W))$. (4.7) 

A .  Quadratic  and Local Bias 
In  many cases, particularly  when  working  with very short 

series, it is unrealistic t o  assume that  the  spectrum  in f -  W ,  
f + W varies slowly, and,  consequently,  the local bias terms 
may  be  significant. To  evaluate  this  effect we assume that  the 
spectrum  may  be  expanded  in  a  Taylor series about fo so that 
the  expected value of the  kth  eigenspectrum  at  this  frequency 
may  be written 

By symmetry,  the  coefficients of S‘, S’”, etc.,  vanish, but  those 
of S” and  higher  even-order terms  do  not. Because it  domi- 
nates  the  asymptotic bias, we consider  only  the  quadratic  term, 
that is the  coefficient of S”(fo), which we write  in  normalized 
form as 

112 
Gk(N, W )  = N 2  Iljl I u k ( N ,  W ;  r)l2f2 d f .  

With this  definition,  the  asymptotically  dominant  term of the 
local bias of the  kth eigenspectra  becomes 

Because of the  extreme  concentration of the  prolate  functions, 
the value of this  integral is largely a  result of the  integrand in 
(-W, W). Second,  because  the  effective  spectral  windows 
I u ~ ( N ,  W ;  {)I2 widen with increasing k, it is clear that G k ( N ,  W )  
should increase with k. Also, the  fact  that  the  energy in (-W, 
W )  is nearly 1 may be used to  obtain  an  order-of-magnitude 
approximation to  this  integral so that,  crudely, G k ( N ,  W )  
(AW2/3. While this  approximation is poor  for  the individual 
Gk’s ,  it is quite  good  for  their average as the average spectral 
window, Fig. 3, approaches  rectangular. Since NW = c/n, it is 
clear that,  asymptotically,  the  local  quadratic bias term  must 
decrease as N - 2 .  For  reference,  doing  the integrals  numerically 
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(c) (dl (e) 
Fig. 2. Spectral  windows  corresponding to  the  prolate  spheroidal  wave  function 

sample  size.  Note  the  sharp  cutoff  at N W =  4. (a)  Function 0, k = 0. @) 
data  windows shown in Fig. 1. The  abscissa is in  units of frequency times 

Function 1, k = 1. (c)  Function 2, k = 2. (d)  Function 3, k = 3. (e)  Func- 
tion 4, k = 4. 

y1 

* 1 0 . '  - 
: f a - * *  - 
: , o - . .  t 
I O - ' *  

0 5 I O  1 . 5  20 

F l e q u e n c y  x S a m p l e  S t r e  

Fig. 3. The  equivalent  spectral  window  obtained  by  taking  the  arith- 
metic  average  of  the fmt f n e  eigenspectrum  estimates.  Note  the 
nearly  rectangular  shape  for  frequencies  below Nf = 4 and  the  low 
sidelobe-s. 

with c = 4 n  gives 0.644,  1.930,  3.225,  4.551,  and  6.060 for conventional  convolutional smoothen To make  such  a  com- 
Go -G4, respectively. parison we fix the degrees of freedom of the  estimate  and use 

Because Gk increases  with k, it is reasonable to  wonder if the the Papoulis [ 2431  window  (which was optimized  with  respect 
quadratic bias  associated with  the eigencoefficientAapproach t o  quadratic bias) to  smooth  the  zeroth eigenspectrum  estimate. 
might not be  greater  than  that  obtained using  only So(f) and This results in quadratic bias  coefficients of 2.64  and 18.5 for  4 
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and  10 degrees-of-freedom  smoothers,  respectively.  Contrasted 
with  this  the  corresponding  quadratic bias  coefficients of the 
averaged  eigenspectrum  estimates  are  only 1.287  and  3.282. 
Thus  the  quadratic  bias of the eigencoefficient approach is 
much  lower  than  that of the  convolutional  smoothers.  Also, in 
anticipation of Sections VI1 and IX, we note  that  both  the 
variance  efficiency  and  estimation  capacity of the convolu- 
tional  smoother are  poorer  than  those resulting from  the eigen- 
spectrum  approach. 

B. Distributions of Eigenspectrum Estimates 
In  addition to  its  expected  value,  the distributip of s k (  f )  is 

of interest.  First, if the process is Gaussian, s k ( f )  will  be 
distributed as chi-square  with two degrees of freedom, xf . 
Moreover,  even  when the original  data  are quite non-Gaussian, 
the  additional  filtering implicit in the  estimation  procedure 
will make the coefficients y k ( f )  tend  to  a  complex-normal 
form, so their  squares will  be xf . This  effect is treated  at  length 
in [ 541,  [220],  [222],  [282],  [285], among  others.  Addi- 
tional sampling  properties,  including  bivariate  distributions, of 
the eigenspectra  are  inferable from [ 451 , [ 9  1  ] , [ 13 51 , [ 2  171 , 
12291,  [232[,  12971,  [3021,  [313],  [3571,  [362],  and else- 
where.  Further references of analytic  interest  include [ l o ] ,  
1111,  11201,  11631,  11641,  [2051,  [2061,  [2111,  12611, 
[2841,  [2951,  [296],  [298],  [345]. 

A more  interesting class of distributional  problems arises out 
of  the split into local  and  broad-band  bias components where 
the  broad-band bias  term is dominant.  In  such cases, the local 
distribution  appears significantly  different from  those  where 
the  local  contribution  dominates,  and, while the  distribution 
is proportional to  xf in  an ensemble sense, for  a given sample 
it is more  appropriate t o  model  it  in  terms of a noncentral chi- 
square  distribution  with  a  random  noncentrality  parameter. 
Identifying  the  noncentrality  parameter  with  the  broad-band 
bias component,  it is clear that,  in regions  where this  term 
dominates,  the relative variability of the  estimate will be  much 
lower  than  normal.  This  effect is clearly visible  in the  ex- 
amples of Section VI, particularly  at  frequencies  around  0.15 
cycles in Fig. 6. 

A  second special case in  the general  expression  (4.1)  above is 
that where f = f '  but j # k 

A 

112 

-112 
c b j ( f ) Y $ ( f ) } = j  Uj(N,W;f+r)s(r)Uk(N,W;f+r)dr. 

(4.8) 

Again,  using the eigenvalue  properties,  the  contribution  from 
the  exterior  domain may  be bounded to  quantities  exponen- 
tially small in NW and so, in  many (but  not all) cases  of inter- 
est, may  be  ignored.  Next, if the  spectrum  within ( f -  W ,  f + 
W )  is reasonably  flat,  the  coefficients will be  uncorrelated  by 
the  orthogonality  properties of the  prolate  functions,  but if 
the  spectrum is highly  peaked or changes  rapidly in this region, 
the  correlation  may  be significant. As an  example,  consider 
the case  where S({) consists of a  unit  step  discontinuity  at 
f =  I. Here, at  frequency f ,  we obtain  the covariance  matrix 
given in Table I. 

The  final case  we  consider is that where f '  = f + 4 so that 
the  prolate  spheroidal wave functions are  offset  and no longer 
orthogonal. If  we assume that  the  spectrum is white, we have 

A j k ( 4 )  = 11,1 uf(N, w ;  f)Uk(N, w ;  f+ 4) dfi 
112 

1 
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(c) 
FiR 4. Frequency  offset (or lagged)  cross-covariances, COY {Si (g), 

S k ( f +  g)} for S = 1 and NW = 4. For f >  2W the  estimates are es- 
sentially  uncorrelated. 

* 

TABLE I 
EIGP~COEFFICIENT C~RRELATIONS FOR UNIT STEP 

Typical  values of the  square  of  this  correlation  coefficient  are 
shown in Fig. 4.  Note  particularly  the  very small values at- 
tained  for 4f > 2W. 



THOMSON:  SPECTRUM  ESTIMATION AND HARMONIC ANALYSIS 1065 

V. ADAPTIVE WEIGHTING 
While the bias properties of the  lower  order eigenspectra  are 

generally excellent, because the eigenvalues decrease from  one 
as  k  increases towards 2NW, the bias characteristics of the 
successive estimates must degrade.  Consequently,  in regions 
where the  spectrum is small, the higher order estimates will be 
less reliable than  the lower order eigenspectra and  must be 
downweighted. If one views the  contribution  to  the  kth spec- 
trum  estimate  from  the region (f- W, f+ W )  as “signal,” the 
contributions  from  the rest of the  frequency as “noise,” and 
the  order,  k, as “frequency,”  the weighting procedure is analo- 

where o2 is the process variance 

112 

u2 = I - l j 2  S(f) d f .  

Combining  these two integrals, and minimizing the mean- 
square  error  with respect to d k ( f ) ,  gives the  approximate  opti- 
mum weight 

gous to ordinary Wiener filtering, with  the only difference 
being the basis functions.  (The  ordinary  frequency, f, is simply and  the corresponding average of the spectral  density function 

a parameter defining the  solution  domain.) 
We thus  introduce a  sequence of weight functions, d k ( f ) ,  

which,  like the coefficients they  modify,  are  functions of fre- 
quency  and defined so that  the mean-square error between 
z k ( f )  and Y k ( f )  * d k ( f )  is minimized. Using definition 3.1 
for Z k ( f )  and  (3.3)  foryk(f) gives 

1 
Since the (obviously unknown) values of the  spectrum  and 
broad-band bias appear in the weight expression, we replace 
them  with estimates. The  definition is then recursive and  the 
resulting spectrum  estimate is a solution of the  equation 

112 and  thus mus: be  in the interval bounded by the smallest and 
- d k ( f )  LI12 uk(N’ *) dZ (f+ *) largest of  the Sk(f ) ’s .  In practice the  equation has  been solved 

iteratively using the average of the  two lowest order estimates 
(5.1) as a starting value. Convergence has been rapid;  for  the ex- 

or, collecting regions of integration, 
amples shown in the following  section convergence to  the 
point where successive estimates  differed  by less than 5 percent 

1 required  a  maximum of 14  iterations and  only 2.9 on average. 
- d k ( f ) )  J w  uk(N,  W ;  l ) d Z  (f+*) A useful  by-product of this  estimation  procedure is an esti- 

-W mate of the  stability of the estimates 

- d k ( f )  f uk(N,  W ;  d z  (f+ {I. 

From  this expression, it can be seen that  the  error consists of 
the sum of two  terms,  one defined on (-W, W),  the  other  on 
the  remainder of the principal  domain. Because both of these 
integrals  are with respect to the  random  orthogonal measure 
dZ,  they are independent  and  consequently  the mean-square 
error is simply the sum of the squares of the  two  terms. Using 
the  orthogonal  increment  properties of dZ again, and assuming 
the  spectrum varies slowly over (- W, W),  the mean-square 
value of the first  integral is well approximated by 

&{ 1 [r uk(N,  W ;  d z  (f+ 
xk(N, W)s(f). r1 

The second  integral is the broad-band bias, B k ( f ) ,  of the  kth 
eigenspectrum estimate defined  in Section IV. This function 
depends  on  the gross features of the  spectrum in the  exterior 
domain.  Since  estimating the  spectrum is the problem,  this 
information must  be approximated  from  the sample, and we 
use a two  step procedure. First, by  considering its average value 
over all frequencies,  a fair initial estimate may be obtained 

8 { B k ( f ) )   d f =  u z ( l  - b ( N ,  W)) 

the apRroximate number of degrees of freedom for  the esti- 
mate S(f) as a function of frequency. We note  that v(f) is a 
sensitive function of bias. If the average, over frequency, of 
u ( f ) / 2 K  is significantly less than  1,  then  either  the value W is 
too small, or  additional prewhitening  should be used. Com- 
bined with  the variance efficiency  coefficient described in the 
next  section U provides a useful  “stopping rule.” 

Once  this  initial estimate has been made, the  estimated spec- 
trum can be used to improve the  estimate of broad-band bias 
B k ( f ) .  This may be  efficiently  computed  by  transforming  the 
convolution  (4.5) in the  time domain. For this  purpose we 
define an outer lag window 

so that 

where R(‘)(r) is the autocovariance function corresponding to 
the  spectrum  estimate  at  the beginning of the  current  iteration. 
For this operation to be efficiently done using standard fast 
Fourier  transform algorithms, two  facts must  be noted; first, 
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Fig. 5. The  realization of the process described by (6.1) used in sub- 
sequent  examples. N = 100. 

the  estimation  procedure typically  results in  extrapolated auto- 
covariance sequences, that is they  are  nonzero  for lags I T  I > N ;  
second,  in  common  with all numerical operations directly 
using the autocovariance function,  the use of double precision 
arithmetic is advisable for many spectra of interest; see [ 861, 
[ 1831. 

An additional  refiiementis available by using the  noncentral 
$istribution suggested for Sk(f) in the previous section with 
Bk(f )  considered ,?s an  estimate of the  noncentrality param- 
eter. Estimating S(f) by approximate maximum-likelihood 
results  in  a formula similar to (5.4). As  will be shown in the 
next  section,  the effective weights obtained.by this technique 
are somewhat higher than  those  obtained by the least  squares 
method. However, since the, difference  in spectrum estimates 
is seldom  more than 1 or 2  percent  and the least  squares 
method is much simpler, we omit  the details. 

V I .  AN EXAMPLE 
To illustrate  some of the  uncommon  features of the eigen- 

spectrum estimates, we consider  a process whose spectrum is a 
composite of features of spectra  typically found in  communi- 
cations systems. In this process the  data consist of a number 
of subcomponents 

x ( t )  = pdt)  + p 2 W  cos (act) + p 3 ( t )  sin ( a c t )  

+ 2.4 sin ( o l t )  - 2.6 COS ( W z t )  + n ( f )  (6.1) 

where the processes pl(t), p z ( t ) ,  and p 3 ( t )  are independent 
with Bessel autocovariance functions of the  type described in 
(201,  1771, [ 1181. (The  autocorrelation  function is given by 
J0(7 /70)  so that  the  spectrum of the pi processes is band- 
limited and  proportional to 4- for I f 1  less than  the 
bandwidth, B = 0.078125.)  Data  for these three processes 
were created using Karhunen-Lohe expansions, with  the eigen- 
values and eigenfunctions being computed by  a  procedure sim- 
ilar to  that described in  the  Appendix.  The  expansion coeffi- 
cients, with ‘variances given by  the eigenvalues, were generated 
by a Gaussian random-number  generator.  The  two “line  compo- 
nents” are at frequencies f l  = 0.2556  and fz = 0.3242,  neither 
having an integral number of periods in  the sample of N = 100 
data points. The observational  noise is represented by n ( t )  
which is a  white noise process of variance On  the plots 
of the various  estimates, the  continuous  part of the  theoretical 
spectrum of the composite process is shown as the dashed  line 
and  identified as “S(f).” The  expected value of the  amplitude 

of the  two line components  at  the working frequency resolu- 
tion & is shown  by asterisks and  marked “lines.” 

Fig. 5 shows  a typical realization of length N = 100  points 
from  such a process. Observe that,  although  the process is 
highly structured and  predictable, it appears noise-like. The 
data  and corresponding spectral windows  used  in this excmple 
were shown earlier as Figs. 1 and 2. The  eigenestimatesSk(f) 
for  the  data  set shown  in Fig. 5 above  are  shown  in Fig. 6(a)- 
(e). In these  estimates,  a  time-bandwidth product, NW = 4, 
has been used so that  the  estimator has  enough dynamic range. 
The spacing of the  two line components, however, 0.3242 - 
0.2556 = 0.0686 is less thtn 2W so F a t  interactions occur. 
Observe that  the estimates So(f) and S,(f) are similar except 
for details and  that  both follow the  true  spectrum  except  for 
the areas  immediately adjacent to  the band edges. In these 
regions, they perform as expected.  In  the regions around  the 
line components  (about which more will be said in Section 
XIII), the details  reflect  primarily the shape of the respective 
spectral windows. In  both estimates the basic shape of the 
theoretical  spectrum is reproduced  and  the effect of the  finite 
Leesolution, W = 0.040, is clear. With the  next  three estimates, 
S2(f) to S4(f), the  effects of the eigenvalues decreasing away 
from 1  becomes successively more  pronounced, particularly  in 
the  band  between  0.12 < f < 0.1 9. Observe also the  lower 
and  more  systematic variations of the estimates  in this band 
due to the  noncentral  distributional characteristics induced  by 
the bias compared to  the larger variations of the estimates at 
lower frequencies. Where the  spectrum is larger, however, 
these estimates are still clearly providing  useful data as, while 
the details  differ, they  reproduce  the  correct general shape. 

The broad-band bias, computed using (5.6),-is also shown in 
Fig. 6(a)fe) as the  lower curve identified as Bk(f). This bias 
component is, as expected, very low for  the  two lowest order 
estimates while, in the gap mentioned above, the higher order 
estimates consist  primarily of broad-band bias. Note also that 
there are  considerable  variations between  the estimated bias 
and  that observed;  this is a  result of the  rather  arbitrary divi- 
sion made2t W between local and broad-band bias and the  fact 
that  here B,  ( f )  is computed  from an estimate which has sig- 
nificant  local bias. 

Using these  estimates of the broad-band bias in (5.4) gives the 
weight functions  shown  by  the solid lines  in Fig. 7(a)-(e).  In 
these figures, the least  squares weights are shown as the dashed 
lines while the  approximate  maximum-likelihooi weights  are 
shown as solid lines. Observe that  the estimate S,(f) is given 



THOMSON: SPECTRUM ESTIMATION AND HARMONIC ANALYSIS 1067 

l o o 0 0  r 

1 0 0 0 0  r 

I O - ' '  I I 

0 0  O I  0 2  0 3  0 4  0 5  

E 0 ° 1  : 0 0 0 1  

I 

0 0  O I  0 2  0 3  0 4  o s  

l o o 0 0  1 0 0 0 0  

: 1 0 . '  I ;  f ,O.. 

I o - '  t , , , , , lo.' t , , , , , I O . , .  1 0 . ' '  ' O - '  i 
0 0  0 1  0 2  0 8  0 4  0 5  0 0  0 1  0 2  0 3  0 4  O S  0 0  0 1  0 2  0 3  0 4  0 5  

F r e q u e n c y  ~n C y c l e s  F ~ * p u . n c y  ~n C y c l e s  F v e q u s n c y  In Cyc1.1 

( 4  ( 4  (e) 

Fig. 6. Estimates of the  eigenspectrum Sk(f),  and the  broad-band  bias B k ( f ) ,  
for k = 0 ,  1 ,  * , 4  and  the data shown in Fig. 5.  The  data  windows  used  were 
shown in Fig. 1.  The true spectrum is shown as the  dashed  line and the two line 
components  by 0 .  In the case of the  line  components,  the  plotted  amplitude 
corresponds to a  frequency resolution of 1/512. (a) Eigenspectrum 0, k = 0. 

k = 3. (e)  Eigenspectrum 4, k = 4. 
(b) Eigenspectrum 1 ,  k = 1.  (c)  Eigenspectrum 2, k = 2. (d)  Eigenspectrum 3, 

A h 

nearly  full weight and S^l(f) almost as much. However, in  the trum is large, all the K = 5 estimates contribute so that  the 
regions where the broad-band bias is large, the weights on  the stability is characterized  by 10 degrees of freedom whereas in 
higher order eztimates have dropped significantly so that in the lower regions, where  only the first two estimates are rea- 
these regions S4(f) is weighted  by only %lo-:. In regions sonably  unbiased, the  stability is only  about 3.5 degrees of 
where the  spectrum is high, on  the  other  hand, S4(f) is effec- freedom.  The  stability, in  equivalent degrees of freedom, is 
tively receiving unit weight. AThe resulting spectrum  estimate, plotted in Fig. 9. Its average value, across frequency, is 6.38. 
computed using (5.4) with B k ( f )  given by (5.6), is shown in An important lesson to be  learned from  this  example is that 
Fig. 8. The overall estimate is clearly quite good except near handling  mixed spectra, particularly  where the range of the 
the line components (again, there will be more about  this in spectrum is large, is difficult. In  the individual  eigenspectrum 
Section XIII) where  only  the  two roughly symmetriczbumps" estimates  neither  line is particularly  obvious, compared to other 
are visible. Also, as expected,  the stabilized estimate S(f) does "peaks," even though  the line energy to local noise power is 
- not follow the discontinuities at  the band edges. (Recall that about  13 dB. This phenomenon is more common  in  such cases 
S(f) was obtained in Section I11 by integrating the basic high- than when the noise is white,  reflecting the lesser mixing and 
resolution  estimate over ( f -  W, f +  W )  so that a low-pass longer  persistence of effects in the highly structured processes. 
characteristic is to be expected.) Because the local bias causes In particular, when  the  duration of the  data is less than  the 
the gaps to be  significantly narrowed,  an  estimate of the inno- length of a  reasonable moving-average representation, as hap- 
vations variance of the process would  be too high. This effect pens  in this example,  these effects can be particularly severe. 
has  some  serious  implications  when one plans adaptive pre- It is equally common to observe "peaks" well above the appar- 
whitening or model fitting  with a process similar to this one. ent  background, which  reflect nothing  more  than sampling 
This  example will be continued  in  Section X when we again variation and  the simple fact  that in  most spectrum  estimation 
consider the high-resolution  estimates. In  addition,  the esti- problems  one is looking  at large numbers of estimates. Conse- 
mate  vanes in its  stability across the band. Where the spec- quently, simulations based on nearly  white or white  spectra 
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Fig. 7 .  The least squares (dashed line) and  approximate  maximum- 

likelihood  (solid  line)  solution  weights, ldk(f)12, for k = 0 ,  .-., 4 
and  the  eigenspectrum  estimates  and  bias  estimates  shown  in Fig. 6. 

Note  the change in behavior as k increases  particularly  in  regions 
For k = 0 the  approximate  maximum4kelihood  weight is nearly 1. 

where  the  spectrum is low. Also, when  the  spectrum is "large," all 
weights  are  large.  (a) k = 0. (b) k = 1. (c) k = 2. (d) k = 3. (e) k = 4. 
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Fig. 8. The  weighted  average  spectrum  estimate s(f). This  estimate is 
formed  by  combining  the  eigenspectrum  estimates  shown in Fig. 6 
using the weights  plotted in Fig. 7.  As before,  the  true  spectrum is 
shown  by  the  dashed  line.  For  the  line  components  compare  this 
figure  with Figs. 23 and 24. 

Fig. 9. The  estimated  stability  of  the  spectrum  estimate  shown in Fig. 

spectra  used  in  these  examples,  it is possible to  obtain greater  stability 
8 plotted  in  degrees+f-fieedom. By using  more  than  the K = 5 eigen- 

in regions  where  the  spectrum is large. 
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can  provide  a  seriously misleading basis for  inferences  about 
the highly colored  spectra  encountered  in  nature,  particularly 
when  only  short  records are  available. 

W. SAMPLING PROPERTIES: 11-VARIANCE AND 
VARIANCE EFFICIENCY 

The  characterization of spectral  estimates is a  difficult sub 
ject  on  which  there is little  agreement  and  there  are  numerous 
papers;  [91,  [421, [loll,  [1021,[1071,  [1531,  (2901  among 
others. To  study  the  sampling  properties of these  estimates, 
we assume that  the  data  are Gaussian and, using the  formula 
for  the  fourth  moments of a Gaussian process, obtain 

cov &f + g), S h d f  - g>> 

112 

- I s(c)q(f+g - f )Uk(f -  g - 5 )  de  - /I 
/I +lJ::l s ( c ) u i ( f + g - c ) U k ( f - g + 5 ‘ ) d *  (7.1) 

In  this  expression,  the  last  term is large only near the origin 
and  the  Nyquist  frequency.  The  first  term,  however, is a gen- 
erally dominant  convolution  form having several features of 
interest.  First, if the  frequency  separation  2g is larger than 
2W, so that  the  “central  lobes” of the two estimates  do  not 
overlap, the  range of integration  can  be  split, as above, and  the 
covariance bounded  in  terms of the eigenvalues. Such correla- 
tion  bounds  are  typically small. Second, if the  frequency 
separation is less than 2W so that  the  central  lobes overlap, the 
covariance depends primarily on  the  spectrum  in  the  domain 
(f - g - W, f + g + W), and  the  contribution  from  spectral  com- 
ponents  outside  this  neighborhood can be  bounded  by  the 
eigenvalue properties  in  a  manner similar t o  that given above. 
If the  spectrum  around f is constant or linear,  the  correlation 
at  frequency  separation A = 2g is 

A;k(A) = Iuj(A) * udA)12 

In  particular,  when A is zero,  the  correlation  between eigen- 
spectra is 

which is zero  for j # k. Even for A not zero the  frequency  off- 
set  cross correlations  are  quite small, for  example  with c = 4n  
one has A&( 1.59/T) = 0.366  and  &(2.2/T) = 0.264 as maxi- 
mum values. Typical  functions were shown in Fig. 4  for  this 
case. Note  the  extremely small correlations  expected  for fre- 
quency  separations  more  than 2W. 

Intimately  related t o  the variance of an  estimator is the n e  
tion of efficiency.  Clearly  the  efficiency of a  spectrum esti- 
mate involves not  only  the variance of the  estimate  at  a given 
frequency  but also the covariability of estimates  at  different 
frequencies, as otherwise  the  apparent  efficiency  could be in- 
creased by  additional  smoothing.  Carrying  this idea to  its  limit 
and using the  integrated  spectrum as an  estimate of variance 
for  uncorrelated  data,  one  obtains  a  simple  measure of the 
overall efficiency of the  estimate [ 1721.  For  a single eigen- 

TABLE II 
EIGENVALUES AND VARIANCE  EFPICIENCIE~ 

1 3 1  
2768c-08 
1.21oe-06 

,515 

I 4 I 4.24k-05 
,632 
,730 

spectrum  estimate,  the variance  efficiency is 

1 

n=o 

while for  the average of the f i i t  K estimates  one  obtains 

Using the  prolate  spheroidal  approximations  to  the  discrete 
prolate  spheroidal wave functions  with, as before, c = Nn W 
results  in  the efficiencies shown in Table 11. It is apparent 
from  this  table  that  the efficiencies of the  eigenspectrum  esti- 
mates can be  high; for  example,  the  estimates  with c = 3n, 
K = 4,  and c = 4 r ,  K = 5 are  both over 80  percent  efficient, 
easily computed,  and  yet provide excellent bias protection. 
When the  adaptive  weighting described  in the previous section 
is used, the bias of these  estimates is much  lower owing to  the 
extremely  low leakage of their  initial  eigenspectra.  From  the 
table  it  may also be seen that if more  than  the f i i t  [ 2c/n] esti- 
mates  are  used,  not  only  does bias protection  drop  rapidly,  but 
the  efficiency also drops. 

We must  emphasize  that  the idea of variance efficiency  should 
not  be  taken as a  strong  criterion in comparing  spectrum esti- 
mates. First,  it is strictly valid only  for  white noise processes. 
Second,  it ignores bias and  its  consequences so that,  for ex- 
ample, if one  judged  estimates  solely  from  a  variance  efficiency 
viewpoint,  one  would be left  with  the  periodogram  and  its 
variants as the  only admissible form. 

The  most  important  thing to  note is that, if conventional 
procedures  are used, that is the  estimate is made by 

1)  multiplying  the  data  by a good  data  window, $)(N,  W), 

2)  transforming  the  windowed  data  and squaring, 
3) using a  matched  convolutional  smoother to  stabilize  the 

or a Kaiser [ 1821 approximation, 

result, 

the  efficiency  cannot  exceed xl(c) for  any  smoothing  tech- 
nique.  Thus  for c = 3n  and  4n  the eigenspectra approach 
is more  than  twice as efficient as conventional  windowed 
estimates. 
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With regards to the efficiency, recall that several “opt$wm” 
spectrum estimates based on general quadratic  forms, S(f) = 
XtA(f)X, have been proposed, e.g., [ 1371,  [209],  [2141, 
where  knowledge of the  spectrum was assumed to  compute 
the  optimum weight function, A ( f ) .  Since the unweighted 
eigenspectrum  estimates  are also quadratic  forms, it is rea- 
sonable to question  how  they can be  more  efficient that these 
earlier  estimates. There  are several reasons. First, A ( f )  was 
usually  restricted to depend only on  the sample  autocovari- 
ances and  not allowed to be general. Second,  optimality was 
generally established only asymptotically. Third,  it was as- 
sumed that  the periodogram was unbiased. Thus since  exam- 
ples of such estirhates for A ( f )  not restricted to  the class of 
periodogram  estimates appear to be unknown,  their  optimality 
cannot be taken  too seriously. Further,  the weighted estimate 
(5.4) is not a  simple quadratic  form  but a rational  combination 
of them. This problem is pursued further in the following sec- 
tion where we show  a connection between the eigenspectrum 
estimates and  the periodogram, and in  Section IX where we 
consider the idea of logarithmic  efficiency. Also, in anticipa- 
tion of Section XII, we note  that while the periodogram  corre- 
sponds to a  maximum of the likelihood function, it is not the 
global  maximum. 

Combining  these  results with  the  stability estimate u(f), (5.5) 
gives an overall measure of the efficiency 

- 
eff = u(f) &(c)N 

which may be used to compare  the effectiveness of prewhiten- 
ing (which reducesN), varying W and K ,  etc. 

WI. RELATIONS BETWEEN EIGENESTIMATES AND THE 
PERIODOGRAM 

There is an interesting relationship between eigenspectrum 
estimates and  the periodograrh showing the bias problems of 
periodogram-based estimates simply in terms of the weighting 
used in  Section V above. We begin by  expanding  the Dirichlet 
kernel using a  bilinear formula (see [ 334 ch. 31 ) 

or, replacing f and f ’ by f - fo and f ’ - fo, 

Multiplying both sides of this equation by d Z ( f ’ )  and integrat- 
ing gives 

Y ( f ) =  uk(N,  W ; f - f O ) Y k ( f )  
N-1 

(8.1) 
k=O 

where the basic integral equation (2.3) has been used to obtain 
the  left side  and (3.3) the right. Squaring both sides and multi- 
plying by 1/N gives an expression for  the periodogram valid 
for If- f o l <  W 

Observe that all the eigencoefficients appear  in this  expression 
with  unit weight. If one now uses a uniform  smoother of width 

2W the result is 

This  shows the  smoothed periodogram to be equivalent to a 
weighted average of the eigenspectra with weights independent 
of frequency.  In  addition  the average is over all N eigen- 
spectra,  not  just  the 2NW whose large eigenvalues imply that 
the  information  contained in  these  coefficients is of local origin. 

Comparing the effective weights applied to  the  different 
eigenspectra, hk(N, W ), to those  from  the simple least  squares 
approach 

hk(N, W)S2(f) 
[hk(N,  W)s( f )+u2(1  - hk(N, W))12  

shows that  the  two  are  equal only for white  spectra S(f) E 02, 
and  that otherwise the higher order eigenspectra contribute 
significant bias to  the periodogram. 

IX. SAMPLING PROPERTIES: 111-LOGARITHMIC 
EFFICIENCY 

A  problem  in spectrum  estimation is that of characterizing  a 
“good” estimate. The idea of variance efficiency discussed in 
the previous section is useful in a  restricted sense but fails in 
that  it does not penalize bias. In  addition,  the variances com- 
puted  are polynomial functions of the  spectra as opposed to 
the logarithmic or  ratio  functions  one would expect  from  the 
Itakura-Saito [ 1661, [ 1671 or similar measures; see also 
(1701,  [179],  [189],  [3161. 

As an alternative,  consider the  spectrum  estimation process 
as part of a communications  channel,  or more correctly, as 
multiple  channels closely spaced  in frequency. As such, it 
would  be natural t o  ask about  the capacity of these  channels, 
about  interference  between  them,  and similar questions. Spe- 
cifically we  consider the  average information gained by  co’m- 
puting  a  second  estimate  beyond  that available from  the initial 
estimate. 

This  second estimate may be either  one  at a different fre- 
quency,  or as with  the eigencoefficient  expansion, an addi- 
tional  estimate  at  the same, nominal  frequency made using a 
different filter. To  do  this we still  impose the  constraint  that 
any filters  used  must  be  restricted to the N data  points avail- 
able, but consider these N points as a “sliding block” [ 1311. 
Thus instead of having the eigencoefficients ( y k ( f ) ) ,  we 
consider them  to be an ensemble of stationary sequences 
( y k ( f I ~ ) } ,  where T indexes  the origin or block  position. The 
information we measure will then be  between the sequences 
(yk( f017))  and ( Y k ( f 1 1 T ) )  in the case of different center 
frequencies, fo and f l ,  or  between  the  stationary sequences 
(y i ( f1 . r ) )  and ( Y k ( f  IT)} for  two filters being used at  the same 
center  frequency. Again, note  that  the assumed stationarity is 
with respect to  the block  position parameter T. The basic idea 
we use is expressed by the  formula  for  the average mutual 
information  between  random events “0” and “1” [32] ,  [ 1971 

M(0; 1)  =1(1) - I ( l l0 )  

where I( 1) is the differential entropy associated with  the prob- 
ability distribution of event “1”  and I( 110) the differential 
entropy of event “1”  conditioned  on event “0.” We rewrite 
this formula as 

I ( l ~ O ) = I ( l ) - M ( l ; O )  
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interpret  “1” as the second estimator, “0” as the initial esti- 
mator,  and  the result as the  entropy  rate of the second esti- 
mator sequence  above that  inferable  from  the first sequence. 
The  argument can  also be  done in the  opposite  order  and, since 
the  order  in which the estimates are  made  should be  irrelevant, 
define the mutual  estimation  capacity of the pair of filters as 

ECo1 =~{1(0)+1(1))-M(l;O).  

To evaluate this  function we consider the  two sequences to 
be  Gaussian and  separated  by filters Ho and HI. It is tempting 

the  outputs of the  two filters will be completely coherent  and 
the result meaningless. Thus we assume that  the  two  output 
processes have spectra 

S m U )  = IHm(f)12 * ~ ( f )  + N m ( f )  

and cross spectra 

SmkU) =Hm(f)Hg(f) 

so that  the  entropy  rate  from  filter  “1” above that  from  Titer 
“0” is 

to  try to use the simple  differential entropy  rate powers 

112 

hm = I,,, { l H m ( f ) I 2 S ( f ) )  df 

for this  purpose, but  the differential entropy has several dis- 
advantages: f i t ,  it is the sum of the process and  filter differ- 
ential  entropies  independent of the  estimation  frequency; 
second,  differential  entropies are not  coordinate invariant; and 
third,  the  estimation process is not noise free in that  estimates 
at a given frequency  are  contaminated,  not  only  with leakage 
from all other frequencies  (which provides the  mutual  infor- 
mation),  but also with measurement and  roundoff noise. Thus 
we  define  the noise spectrum  at a frequency f associated with 
the  estimation sequence produced  by  filter H ,  as N m ( f )  r e  
sulting in  the  entropy  rate of ([ 256, eq.  (10.2.4)] ) 

This formula expresses the  mutual  information  between  the 
noiseless filtered  sequence and  the observed noisy sequence; 
as such,  it is a form of Shannon’s [294]  equation  for channel 
capacity.“ 

Similarly, it is possible to characterize the filter leakage be- 
tween  estimates  at  two  different frequencies  in terms of the 
mutual  information 

112 

M(O; 1) = - 4 Illz In (1 - IC(f>12)  df 

where C(f) is the coherence  between the  two processes. If the 
filters were ideal  bandpass and nonoverlapping, their  outputs 
would  be incoherent, M ( 0 ;  1)  zero,  and  consequently  there 
would  be no filter leakage penalty. Alternatively, if the pro- 
cesses were highly coherent, as they would be  with severe filter 
leakage, the  mutual  information, M(0; 1) would be high. To 
apply this concept  here  one  must remember that if one as- 
sumes nonphysical noiseless computations,  then, since both 
filtered  sequences  are subordinate to  the  input series [ 1931, 

‘Specializing  to give an idealized  bandpass f l tsr   of  width W and con- 
stant signal and noise spectra  within  the band the  formula  becomes 

If one  now assumes that  the signal-to-processing-noise ratio is 
large and  that  the noise spectraNo(f)  and N l ( f )  are  identical, 
then  one  obtains  the particularly  simple form  for I( 1 IO) 

the  additional  information derived from  filter  “1” above that 
already available from  filter “0.” Note  that this equation is 
again similar to Shannon’s channel  capacity formula. Here 
the “signal spectrum” is given by IHl(f)12S(f), the “noise 
spectrum” by IHo(f)12S(f), the result independent of the 
spectrum  and  depending only on  the  estimation filters. Thus 
the  formula provides a quantitative measure of the  intuitive 
notion  that filters with high  sidelobe “leakage” give poorer 
estimates than  those  with low leakage. Further, because we 
assumed that  the processing noises were independent, we note 
that making  a  second estimate with  otherwise  identical  filtering 
gives an  estimation capacity of 3 In 2, a I-bit  improvement in 
variance! 

Because it is immaterial  which estimate is used for  condition- 
ing, we use the average of I(0 11) and I( 1 IO) 

which,  by  analogy  with  channel  capacity, we call the mutual 
estimation  capacity of the pair of filters. Also, in  this def i i -  
tion,  the  zero offset for identical noise spectra has been sub- 
tracted so that  the  mutual  estimation capacity  reduces to zero 
for identical  filters. When the  two filters  are the same except 
for  different  center frequencies, Hl(f) = Ho(f+ Af), we write 
the expression as ECh(Af )  and  refer to it as the  estimation 
capacity function of the filter h. When a single number is re- 
quired to characterize  a spectrum  estimation  procedure, we 
use the average estimation  capacity. 

J-112 

As defined,  the  estimation capacity is a proper distance or 
metric  between  the  two  filters; it is zero  when they coincide, 
symmetric,  and  obeys  the triangle  inequality. The  metric is 
clearly similar to Gray and Markel’s [ 1301  “cosh” distortion 
measure 

c= wln (l +$). 
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Fig. 10. Scatter  plots  comparing Ornstein's p distance, Gray and Markel's  dc,h,. and  the 
estimation  capacity  function  defiied here. In this  case,  the  process  spectra  bemg  com- 
pared  are those  of  the  frequency translated  basis functions of  Section XI. 
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but is closer to  the ,E metric described in [ 1321 -[ 1341 

11, 
P = I,,, W l ( f ) l  - IHo(f)1I2 df. 
- 

Although  these  measures are superficially  similar, they  are  not 
particularly well correlated  with each other (see Fig. 10). This 
figure  shows scatter  plots of the different  distance  measures 
applied to all different pairs in the  set of basis functions con- 
sisting of frequency-translated  subsets of prolate  spheroidal 
wave functions to be described in Section XII. Because, in 
this application, we are using the distance measures on  func- 
tions supposed to  be distinct, large numbers are obtained. 

As an  example of the differences  between estimators Fig. 11 
shows N times the  estimation capacity function of the peri- 
odogram, and  the discrete prolate spheroidal wave functions 
Uo(lOO, 0.02; .) and Uo(lOO, 0.04; .). The capacity of the 
prolate estimators is clearly much higher than  that of the peri- 
odogram.  A further  question is raised by the “breaks” in  the 
curves for  the prolate  estimators  near Af e 2W. Since their 
spectral windows  are wider than  the  central  lobe of the peri- 
odogram  window, is the increased capacity of the prolate win- 
dows just  an  artifact of their greater bandwidth compensated 
for by fewer effectively independent estimates? Since the 
number of estimates available at a frequency spacing of Af is 
roughly 1 /A f ,  Fig. 12 shows the  estimation capacity functions 
times l/Af. Note that  the answer is unchanged except  that it 
is now  obvious that  the greatest  effect is achieved with the 
prolate  estimates  spaced W apart. 

Except  for  some special cases, the  interpretation of the nu- 
merical values of the capacity function is unclear except in  a 
relative sense. First,  the relative estimation capacity  EC(Af )/ 
Af is about  equal  to  the first  sidelobe level (in nepers) of the 
spectral  window. Second,  in harmonic analysis problems and 
similar parametric estimation problems, the capacity function 
appears to play  a  role similar to channel  capacity  in that it 
defines the average number of significant bits, using base 2 
logarithms, attainable by the  estimate. Such numbers must  be 
treated carefully. Third, in the purely nondeterministic spec- 
trum  estimation  problem,  the  estimation capacities  imply that 
the logarithm of a  prolate estimate  with c = 4 n  is valid to per- 
haps 1 .5  bits, and  that of a  periodogram only to  about  0.2  or 
0.3  bit  on average. This is in general agreement with experi- 
ence and  the low significances attached  to simple spectrum 
estimates of purely random  phenomena. 

Also note  that if convolutional  smoothers based on  the use 
of  lag windows  are  used, the  estimation capacity is decreased. 
This is because the sidelobes of the spectral  windows  corre- 
sponding to lag window smoothers are typically  orders of 
magnitude  higher than  those  from  the lower order  prolate win- 
dows and  frequently worse than  the  moderately high-order 
prolate windows. Typically,  compared on  the basis of their 
spectral  windows, the use of lag window smoothers entails an 
order of magnitude loss in estimation capacity. If the disas- 
trous numerical properties of such smoothers were included, 
the result would be even worse. 

Despain and Bell [ 931 have shown  an  interesting  connection 
between channel  capacity and  resolution  under  the  assumption 
of strict bandlimiting. In  the  spectrum  estimation problem the 
information available from  fdter “0” in- the sample is N ECo . 
If these  data are  reprocessed, for example by  extrapolation, to 
have a  longer  effective length, say N ’ ,  with a higher resolution 
Af ’, then  the effective signal-to-noise ratio and  capacity EC’ 

1 5 3  -- 
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Fig. 11. Comparison of the  estimation  capacity  function  of  the  period- 
ogram  with  those for the  order-zero  prolate  estimates  with NW = 2 
and NW = 4. In all cases the  sample  size N = 100. 
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Fig. 12. A  second  comparison  of  the  estimation  capacity  functions  of 
the  periodogram  and  order-zero  prolate  spectrum  estimates. The data 
plotted  here  are  the  estimation  capacity  function  divided by the  fre- 
quency  separation  of  the  estimators. 

are  lower. Thus  the reprocessed information  content is N’EC‘ 
or  EC’/Af ’. Since information can at best  be  conserved, we 
have 

EC’ 
Aft>- 

NECo 

or, writing both  information measures in  terms of generalized 
signal-to-noise power ratios, 

From  this  formula  it may be seen that superresolution  requires 
exceptionally high input signal-to-noise ratios  for  the result to 
be  statistically meaningful. This implies that “superresolution” 
requires  “super”  filters and agrees with  the logarithmic  con- 
tinuity  to be mentioned in Section X. Finally, for  the resolu- 
tion  to be meaningful, the original data  must have low  enough 
measurement and aliasing noise to have equivalent Shannon 
capacities. 

For  the case when group$ of estimators are used at each fre- 
quency,  the  situation becomes slightly more  complex  and less 
satisfactory.  Following  Pinsker, we replace the coherence de- 
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Fig. 13. The  cumulative  estimation  capacity  functions of two sets  of 
eigenspectrum  estimates as a  function  of maximum order and fre- 
quency separation of the  sets. In this  case, a  white  spectrum and a 
noise level of lo-'' is assumed. 

pendent  terms, In (1 - IC[') by 

where the ck's are the canonical coherences between  the  two 
groups of estimators [ 571, [231]. Since the squared  canoni- 
cal correlations  are the eigenvalues of a matrix of the  form 
M = X O ~ X o l  X;: X l 0  where the X's are the spectral  density ma- 
trices  between the  two sets of filter outputs,  the sum in the 
preceding equation becomes log 11 - MI. Using ALTRAN 
[60]  to  do  the algebra, one arrives at a  particularly simple 
result: assuming identical noise spectra, N ( f ) ,  the  mutual  infor- 
mation between the  two groups of filters, M(0; l ) ,  is given by 
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tional  information  obtained  on  the  assumption  that  there is a 
definite noise floor  (due  either to processing or measurement 
noise), then  the  estimation capacity function increases with 
the  number of eigenspectrum  estimates  roughly until  the aver- 
age sidelobes of the window  exceed the noise floor. 

As a  compromise  between.  these  extremes Fig. 13 shows 
cumulative estimation capacities,  defined as 

where EC;(Af) is given by 

1 
4 Af 
- 

for k = 0, 1, * * , 4 ,  NW = 4., and  the noise spectrum, N ( f )  = 
lo-". The cumulative spectral windows, lHc,k(f)12, are sim- 
ply the  sum of the  spectral windows from 0 through k - 1. 
Note  that,  with noise included,  the effective  capacity of  the 
order-0  window is slightly lower than was the case shown in 
Fig. 12  for zero noise and  that  both  the order-1 and -2 win- 
dows contribute almost as much as the order-0  window.  This 
contribution is achieved because, while the sidelobes of the 
windows  are somewhat above the noise spectrum,  the window 
width is somewhat  wider, and  the  additional  information is 
obtained.  In this  regard, recall the analogy with  Shannon 
capacity and  note  that  the cumulative  spectral  window  ap- 
proaches  rectangular,  i.e., an ideal  bandpass, within (- W ,  W ) as 
k increases. However, as k is increased further,  the improve- 
ment of the in-band fJter  shape  no longer  compensates for  the 

where the  index "." denotes  the usual summation  convention 

To compute  the  mutual  information  rate  between  the process 
and  the  output of a group of filters,  a similar method is used. 
However, because the  outputs of all the filters  in the  set are 
subordinate to  the original process, the  partitioning of the 
spectral matrix is particularly simple in that X11 is a scalar and 
Z12 and X Z 1  vectors  resulting  in 

Using these formulas to compute  the  estimation capacity func- 
tion  in  the limiting case of zero noise gives a  result identical to 
that  obtained above, with  the transfer functions of the indi- 
vidual  filters replaced by  the sums of power transfer  functions. 
Thus as would be expected  from  the relation between  the 
eigenestimates and  the periodogram shown in Section  VIII,  the 
estimation capacity of simple sums of eigenspectra is lower 
than  the capacity of the  zeroth estimate  alone.  This is a  result 
of the sidelobes of the spectral  window of the unweighted sum 
(shown earlier  in Fig. 3) being much higher than  those of the 
order-0  window. If,  on  the  other  hand,  one  computes  the addi- 

decreased sidelobe level so that  the capacity drops rapidly. 
Thus  the combined contribution of the order-3 and  -4 win- 
dows is only slightly more  than  that of the order-0  window. 
Again, we emphasize that all the filters  are  constrained to  the 
domain of observation, in this  example 100 data  points. In 
addition, we must  emphasize that this  calculation is for a white 
spectrum. If the  spectrum is highly colored,  the capacities 
depend strongly on  both  estimation frequencies and, as one 
would expect  from  the general equations,  much larger differ- 
ences between  the windows are seen. 

X. HIGH-RESOLUTION AND FREE-PARAMETER EXPANSIONS 
We recall the high-resolution  estimate (3.4)  written using the 

weights found in Section V 

Since  this estimate is based directly on an approximate solu- 
tion of the basic integral equation, it has the highest attainable 
resolution of any  estimate based exclusively on  the  data. 

It must  be  emphasized that if additional  a priori information 
is available, such as knowledge of line  components  or a valid 
parametric model for  the  data, estimates  with higher apparent 
resolution may be  made. In  the more common case, however, 
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where little is known  about  the  data  such a  priori assumptions 
can be  exceedingly  dangerous and lead to seriously misleading 
conclusions. In the general case where such  additional infor- 
mation is unavailable, the problem has been thoroughly  studied 
[34],   [35],   [230],   [291] in addition to those referenced in 
Section 11. These studies divide the general problem into two 
distinct problems, extrapolation  and  reconstruction, which 
differ  markedly  in their convergence properties. In  the extrap- 
olation problem the  solution  exhibits Holder continuity  with 
respect to  the  input signal-to-noise ratio so that good extrap- 
olation is possible at reasonable noise levels. Specifically, if 
we denote  the accuracy of the  data by E ,  Holder continuity 
implies that  the accuracy of the  extrapolation can be propor- 
tional to E~ with 0 < -y< 1. The  reconstruction, or inverse 
problem,  on  the  other  hand, converges only logarithmically 
in terms of the  input signal-to-noise ratio. Here the accuracy 
of the  reconstruction is at best proportional to  l/lln € 1  (see also 
[ 1411, [ 1691).  Thus  the  attainability of resolution significantly 
higher than  the Rayleigh limit  requires  unrealistically high 
signal-to-noise ratios. Consequently,  the  existence of  a  well- 
behaved  extrapolation  does  not guarantee a  high-quality  recon- 
struction of  the original spectrum. 

There  are, however, common circumstances  where the basic 
estimates  may  be combined  into a free  parameter  expansion 
whose apparent  resolution is exceptionally high. This pro- 
cedure is useful for  studying behavior near  discontinuities  in 
the  spectrum,  for example the rolloff characteristics of a filter 
or nearly  bandpass process. Here the  apparent  superresolution 
is obtained because the  spectrum in an adjacent region is low. 
As an  exploratory device, the high-resolution estimate is useful 
for investigating the  structure of low-level signals in a highly 
colored  background and  the “skirts” of neybandpass spectra. 

Recall that  the high-resolution estimate S,(f; fo) is valid for 
fo - W < f < fo + W. Since,Afor  a  fixed frequency f, any of 
the  continuum of estimates Sh (f; fo ) with f - W < fo < f + W 
is applicable, the high-resolution estimate has afree parameter 
fo. Moreover, these  estimates do  not all give the same result; 
indeed, we exploit  the  fact  that  they can differ by  many  order 
of magnitude  in constructing  the  composite,  or free  parameter 
expansion. It must be emphasized that  the differences between 
the estimates  must not be taken as an  indictment of the pro- 
cedure;  the basic equation is a  projection operator which  does 
not have a unique inverse [ 1241, [ 1591, [ 3 141.  The procedure 
is simply to  try  to choose the statistically  most reasonable 
approximate  solution. 

We note  further  that  situations of this type are not restricted 
to solutions of inverse problems but  occur widely. For ex- 
ample, the expansions of probability density functions of like- 
lihood  ratio  tests [ 501 depend  on an unspecified parameter p .  
Fields [ 1081 uses “free parameter”  asymptotic expansions for 
hypergeometric  functions.  To use a spectrum  estimation ex- 
ample, autoregressive spectrum estimates can vary widely as a 
function of the  order.  To resolve this  ambiguity two  methods 
are in common use: either use a “stoppingrule”  [33]  to choose 
one of the estimates or, alternatively, the reciprocal averaging 
technique  [62] to convert the autoregressive estimates to  the 
Capon [ 651, [ 661  maximum-likelihood form. 

There are several ways to  determine  the initially  free param- 
eter: selection of the  estimate having the highest entropy; 
weighted linear averages; or weighted harmonic averages; to 
name but a few possibilities. To fix the parameters we assume 
that  the final estimate will be a  weighted average of the high- 
resolution estimates over the range f - W <fo <f + W. We 
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Fig. 14. Components of  the free  parameter  estimate  in the  vicinity of 
the  band  edge  at f =  0.078125 cycles  fotthedataskown in  Fig. 5. The 
figure shows  the basic  high-resolution  estimates Sh(f, f,) at  center 
frequenciEs of fx - W, fx, and f, + W. +o shown are the  composite 
estimate SJf) and  the  average  estimate S (f) shown earlier in Fig. 8. 
The  composite  estimate is shown over the  full  frequency  range  in 
Fig. 24. 

choose for weights the estimated  Fisher information 

(1 0.2) 

so that  the composite estimate S c ( f )  is given by 
A 

r f + W  

W ( f 0 )  dfo 

This choice of weight imposes the  constraint  on W that T(f) 
should have sufficient degrees of freedom  for w ( f 0 )  to have a 
reasonable distribution. 

A .  The Section VI Example,  Continued 
As an  example, we reconsider the problem of Section VI with 

emphasis on  the band edge at fx = 0.078125.  The  smoothed 
estimate z(f) and the associated degrees of freedom u ( f )  used 
to generate the weights for this  example were shown  earlier  in 
Figs. 8 and 9. Fig. 14 shows three  of  the high-resolution esti- 
mates for  center frTquencies of f, - W, f,, and fx + y, the 
smoothed  estimate S(f), and the combined  estimate S&). 
Looking at  the high-resolution  estimates, one can see that  the 
one  centered  at f, tries to follow the  step  but lacks range. 
Noting,  however, that  orthogonal systems generally have diffi- 
culty  fitting discontinuities  this estimate, if plotted  on a h e a r  
power scale, is relatively good.  This  effect is clearer in the 
contour  plot, Fig. 1 5 , ~ f  the  common logarithm of the high- 
resolution estimates S,(f; fo). In this, plot  frequency f is 
plotted  on  the  horizontal axis and  the  center  frequency of the 
expansion  domain fo on  the vertical, both scaled to  units of 
E * (f- f,). The  plotted  contours are at integer values of  log,, 
S , ( f ;  f o )  so that  the  thin dashed lines on  the edges of the 
expansion  domain represent values of lo* while the heavy 
solid contour roughly ovErlapping the diagonal in quadrant 3 
represents points where S,(f; fo) = 10. Note  the characteris- 
tics in quadrant 1 for fixed values of f as a function of fo. 
Returning to Fig. 14, consider the estimate  centered at f, + W. 
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Fig. 15. Contours of  the high-resolution  spectrum  estimate log,, Sh(f, 
f,) for  the  frequency  region of Fig. 14.  The center of  the expanslon 
domain f, is plotted  on  the ordinate with  the ordinary  frequency f 
being plotted  on  the abscissas. 

.. 

With this center  frequency  and  the  extremely  sharp spectral 
window associated with  the prolate windows, Fig. 2, this esti- 
mate is largely unaffected  by  the higher spectral levels present 
at frequencies below f,. 

The combined estimate shows  almost the  correct break fre- 
quency;  on  the higher portions of the  spectrum,  the  shape is 
reasonable and  in  the low  white noise portion,  the estimate is 
quite  flat. Again, we emphasize that this resolution has  been 
obtained  from a data  set of only 100 points.  One is led at this 
point to wonder if the estimate  could find  additional normally 
obscured  “features” of the  spectrum. As a specific case, con- 
sider the problem of detecting a low-level line component, say 
of apparent magnitude “hidden” close under  the band 
edge, perhaps at f, + 1/T. While such  detection is frequently 
possible, a glance at  the weight function shows that most of 
the  contribution to the combined estimate comes from high- 
resolution components  centered above f, + W. As one would 
expect  for such an  extreme case, the estimated stability of the 
high-resolution estimates centered in the  frequency region 
around f, + W is only  a few degrees of freedom  and conse- 
quently  the statistics of the  detection process are not good (but 
still much  better  than  those available from  other  methods!). 

In practice, it is unadvisable to extend  the expansions to 
I f  - f o l  = W but  rather to  stop near 0.8  to 0.9W. Further, in 
regions where only aJew degrees of freedom are available, it is 
advisable to rescale S,(f;fo) by dividing by a factor propor- 
tional to 

K - 1  
Iwk(fO)uk(N,  W ; f -  fO)12 

k=O 

compensating,  in part,  for  the  extremely rapid  rolloff of the 
lower order  prolate windows  near W. 

Before leaving this  section we mention  that  the composite 
estimate is plotted over the full frequency range in Section 
XIV with  additional processing for  the line components. A 
second  example is given in Section XII. We leave as an  open 
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question  the problem of combining the high-resolution esti- 
mates subject to a maximumentropy  constraint. 

X I .  CHOICE OF BASIS FUNCTIONS 
Of the  numerous areas  where the philosophy  expressed in 

this  paper  differs from  that  currently in vogue, one of the 
most  important is in the choice of  basis functions.  In this 
context we note  that most of the successful physical descrip- 
tions of wave phenomena have two  features in common: use 
of a coordinate system  matching (or close to matching) the 
geometry of the  problem; and  second,  expansions based on 
the eigenfunctions, or  natural modes, appropriate to  that 
coordinate system.  Although we are interested  in a harmonic 
decomposition  and  Fourier transforms, the  finite  Fourier series 
provides  a poor  set of basis functions.  Instead,  they are  best 
regarded as providing the  coordinate system so that  the space 
is that of the  finite discrete Fourier  transforms of index-limited 
functions.  For  the  frequency range (-W, +W) of this  space, 
the eigenfunctions  are the discrete  prolate  spheroidal wave 
functions.  From usage in the preceding  sections, however, 
rather  than using all N discrete prolate spheroidal wave func- 
tions, we have taken  the  set of 2NW functions having eigen- 
values close to 1 and implicitly  augmented  this set  with fre- 
quency-translated versions of itself. Thus  the  method may be 
regarded as a  frequency-domain  dual of  Welch’s [346],  [347] 
method  and  the  techniques used in [ 13 I , [ 841.  Unfortunately, 
this  augmented set is defective  in that  the basis functions are 
not  orthogonal,  and, more  seriously, because frequency is a 
continuous  parameter,  there are potentially  an  infinity of func- 
tions so that  the set is indeterminate. We thus consider the 
following  criteria for a basis set  for  spectrum  estimation  and 
inference  problems: 

1 )  Completeness. The  set  of N basis functions should be 
linearly independent so that  the N data  points are recoverable 
from  the expansion  coefficients.  This implies that  the expan- 
sion  coefficients will form a trivially sufficient set. 

2) Numerical Conditioning. As a practical  consideration, 
the basis functions must be not  only linearly independent  but 
also nearly orthogonal. If they are not, effective  sufficiency 
may be  lost to numerical  instability. 

3) Perturbation  Imensitivity. A useful set of basis func- 
tions should not depend excessively on certain conditions being 
exactly  met.  For  example,  the  orthogonality of the  Fourier 
series is sensitive to a nonuniform weight. Similarly, estima- 
tion procedures based on using frequencies spaced 1/N apart 
and  dependent  on  the zeroes of the Dirichlet or sinc  kernels 
fail this  requirement; see [ 1561. 

4)  Low Spectral Mixing. Since we are interested in spec- 
trum  estimation,  it is natural to request that  the power  spectral 
densities of the basis functions be as distinct as possible. Since 
we are working in a  time-limited domain,  the  spectrum of the 
basis functions  cannot vanish over any  interval and, conse- 
quently,  some mixing is unavoidable; see [ 361, [ 1421, [ 2241. 

The first two  conditions are easy and are satisfied by any 
orthogonal set. However, by considering the trivial basis 
functions 

b , ( t )  = S,,t, n,   t  = 0, 1, * * * , N -  1 

it follows that, since their spectra  are all identically I ,  orthog- 
onality is not  enough to  satisfy the last condition. 

As a result, we consider  a measure of the difference between 
the  different basis spectra.  This  problem is similar to  that 
occurring in speech processing but  with  the  opposite emphasis: 
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Fig. 16.  Two measures of  the  distance  between  the spectra of  the basis 
set  consisting of frequency-translated  prolate  spheroidal  wave func- 
tions.  The data  above the main  diagonal are the  estimation  capacity 
functions  between  the two basis spectra;  below  the main  diagonal 
the values  represent Omstein’s measure. In this  case,  four bands  and 
five prolate functions are used  in  each  band. The block  structure is 
apparent.  The abscissa and ordinate labels give the basis indices. 
Scaling on  the contours is arbitrary. (See Fig. 10  for  numericalvalues.) 

while measures such as Ikatura-Saito test  different spectra for 
similarity, the desire  here is to have the spectra of the basis 
functions as dissimilar as possible. 

Thus as an alternative to  the  continuous  frequency  translation 
assumed above, we use the  set of functions consisting of the 
first K * [ 2 N W ]  discrete  prolate  spheroidal wave functions, 
and these functions translated in  frequency by  multiples of 

K 
A f = - - 2 W  

N 

so that  there are N / K  distinct  frequency bands,  each contain- 
ing K functions.  Note  that while this convention requires that 
N be factorable,  the  constraint is not serious as the bands  are 
permitted to overlap slightly. The idea is that  the  spectra of 
the basis functions be reasonably distinct,  but  the basis func- 
tions are not necessarily orthogonal. In  the  time  domain  the 
basis functions Qik)  are given by 

Qt - (k) - , - izntmAf (i) ut ( N ,  W )  
where 

k = j + K m .  
f o r j = O ,  l ; * . , K -  l , m = O ,  l ; . * , N / K -  1, a n d t = O ,  1, 
. . , N - 1. Because of the  orthogonality of the  prolate func- 
tions within any band, i.e., m constant,  the basis functions will 
be orthogonal. Between  bands, however, the  inner  product be- 
tween the basis functions will not generally be  zero. Defining 

N-1 

hk,,k2 = 
t = o  

These products are  most easily 
main using the  transforms 

Q F ) Q ; ( k z ) ,  

bounded in the  frequency do- 

and Parseval’s theorem to give 

112 

hk,,k,  = 
L 2  

u i l ( N ,   w ; f + m l A f ) U i 2 ( N ,   W ; f + m A f ) d f .  

This is the  function Ail,i2 ( ( m l  - m 2 ) A f )  encountered in Sec- 
tions IV and VI1 for a  white spectrum. If follows that H has 
block identity matrices of size K X K along its diagonal and 
small elements elsewhere and so is almost an identity  matrix. 
Because the discrete prolate spheroidal wave functions are real, 
IT is symmetric. 

The effective  sufficiency of the proposed basis (which  deter- 
mines if and how well the original data can be recovered from 
the expansion  coefficients) is  given by the condition number 
of the basis matrix. For this  problem the  condition  number is 
47- where rmax and -ymin, the largest and smallest 
eigenvalues of RHt, have been  typically less than 2 .  

We now consider the differences  between the spectra of the 
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I O  1 s  2 0  2 s  3 0  3 5  4 0  4 5  

T l m o  b a n d v r d l h  p ~ o d u c f  

Fig. 17. The maximum off- iagonal values of covariance + ( A  f? oc- 
curring in the matrix HH P for Af > k /N.  The abscissa is the  time- 
bandwidth  product NW of  the basis functions and the curves are 
parameterized by  the  number  of basic prolate spheroidal  wave  func- 

functions  consisting of 3 discrete prolate spheroidal wave  functions 
tions  used. For example,  the curve labeled “3” applies to sets  of basis 

and their frequency-translated  replications. 

basis functions and recall that obtaining basis functions having 
distinguishable spectra was the original goal of this  section. 
The problem  here is the selection of a suitable measure of the 
differences,  particularly when one adds the  additional  con- 
straint of localization. By this we mean, loosely, that if two 
basis spectra are similar in a  compact subset of the  frequency 
domain,  the effect is less serious than  the same net similarity 
spread over the  entire  frequency domain. 

The region above the main diagonal of Fig. 16 is a  contour 
plot of the  estimation capacity function defined in Section IX 
plotted against the indices k l  and k2 of the basis functions. 
The values below the main diagonal are for Ornstein’s p dis- 
tance.  Note, first, that  the block structure is apparent,  and 
second, that  the basis functions are separated  by significant 
distances. In Fig. 17 we show  plots of the maximum value of 
Ai(Af) attained  for Af 2 k /N  as the basic prolate  parameter 
W varies. Note  that, at the  natural design points,  the maxi- 
mum covariances are low and the minima are not excessively 
sharp. 

XII. RELATIONS TO MAXIMUM LIKELIHOOD 
In  current  spectrum  estimation terminology a “maximum- 

likelihood”  estimate is likely to refer either to a Capon [65 ] ,  
[ 661 estimate (see [62 ] ,  [ 1851 for  further details) or  to  a 
parametric ARMA estimate where the parameters are esti- 
mated using maximum  likelihood. In this  section we make 
some  observations on  a nonparametric maximum-likelihood 
procedure based on the Karhunen-LoBve expansion. This is 
not  done  without significant reservations. First, maximum 
likelihood is not  the  only  estimation  technique, and it is pos- 
sible that  others are better suited for  spectrum estimation 
problems; second, maximum-likelihood  estimates are known 
to act poorly when the  number of parameters to be estimated 
is a reasonable fraction of the sample size while the  spectrum 
is a  function whose parameterization is potentially  infinite. 
Third,  data near the ends of the observation epoch are  related 
as much to or, particularly if the series is very short, more to 
unobserved data  than  the remainder of the observations.  This 
is analogous to  the limited information [ 15 ] -[ 171 models and 
somewhat to Kalman filters. Also, while prediction and infer- 
ential problems from  a  finite sample have been treated proba- 

bilistically [ 991 , corresponding spectrum  estimation procedures 
appear to be unknown. 

Compensating for these  reservations we have is the  fact  that 
the double orthogonality  property of the prolate  spheroidal 
wave functions is shown to be common  to all Karhunen-Lokve 
eigensystems. This implies some  interesting connections 
between maximum-likelihood and  extrapolation estimates. 
Second,  from  asymptotic arguments,  periodograms  are fre- 
quently associated with maximum-likelihood  estimates [ 1001 , 
[1671,  [3491; see also [271,  [511,  [901,  [223],  [2391. We 
give reasons and  an example  which  show that  for small samples 
the prolate-based  estimates have a  much higher likelihood than 
the periodogram. 

While the general properties of Karhunen-Lokve expansions 
are well known [ 2131,  (2421,  [341 I ,  we  give the following 
summary to establish notation. If one is  given a sample of size 
N from  a  time series with  a  known autocovariance function 

~ ( 7 )  = 8 { X t X t + r }  

then  the discrete Karhunen-Lohe expansion is  given by 

X = W  
where C is the coefficient  vector 

C =  @+X 

and \k is the  matrix whose mth  column is the eigenvector as- 
sociated with  the eigenvalue O n  in the  matrix  equation 

\EO = R\k. 

In this equation 8 is a diagonal matrix of the eigenvalues O n ,  
and R is the Toeplitz matrix of autocovariances.  Written  ex- 
plicitly the eigenvectors are  defined by 

with the normalization constraints 

(12.1) 

(1  2.2) 

The  expansion coefficients c, 

have expected value 8 { c n }  = 0 and covariances 

so that  the likelihood of the observation may be written 

At this point  one could attempt  to directly maximize the like- 
lihood as a  function of the autocovariances R (which  enter 
both  through  the eigenvalues and  the coefficients) but  the 
perturbation  equations  are moderately  complex. Solving the 
perturbation  equations  for  a  stationary  point gives the con- 
ditions 22 = gn. See [39]  for  some insight into  the inverse 
algebraic eigenvalue problem, also [332]. 

As an alternative we consider the Karhunen-LoGve eipen- 
equation  written in the  frequency  domain. Using the Wiener- 
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Khintchin relation 

+ 112 

.R(n)  = S(u)eiZnn”  du 

and defining the discrete Fourier  transform of the  time domain 
eigenvectors, the “ei fenf~nct ions”~ 

Q n ( f )  = ~ n ( t ) e - i 2 n f [ r - ( N - 1 ) / 2 1  
N -  1 

t = o  

the  Fourier  transform of (12.1) becomes 

Note  that this equation expresses the reverse operation of 
the usual reduction of an integral equation  to  an algebraic 
eigenvalue equation: here we have elevated the algebraic equa- 
tion to an integral equation. This equation, however,  shows 
several features of the expansion process not obvious in the 
time-domain matrix  equation. 

First,  there is the obvious  similarity  between the kernel of 
this  integral equation,  the basic integral equation,  and  the in- 
tegral equation defining the discrete  prolate  spherioidal wave 
functions.  No  such  apparent similarity exists between the 
corresponding  time-domain equations  (2.9)  and  (12.1). This 
similarity will be used later. 

Second, we have the  result: 

Theorem: All Karhunen-Lobe  eifenfunction  systems are 
doubly  orthogonal;  first  with  respect to unit  weight 

112 ~,,, @ n ( f  ) G ( f )  d f  = &n,k (12.4) 

and  second  with  the  spectrum  as  weight. 

112 

I,,, @ n ( f  ) G ( f  ) S ( f )   d f  = B d n , k .  (1 2.5) 

Proof of the  orthonormality relation is obvious from  (1 2.2) 
and Parseval’s theorem.  The second orthogonality  equation is 
easily proven  by  multiplying both sides of (12.3) by @$( f )  
and integrating.  Since the Dirichlet  kernel serves as the iden- 
tity  element in the space of Fourier  transforms of index-limited 
functions 

the result follows. 
The first  implication of this theorem is that  the curious 

double orthogonality  property of the prolate  spheroidal wave 
functions is not unique. In  particular  when S( f )  = 1 for 
1 f 1 < W and 0 elsewhere, (12.3) is identical to (2.4). 

This double  orthogonality  property implies some  interesting 
relations  between the  Karhunen-Lohe eigenrepresentation, 
parametric autoregressive and moving average representations, 
and  extrapolation techniques. First,  the hierarchy is obvious: 

’We use the  name “eifenfunction”  to  distinguish  the  frequency- 
domain  eigenfunction  defined as the Fourier transform of the  finite 
time-domain  eigenfunction. 

Karhunen-Lohe is a  double  orthogonalization as opposed to 
autoregressive representations which  may be obtained by sim- 
ple Gram-Schmidt orthogonalizations of the  functions eiZnnf 
with respect to the  spectrum as weight; see [ 1861, [ 32 1 1 .  

Consider the expansion of the Karhunen-LoBve eifenfunc- 
tions in the basis set consisting of the frequency-translated 
DPSWF’s considered  in Section XI. Our notivation  for con- 
sidering such  an expansion is the well-known Szego theorem 
[136J,   (1381,  [157],   [158],   [2341,[3191,[320].  According 
to this theorem,  the eigenvalues will be asymptotically equal 
to  the  spectrum  at frequencies spaced 1/T apart. This suggests 
that  the corresponding eifenfunction is localized about these 
frequencies  and consequently might be well approximated by 
prolate  spheroidal wave functions translated to  the same center 
frequency.  Note  that, since the set of frequency-translated 
DPSWF’s is complete in our space, there is no  question of 
their  ability to  do  the  expansion;  the  hope is simply that  they 
will provide a  “better” expansion than some other possible 
sets. While “better” is subjective, two  quantities are desired: 
first,  greater understanding of the behavior of the eigensystem 
for  finite sample sizes; second,  improved  numerical techniques 
for  computing  the eigenfunctions from  a sample spectrum.  The 
motivation for  the  latter is provided by Gerschgorin’s theorem, 
see [ 165 J , which  defines regions containing the eigenvalues. 
Applied directly to  the Toeplitz system,  the radius of these 
regions is approximately 

which is typically large. Contrasted  to this  poorly conditioned 
system,  the frequency-domain eigenvalue equation will be seen 
to have its eigenvalues localized close to  that  expected  from 
the Szego theorem by a  Gerschgonn  radius of  the  same  order. 
We begin by expanding  the eigenfunctions  in the set of basis 
functions described in the previous section 

j = o  

so that  the integral equation becomes 

(1 2.6) 

Multiplying by QF ( f  1, integrating over (- i, $1, and again using 
the Dirichlet  kernel as the  identity element, we obtain  the 
algebraic eigenvalue equation 

This equation is independent of the properties of the prolate 
functions and  works  with  any set of basis functions Q j ( f ) ,  
j = 0 ,  . * . , N - 1.  In particular we note  the  set Q j ( f )  = 
$i( f ), the set of Karhunen-Lohe  eifenfunctions estimated 
in a previous iteration. Defining the matrix Q ,  having as ele- 
ments  the integrals 

112 

Q j , r  = I,,, s(E)Qj(t)Qt(E> dE 
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Fig. 18. A comparison of the  eigenvalues  for  the  Karhunen-L&ve expan- 

sion corresponding to  the periodogram  and the  composite  estimate. 
In this example,  the  true  spectrum is shown by the dashed line, and 
the  composite  estimate by the  solid  line.  The  eigenvalueszorrespond- 
ing to  the true  spectrum are plotted  with +, and  those to  sc(f) by X. 
The third  set of eigenvalues, shown by *, are computed using the  sam- 
ple  autocovariances. Here N = 50. 

we have the generalized eigenvalue equation 

or 

f f G 8  = QC. (1 2.7). 

Recalling that  the eigenfunctions  are orthonormal  with respect 
to uniform weight and orthogonal with  respect to  the spec- 
trum as weight, an iterative  scheme will clearly drive Q to @, 
and,  after  the first iteration, H = I ;  see [ 3091 for  further details 
on  such  iterated Galerkin methods. 

In  the case where the Qi's are the  shifted DPSWF's described 
in  the preceding section,  there is a  second  Galerkin method. 
We begin with (12.6)  and, as above, multiply by the shifted 
DPSWF Q i t ( f ) .  Here, instead of integrating over (- 3, i), we 
integrate over the principal  domain of the shifted function 
Qjt (f), that is (m'Af  - W ,  m'Af + W). Use  of the prolate  in- 
tegral equation (2.4) gives 

where j = k + mK and j '  = k' f m'K. Writing A for  the repeated 
block diagonal matrix of prolate eigenvalues we have 

H ' G 8  = QAG. 

This equation is similar to (1 2.7) above;  the differences  are the 
replacement of h by h' and  the presence of the prolate eigen- 
values Xp. Comparing the  two gives 

ff'ff-' = A. 
The difference between  the  two Galerkin methods is the do- 
main of integration of the  test  functions.  In  the  first,  the inte- 
gration was over the  entire  frequency  domain; in the second, 
the  integration was over a local domain of length 2W. Thus 
the difference between  the  two  equations reflects the  contribu- 
tion of frequencies  in the  exterior  domain of the test function. 
Because the  prolate eigenvalues asymptotically  become  expo- 
nentially close to 1 in NW for k < 2NW, the  implication is that 
the  Karhunen-Lohe eigenvalues are determined to a large 
degree by the local prolate  moments of the  spectrum. 

In these algebraic eigenvalue equations  the  matrix Q is, from 
Section IV, 

Qi,jf  = 8 ( v k ( m A f ) Y j ( m ' A f ) )  

or simply the covariance matrix of the eigencoefficients. Thus 
an alternative measure of the likelihood is in terms of the 
multivariate  complex-normal distribution of the eigencoeffi- 
cients.  Similarly, the  Karhunen-Lobe eigenvalues are closely 
approximated by those  of  the eigencoefficient matrix.  Note, 
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however, that jn the case where less than N series are available 
the  matrix 'ITt, Tt = (yo* (0) y :  (O), * , rz-l (O), yo* (Af ), 
yr(Af ), * * e ) ,  is singular. Direct  evaluation of the Qi,k using 
the sample spectrum gives a  stable result, as only N autocovari- 
ances are  required to specify  a Toeplitz  matrix as opposed  to 
the N Z  required for a general covariance matrix. 

The difference between this technique and that based on 
computing  the eigencoefficients  directly from  the  Toeplitz 
matrix can be extremely large. In one case with N = 24, a 
process spectrum similar to that  shown in the following  ex- 
ample,  and computations  done in single precision6 the follow- 
ing  differences  were obtained  for  the  two  computations of the 
14th eigenvalue (true value 8.665654 X Using the 
direct  Toeplitz  matrix, a Gerschgorin radius of 1.35 and eigen- 
value 1.386 X were obtained;  with  the  iterated Galerkin 
method described here,  the Gerschgorin radius at  the  end of 
the initial iteration was 6.33 x lo-', and the eigenvalue ob- 
tained was 8.66570 X Observe that, with the direct 
Toeplitz  matrix calculation, the numerical  ill-conditioning of 
the problem alone is enough  for  the  computed eigenvalue to 
be  in error  by a factor of 160. 

As a  detailed  example,  consider  a process having the spec- 
trum  shown  by  the  smooth dashed curve in Fig. 18. The en- 
tropy of this spectrum 

exp { l::l In s(f) df} 

is = 2.458 X On it are superimposed  estimates 
of spectra  and eigenvalues as follows: 

1)  The first set of eigenvalues, shown  by "+," was computed 
from  the  known  spectrum using the  iterated Galerkin  tech- 
nique described above. In these  calculations double precision6 
versions of Singleton's FFT [ 1 151 and EISPACK [ 3 101 matrix 
routines were used. The corresponding  eigenfunctions were 
used to generate  data.  For these typical values for  the normal- 
ized log-likelihood function 

N-1 2 

k=O 

were about  +546  for  the  50-point sets used. 
2) A free  parameter  spectrum  estimate,  Section X, was com- 

puted  and is shown by the wiggly solid line. For these  spectral 
estimates  the  entropies range from 5.1 X lo-' to 1.4 X 
without  the bias corrections normally used, [ 1751. 

3) This spectrum  estimate was used to  compute eigenvalues 
and  estimates of the log-likelihood. For this case the eigen- 
values are shown  by X. These eigenvalues, which appear to 
decay smoothly because they have been sorted before plotting, 
match  the  correct  spectrum  and are reasonably close to  the 
true eigenvalues. Expanding  the sample in the corresponding 
eigenfunctions gave values of the log-likelihood from a mini- 
mum of 364  to  547  with a  median value of 523. The explana- 
tion  for  the  rather wide range  appears to be that while the sam- 
ple eigenfunctions have approximately  the  correct  frequency 
content,  that is they are  becoming  localized, they  do  not  m2tch 
exactly so that  there are  typically  a  few for which :;/6k is 
large. 

precision  mantissas are 28 and 64 bits,  there is an  8-bit  binary expo- 
'On a  Honeywell DPS 8/70 36 bit  processor.  The  single  and  double 

nent,  and  the  floating-point registers  carry  8 guard bits  with  rounding 
on storage. 

I O 0  - 

I O  - 

0 0  O f  0 2  0 3  0 4  o s  
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Fig. 19. Spectra of  the  17th  eigenfxnction for the estimates  based on 
the sample  autocovariances  and Sc(f) of  Fig. 18. The  solid curve 
shows  the energy  distribution  for  the  eigenfunction  computed  using 
the sample  autocovariance  function.  Note that large values  occur  in 
the low-frequency  region  where  the  spectrum  (Fig.  18) is large. By con- 
trast,  the dashed  curve shows  the enygy distribution  with  frequency 
of the  eigenfunction  computed  from Sc(f). Because the  influence of  
the  low-frequency  region is suppressed,  expansion coefficients based 
on this  function  will be dominated by frequency  components in the 
proper  region. 

4) To  compute  the last set of eigenvalues, shown  by "*," 
the  data were first transformed to autocovariances, using the 
positive-definite form  common in  speech processing 

and  the eigenvalues of the  Toeplitz  matrix were computed 
directly, again using double precision. Here the estimated log- 
likelihoods were remarkably  consistent, most being clustered 
about  216,  but  with  the minimum observed being 146.  The 
explanation  for this behavior is that  the eigenfunctions are so 
badly biased that  they all respond to  the large values of the 
spectrum  at low  frequencies. Thus with  estimates derived 
from  the periodogram or sample  autocovariances,  a high value 
of the log-likelihood does not imply  a reasonable model for 
the data. Note  that  there is little resemblance between this 
set  and those  computed  from  the  known  spectrum. 

To  continue this  comparison, Fig. 19 shows the periodogram 
of two eigenfunctions (or  the squared  magnitudes of the eifen- 
functions).  Both  correspond to  the  17th smallest eigenvalue 
in their respective sets (and were chosen because the  frequency 
of their maxima are nearly coincident), and both were estimated 
from  the same set of 50 data  points. The difference is that 
the one shown by the solid curve was computed  from  the 
sample  autocovariances, the  one shown by :he dashed curve 
was computed from the  composite  estimate SC( f ) .  Note par- 
ticularly the difference  in the low-frequency region where the 
process spectrum is large and the bias in the  covariancebased 
eifenfunction is also large. In  the  time domain, the difference 
is not so striking, but, generally speaking, the eigenfunctions 
computed  from  the sample  autocovariances resemble sines and 
cosine? in  appearance  whereas the eigenfunctions computed 
from Sc(f) typically have envelopes resembling the  prolate 
functions. In  addition,  attempts  to  perturb  the  spectrum esti- 
mate  from  the eigenbehavior lead to  further observations. First, 
the  perturbations  must be made carefully if the  estimate is to 
be improved.  Second, if the  perturbations are not gentle, the 
estimate tends to switch to  the periodogram. Thus  the peri- 
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odogram  represents  a  broad local maximum of the likelihood 
function whereas the  global maximum is localized and  sharp. 
MoreovPr, using the corrzsponding  expansion  coefficients 
“reasonable” values of ; : / O n  are usually obtained so that  the 
periodogram  must be categorized as a  consistently self- deceiv- 
ing estimate. Third,  it appears that  asymptotic behavior of 
eigenvalues and eigenfunctions occur  at different rates. For 
the simple spectrum used in  this  example the eigenvalues are 
already close to  the  spectrum with  only 50  data  points whereas 
the eigenfunctions  bear little resemblance to sines and cosines. 

As a  final point we touch  on a subject mentioned in the 
Introduction, namely that  the  methods described in this  paper 
are not  intended to be  a complete  spectrum  estimation pro- 
cedure but  rathzr to be embedded  in a larger package. If the 
initial estimate S,-(f) is used to generate an autoregressive pre- 
whitening  filter  and  a  prewhitened  estimate is computed,  the 
corresponding log-likelihoods have a median value of 543, 
close to the original median value of 552.  The range is also 
low, extreme values observed being 518  to  567.  Thus while 
these  estimates 20 not satisfy the  exact  mpinpm-likelihood 
conditions 2; = O n ,  the observed values of cn/eA12 do  appear 
t o  have approximately a  normal N(0,  1)  distribution. Judging 
from  the appearances of different  estimates, it appears that 
those coming closer to having the N(0,  1)  distribution may 
be “better”  than  those coming closer to satisfying the  strict 
maximum-likelihood  conditions. 

A .  A Relation with Moving Average Processes 
A technique used to improve the  resolution of spectrum 

estimates is extrapolation;  one makes a predictor  from  the  data 
and uses it  to  “extend”  the original data.  This “extended” 
data are then used to  recompute  the  spectrum and a new pre- 
dictor, and so on, iteratively. Details of this procedure are 
available in [641,  [751,  [1131,  [1781,  [1811,  [244],  [289] 
with  additional relevant material being [37],   [38],   [89],  
[350]. These formulations typically involve prolate  spheroidal 
wave functions and  some form of bandlimiting  assumption. 
We thus consider the case when  an  approximate moving aver- 
age representation P(k), k = -=, . * * - 1, 0, 1, * * . exists  with 
transfer  function 

~ ( f )  = E /3(t)ei2nft. 

Since stationary processes are time reversible, we assume that 
the moving average representation is real, symmetric,  and 
normalized by 

t = - m  

S(f) = IB(f)12. 

Using this  representation  in  the second orthogonality  relation, 
one has 

112 

L 2  
@n(f)B(f)   @i(f)B(f)  df= O d n , k .  

Converting to  the  time  domain,  one has the  functions 

@n(f>  = J / n ( f )  * P(t)  

which are  orthogonal  on (-=, m) and provide a natural  extrap- 
olation of the observations as the  prolate  functions are used 
to extrapolate a  bandlimited  sequence 

x^r = - 4 n W .  
N - 1  cn 
n = o  On 
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A common  requirement  on  such procedures is that  the  extrap- 
olated  data  and  the original data agree on [ 0, N - 1 1,  and this 
will not generally be satisfied unless the matrices  B  and R com- 
mute, B being the  Toeplitz  matrix  formed  from  the moving 
average coefficients. Note  that  the prolate  spheroidal wave 
functions are unique in the serlse that  for  the  strictly  band- 
limited case the  symmetric moving average representation is 
identical to  the autocovariance function. 

There are several possible solutions to this  dilemma: accept 
the discrepancy,  which in the cases tried so far is small; use a 
weight in the  time domain as the  information  at  the ends of 
the series is related to unknown  information; or,  perhaps  best, 
use a  simultaneous orthogonalization procedure and replace 
the Karhunen-LoBve expansion with  its extension by solving 

R *’e’ = B \k‘ 
as a generalized eigenvalue problem; see I1  191, [ 1761, [ 1771. 
If the process is nqnsingular,  this procedure will asymptotically 
result  in two sets of eigenvalues, one  set  asymptotically being 
the  square of the  other.  For analogies with  the spheroidal 
functions see [ 2721, [ 2731. 

Xm. HARMONIC ANALYSIS 
Generally  speaking, harmonic anaZysis has come to mean the 

study of the line components in a spectrum  without regard to 
whether  or  not  they  are  at multiples of a common  frequency. 
Unfortunately, since the  techniques used for  harmonic analysis 
have been  virtually  identical to  those used for general spectrum 
estimation,  the  two names have been used almost  interchange- 
ably.  Nonetheless, there are many references  where the  em- 
phasis is on harmonic analysis: 1481,  [731,  [1091,  [1101, 

12071,  [2081, i2.181, [2191,  12491,  [2571,  [2621,  (2631, 
[277],[3311,  [344],  [3481,  [355],[3591.  Inaddition,many 
of the papers contained in [21-[4],  [74], [ 1551  are  relevant. 

To make sense of harmonic analysis it is essential to recog- 
nize that  the assumption of  “pure” line components is a  con- 
venient fiction; while often good for a few cycles, it is rarely 
supportable over extended periods of time. This tends to 
further divide the subject by series length. In  short series, 
detection, [ 2681, [ 33  11, and resolution of line components 
are major problems;  for longer series the problems of interest 
typically concern  the  structure of the line 1241,  [401,  [471, 
[761,  [981,  [2101,  [2881,  [3361.  For  such investigations, 
the use of structure functions advocated by Lindsey and Chie 
[ 2 121 deserves wider attention. 

In  this paper we present  a new approach to  the problem of 
“mixed”  spectra;  that is the case where  line components are 
embedded in stationary  background noise with a continuous 
spectrum.  At present, the best solutions to  the  harmonic 
analysis problems are probably given by eigenvalue decomposi- 
tions,  with  the  projection  methods of Kumaresan and  Tufts 
[ 1991, [ 2001 being among  the most promising. We note  that 
there are two  “pure” eigenvalue decompositions common 
in time-series analysis: at  one  extreme we have Pisarenko’s 
[ 2581 “all-signal’’ form;  on  the  other  extreme of a  purely non- 
deterministic signal, we have the Karhunen-LoGve expansion. 
Between  these extremes  it will probably become necessary to 
use Slepian’s [301]  techniques  to combine the  two  methods 
for effective harmonic analysis in highly colored noise. The 
method we describe takes a step in that direction  by  doing  a 
decomposition  into “signal” and “noise” components. As 
such  it is largely complimentary to  the eigenvalue decomposi- 
tion  and linear Drediction methods of harmonic analvsis. 

[1261,  [139I,  [1441-[1481,  [1601,  11921,  [1981.  [203], 
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With this approach, which  consists  simply of applying regres- 
sion techniques  to  the eigencoefficients, the  two problems of 
spectrum  estimation  and  harmonic analysis are distinct.  The 
distinction  between  the  two  problems is that spectrum analysis 
is the  study of the second, and higher, moments of dZ(u) while 
the emphasis in harmonic  analysis is on  the first moment of 
dZ(u). 

In such cases, the process is usually described as having a 
nonzero mean-value function consisting of a  number of sinu- 
soidal terms  at various  frequencies, plus perhaps a polynomial 
trend, plus a  stationary  random process of the  type we have 
been considering. In  terms of the spectral representation this 
amounts, in  practice, to having the  extended  representation 

8{dZ(f)l= P m W -  fm) (13.1) 

in place of the usual assumption 8 { d Z ( f ) }  = 0. With this 
definition,  the  continuous  portion of the  spectrum is the sec- 
ond  absolute central moment of d Z ( f ) .  

To  demonstrate  the  approach we assume the simplest case of 
a single line component  at  frequency fo so that  the eigencoef- 
ficients have a  nonzero  expected value 

$ { Y k ( f ) )  = y u k ( N ,  W ;  f- f0). (13.2) 

Again, making the assumption that  the  continuous  component 
of the  spectrum near fo is slowly varying or “locally white,”  it 
was shown  in  Section IV that 

cov { Y k ( f ) ,   Y f ( f ) }  s(f) ‘ a j , k  (13.3) 

where the  spectrum S(f) is the continuous spectrum and  does 
not  include  the line power. 

There are two obvious  limiting methods to estimate p :  “point 
regression” at fo , and  “integral regression” in the neighborhood 
of fo with  the obvious changes to either  for  both coefficient 
weighting and truncation. In the first case, one uses only the 
data at fo where one has the obvious  relation 

g b k ( f 0 ) )  = p u k ( N ,  W ;  0) (13.4) 

and can estimate  the mean y, by standard regression methods, 
[2271 

This estimate is the high-resolution estimate described in Sec- 
tion X at f = f o  before squaring. As the eigencoefficients  are 
combined linearly, we may write 

N-1 
;(f) = h,(N,  W ) x ( n )  e - i z n f [ n - ( N - 1 ) / 2 1  (13.6) 

n=o 

where the effective  harmonic analysis data window h,(N, W )  
is given by 

i l ‘ i l  
.0 

(I 5 I O  i s  2 0  2 5  

F r e p u e n r y  I s a m p l e  5 , z e  

Fig. 2 1 .  The  spectral window corresponding to  the data window  of Fig. 
20. Note  the  low  sidelobes  for  frequency spacings greater than W. 

21,  it may be seen that  the  central lobe has a half-width of 
1.15/N, only slightly wider than  that of the periodogram,  and 
low sidelobes outside  the  bandwidth W. 

The “integral regression” method, which uses information 
not only from  the Yk’S at fo but also from  the neighborhood 
of fo is a solution of minimizing the sum of integrals 

J f o + w  I Y k ( f )  - puk(N,  W ; f - f O ) 1 2  df (13.8) 
k=O fo-W 

with  respect to p .  The result is a  form of matched  filter ap- 
plied to  the  different eigencoefficients. As above, it possesses 
an equivalent harmonic window, but here it is formed of con- 
volutions of prolate  functions  and,  consequently, has exceed- 
ingly low sidelobes. The drawback is that  the  method is more 
complex and, as it uses information  from  a wider bandwidth, 
is also subject t o  noise from  the same bandwidth. Because the 
details are similar, we  will not give detailed  formulas for this 
method. 

Returning to  the first method,  the variance of the estimated 
h , W ,  W )  = 

k=O (13.7) mean depends  on  the local continuous  part of the  spectrum 
K - 1  

k=O var m f ) )  = K - l  (1 3.9) 
G ( 0 )  S(f) 

This  window and  the corresponding  spectral  window are plotted UaO)  
in Figs. 20 and  2 1 ; note  the  apparent similarity between this 
data  window and  that  shown  in  [238, Fig. 7.81. Also, in Fig. which is only slightly larger than S ( f ) / N .  Subtracting their 

k=o 
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estimated means from  the eigencoefficients gives an  estimate 
of the  continuous  spectrum. Comparing  this value of the back- 
ground  spectra  with  the power  in the line component results  in 
an F variance-ratio  test (see [ 1121, [ 2251, [ 2921 )’ with  2  and 
2K - 2 degrees of freedom  for  the significance of the  estimated 
line component 

If the F test is significant, it is advantageous to “reshape” the 
spectrum  aroundfo  (which can be estimated from  the  location 
of the maximum F) to give a better estimate of the overall 
local spectrum 

This operation must be done  with care so that power is con- 
served numerically. In practice, the eigencoefficients  are com- 
puted  by using a FFT algorithm with  the  data  “padded”  with 
zeros. With standard FFT’s, the frequencies form a  discrete 
mesh with  frequency  increment Af = 1 /hi, M being the  length 
of the  transformed arrays and so determined by the  number of 
zeros appended. To avoid circular  correlations M is always 
taken  at least 2iV and  frequently  much larger. Since spectrum 
estimates are used both  for  additional processing stages and 
are also plotted, we impose two  constraints  on  the reshaping 
operation: fist,   that it be done in such a way that power is 
conserved; second,  that when plotted  the  width of the peaks 
does not imply  greater resolution  than exists. Crame‘r-Rao 
bounds have been given by [ 2761. 

A.  Estimates of the Mean 
A particularly interesting example is that of estimating the 

process mean [ 181.  It is common experience that, when one 
estimates and  subtracts  the sample average before estimating 
the  spectrum,  the periodogram  estimate of S(0) is 0, and  better 
estimates are typically biased low. Here one  obtains a  slightly 
better  estimate  for  the mean while the estimated spectrum 
near the origin is much  more accurate. 

B. Continuation 2, Section  VI  Example 
To exhibit these features we continue  with  the  example in- 

troduced in Section VI. Fig. 22  shows  a plot of the F variance 
ratio  statistic (actually, since the plot is of log F, we have effec- 
tively plotted Fisher’s z statistic),  in which the presence of the 
line  components is clearly visible. The peak locations coincide 
with  the  true  locations of the lines and the values of F are 
significant at levels >1 percent  for  both lines. Note also that 
the lines  are sharp;  at F = 5 the half-width of the lines is about 
0.048,  which is lessthan  1/2N.  The reshaped spectrum, Fig. 
23, is identical to S(f) except  that  the  estimated means have 
been subtracted  from  the eigencoefficients. Note  that  the 
background spectrum is reproduced  accurately, again except 
for  the band edges, and also that  the  “dip”  commonly  found 
at  the origin after  subtracting  the mean is missing. Fig. 24 is 
a plot of the  spectrum estirnate&obtained by  applying the high- 
resolution composite estimate Sc(f) to  the eigencoefficients, 
less their estimated  mean value functions, in the same way. 
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Fig. 22. The analysis  of  variance “F” test  for  the  presence  of  harmonic 
line  components  using  the  data  shown  in Fig. 5. In this case the  test 
has 2 and 8 degrees of freedom.  The  peaks  near 0.05 cycle  are thus 
insignificant  while  those  at  the  line  frequencies  are  significant  above 
the 99.9-percent  point. 

IO”. 1 
0 0  O I  0 2  0 3  0 4  0 5  

F ~ e q u e n r y  ~n C y c l e r  

Fig. 23.  The  reshaped  spectrum  estimate.  In  this  estimate  the  effects 
of  the  estimated  line  component  amplitudes  have  been  subtracted 
from  the  eigencoefficients  before  squaring  and  combining  and  the 
power  replaced  at  the  estimated  line  frequencies. This figure  should 
be  compared  with Fig. 8. 

IO000 - 

t 
0 0  O I  0 2  0 3  0 4  0 5  

F r e q u e n c y  ~n C y c l e s  

Fig. 24. A composite  high-resolution  estimate  computed by the  free 
parameter  expansion  of  Section X from  the  reduced  eigencoefficients. 
As in Fig. 23, the  line  power  has  been  replaced. 

Here the  band edges are reproduced exceptionally well, but 
there is an obvious  increase in variability  in the rest of the 
spectrum. As mentioned in  Sections IX and X, such behavior 
is to be  expected  in high-resolution  estimates. However, even 
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with  the  extreme  handicap  of a  relative discontinuity of >lo6, 
the  estimated band edge is in  error by less than  0.0038 cycle, 
about a factor of 3 better  than 1 IN and  about a factor of 12 
better  than achievable with simple  windowed  estimates. 

C. The Problem of Resolution 
A  controversial  problem  in time series analysis is that of 

resolution,  that is of distinguishing closely spaced line compo- 
nents  in a  sample spectrum. We consider the case where there 
are two line components  separated by  a frequency A in  a lo- 
cally white-noise  background of variance u2 and  attempt  to 
estimate  the power  in  each component.  The line spacing A is 
assumed to be less than W and, typically, less than  the Rayleigh 
resolution  1/N.  If, in the presence of the background noise, 
we are  able to estimate  the  two powers with  enough  accuracy 
to  confidently assert their presence, we claim that  the lines 
have been resolved. For a given estimation algorithm such 
assertions must be based both on  the properties of the  data 
and also on  the condition  number of the  algorithm(see below). 

The  solution to  the general (ordinary) least  squares  problem 

u=xp (13.12) 

where  Y is the n vector of observations, fl the p vector of pa- 
rameters t o  be estimated,  and X is the n X p matrix of coeffi- 
cients, is well known  and given by  the normal equations, 

XTXB = XTY  (13.13) 

conveniently expressed in terms of the Moore-Fenrose  general- 
ized inverse or  pseudoinverse of X 

X ?  = (XTX)-'XT  (13.14) 
as 

p = X ?  Y. (13.15) 

The relative sensitivity of this solution  to  uncertainties in the 
observations may be expressed in  terms of the condition  num- 
ber K'(X) of the coefficient matrix and the relative norms of 
the  uncertainties as 

(13.16) 

where the euclidean norm llYl12 = YT*Y has been  used for vec- 
tors  and  the  condition  number defined using the spectral norm 
of the  matrix 

K2(X) =- Ymax 

Tmin 
(13.17) 

where rmin and ymax are  the smallest and largest eigenvalues 
of X ~ X ,  respectively. 

Using this notation  and  continuing with the  harmonic analy- 
sis problem as expressed in terms of the eigencoefficients, we 
identify  the following. First,  the vector of observations Y con- 
sists of the complex  eigencoefficients a t  the  two frequencies 
under  consideration, 

YT = (vo(fo),  Y l ( f O ) ,  * . * , 
~ ~ ( f o ) ,  ~ o ( f l ) ,  Y I ( ~ I ) ,  * * , Y K ( ~ I ) ) .  (13.18) 

Associated with Y are  the squared norms (IYI(' and 116Y112. 
For  the  harmonic analysis problemAhe first, 11 YJI', is the raw 
portion of the raw eigenspectrum S(f) from  the line c o ~ ~ p o -  
nents. For reasonably strong lines it is approximately S(f). 
The second, I16YllZ, is the  portion of the eigenspectrum  near 

fo and f1 (which are  supposed to be too close to be directly 
resolved in s(f)) from  the  nondeterministic  or background 
spectrum. I(Y112/1(6Y112 is interpretable as the  input "signal-to- 
noise" power ratio. 

Second,  the coefficient matrix X consists of discrete prolate 
spheroidal wave functions of arguments 0 and *A 

(13.19) 

Finally, the  vector consists of  the estimated amplitudes of 
the  two line components, BT = (G(fo), f i ( f l ) ) ,  with  the  total 
power given by  the squared norm IIpI12. Also, as before, one 
can interpret 11f1112/116f1112 as the output signal-to-noise power 
ratio. 

If one  computes  the  condition  number K ' ( X )  one  finds  that 
it is not very different  from  the  condition  number  obtained 
for  the problem of resolving two lines  in  a white-noise back- 
ground 

K2(C) = 
N sin nA + sin NnA 
N sin nA - sin NnA 

] (13.20) 

which, for N A  < 1 is approximately I ~ / ( N T A ) ~ .  Thus  for 
example, if one  attempts  to  estimate  the magnitudes of two 
lines a t  known frequencies  separated  by O.Ol/N, one  must 
contend with K' (X) % 12 000, and so requires input signal-to- 
noise powers of at least 40 dB to even ensure that  the estimated 
line  magnitudes will equal the noise level. Similarly, at  such a 
spacing, one  cannot claim that an estimated  line  power  appar- 
ently 40 dB above the noise represents anything  except  the 
intrinsic  ill-conditioning of the problem. Clearly, when the line 
frequencies  are unknown,  the  conditioning of the problem is 
unlikely to improve! It is also necessary to remember,  particu- 
larly when working with miniprecision computers  (32-bit  or 
less word length),  that  the  condition  number of a program' 
can be amazingly different from  the  condition  number of the 
algorithm it was intended to implement. 

The preceding paragraph applies equally to ordinary least 
squares and to  the eigencoefficient approach when the back- 
ground spectrum is strictly white. For this case, the  two algo- 
rithms have approximately  equal performance. However, since 
this case is almost never encountered in practice, it is necessary 
to compare  the  condition  numbers of the  two algorithms  when 
the  continuous  component of the  spectrum is colored. 

When the  spectrum is colored,  it is necessary to replace ordi- 
nary least  squares with generalized least squares, [ 71.  Written 
in the  time  domain,  this is most easily done by regressing the 
coefficients of the Karhunen-Loive data expansion against 
those of the line components as in [ 301 1. This expansion re- 
quires the covariance matrix of the background process. Since 
this covariance matrix is unknown, complications multiply  and 

'The  condition  number of a  process  measures the relative  sensitivity 
of results of the process t o  small  relative  changes in  the input  data.  The 
input  data for a program include  machine  precision,  floating-point hard- 
ware implementation, library  algorithms, the  compiler,  etc.,  in  addition 
to  the quantized  time  series  samples. 
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one typically obtains  an implicit estimate specified  by  relations 
between  the  data coefficients and eigenvalues of the “sample 
Karhunen-L&ve expansion”  corresponding to  the  spectrum 
estimate discussed in  Section XII. 

If the  spectrum is locally white,  and  at a level not  dominated 
by bias, the eigencoefficients  are approximately  uncorrelated, 
hence the  setup is exactly  the same as when the noise is white 
and  the  condition  number of the normal equations  the same. 
The difference is in  the input noise power llSf1112, which  now is 
a function of the local background spectrum,  the sample vari- 
ance u2, and  the maximum  coefficient order used 

S(f)G IISflI12 <S(f) + ( I  - AK)O’. (13.21) 
Since, for a given value of NW, K is usually chosen so that bias 
is not  dominant,  the last term is typically small and  the  input 
noise power is given by the local spectrum. 

Finally, we note  that while the  condition  number  just de- 
scribed implies uncomfortably large signal-to-noise ratios  for 
high-resolution  applications, they are modest compared to 
those  described.for  the general reconstruction problem in Sec- 
tion X. This  difference is a  result of the prior  knowledge  im- 
plied here, i.e., that line components may  exist with  only  their 
magnitude and phase unknown. 

D. The Kay  and Marple Example 
To provide  a basis for  the comparison to these techniques to 

other  methods in use we take  the  data set  published in [ 185, 
table 1111 by Kay and Marple. Briefly, these data consist of 64 
samples from a process composed of three sinusoids at fre- 
quencies of 0.1,  0.2,  and 0.21 cycles, plus  a continuum com- 
ponent  with  its maximum spectrum  at 0.35 cycle. Of the  11 
methods  they  compare (see [185, fig. 161),  none give com- 
pletely  satisfactory  performance. All the  methods  detect  the 
maximum  near  0.2  cycle and  four of them show the  double 
line.  Performance on  the line at  0.1 cycle (20 dB weaker than 
the pair) is much  poorer as the  majority of the  methods miss it 
completely,  and  its  amplitude is reasonably estimated by  only 
one of the  methods presented.  Similarly, performance  on  the 
continuum  component is generally unsatisfactory and  one 
must  conclude that  the example is difficult. 

Using the  methods presented  in  this  paper embedded in the 
overall estimation  structure  mentioned in the  Introduction 
(and described in detail in [ 3241) gives startingly  good  results. 
Specifically, the  estimation procedure  consisted of  the follow- 
ing steps: 

1)  TakingNW = 3.5 (a  more  appropriate value in view of the 
low dynamic range and  expected  complexity), eigencoefficients 
and weights were computed. 

2) Using (13.10),  an F statistic  for line components was 
computed. This  resulted in a very sharp peak  at  0.1 cycle and 
a broad peak significant above the  99  percent  point  at  0.2 
cycle. In  addition,  there is a lesser peak, significant at  about 
the  95  percent level at 0.31 cycle. While a  peak at  this fre- 
quency is not  mentioned  in Kay and Marple, it is possibly an 
artifact of nonlinear interactions of the  three  known line  com- 
ponents resulting from  quantization.  For a similar effect see 
the variable star example  in [43].  The most  likely cause, how- 
ever, is that in  a  sample of size 64  one  expects an upper ex- 
treme  at roughly the  100  (1 - 1 /64)  percent  point  and, conse- 
quently,  no  action.was  taken  at this frequency. 

3)  In  the absence of an  actual line component, a  peak  in the 
F statistic of the magnitude observed at 0.1 cycle occurs with 
probability <lo-* and  consequently  a line  component  with 

500 i 
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Fig. 25.  The analysis of variance tests  for  the Kay and Marple example. 
At  0.1  cycle  the result is that of a  single  frequency “F” test  while 
near 0.2 cycle  the result is dominated by  the projection of a  double 
line  test.  The peak near 0.3 cycle is of intermediate  significance. 

the  estimated  amplitude  0.0392-0.0271 i was removed from 
the  data. 

4) Because of the  width  and significance of the peak around 
0.2 cycle (not  to mention  the  information given in  the refer- 
ence!) a double line F statistic was computed  for frequencies 
within  the  width of the peak. In this case the “integrated re- 
gression” procedure with coefficient weighting was used. This 
F statistic was plotted by  projecting maxf, F ( f l , f 2 )  onto  the 
f l  axis and is shown as Fig. 25.  Note,  first,  that all three line 
components are resolved and also the  exceptional sharpness of 
the  line  at 0.1 cycle. Here, for  frequencies of 0.098,  0.100. 
and  0.102 cycle, values of F of 82.7,  292.8,  and  57.3, respec- 
tively,  are obtained so that  frequency resolution much  better 
than = 0.01 56 is obtained. 

Simllarly, at  the  double peaks at  0.20  and 0.21 cycle a value 
of F = 195  (on 4 and sz 12 degrees of freedom) is obtained. 
Again, the probability of such a value occurring without  the 
actual line components being present is ridiculously low,  and 
the values of F drop rapidly as the frequencies  are changed 
from  their  correct values. In  this case the  estimated line ampli- 
tudes were 0.1458-0.4591 i and  0.1436-0.4651 i at 0.200  and 
0.210 cycle,  respectively. As before,  their effects  were sub- 
tracted.  The  combination of the  three line components gives a 
good approximation to  the  data  and even though  the  two 
strong  components largely cancel  each other  at  the  upper  end 
of the  data  set,  the sample variance is reduced from  0.9253 to 
0.1 193  by  this simple action. 

5)  Following removal of the  estimated line components  the 
spectrum of the residuals was computed. This was done using 
my preferred method,  that is prewhitening using an autoregres- 
sive prediction  error filter  followed by  estimation of the resid- 
ual spectrum.  In this case, an autoregression of  order 5 was 
used  resulting  in  a  residual variance of 0.0073. Since the range 
of the  spectrum is greatly  reduced  by  this  procedure the 
weights are all large and a  mean stability of 9.77 degrees of 
freedom was obtained  for  the residual spectrum. 

6) Correcting the residual spectrum  for  the prewhitening 
filter  and replacing the line components  at  their  estimated fre- 
quencies gives the  spectrum  estimate  shown  in Fig. 26. 

In Fig. 26  the  spectrum is plotted  in  units of “variance  per 
cycle” and  the  amplitudes of the line  are such  that  their nu- 
merical  power content is correct  with  their  widths correspond- 
ing to the estimated frequency resolution. As such,  the scaling 
does not correspond exactly to  the plots given in Kay and 

44 
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Fig. 26. The  estimated  spectrum  for  the Kay and Marple example  using 
reshaping and free parameter expansions. 

Marple. Also, in making  comparisons  between  this estimate 
and  those in Kay and Marple, observe that  their figures only 
cover the  top  40 dB of the  spectrum  and  that  the  portions 
falling roughly below the heavier grid line are not  shown in 
their figures. With regard to details, the estimated  power of 
the lines in the pair are within  2 percent of each other. Also, as 
expected,  the line at 0.1 cycle is 20 dB lower  in  power. Com- 
parison with [ 185, fig. 161 of Kay and Marple shows that  only 
the “Special Prony via Hildebrand approach”  apparently does 
as well in this regard. This figure also explains the  exceptional 
sharpness of the peak in the F statistic associated with this  line, 
the local signal-to-noise ratio is better  than 50 dB! Finally, the 
shape of the background spectrum agrees well with published 
information. 

XIV. ESTIMATION OF COHERENCE AND POLYSPECTRA 
So far we have been  concerned with  the simplest problem  in 

the analysis of a stationary  time series, namely  estimating the 
ordinary  spectrum  from a finite realization of a single Gaussian 
process. In this  section we expand  the  methods  introduced so 
far to  the  next  two problems:  estimation of cross-spectra and 
coherences  in  multivariate  series; and  the  estimation of higher 
order  moment  or  cumulant spectra, or polyspectra  (which  are 
required to characterize  non-Gaussian processes) and an exten- 
sion to nonstationary processes. These  problems  are treated 
together as, typically,  the  estimators involve averages of prod- 
ucts of Fourier  transforms of one  or more series, at  the same 
or  different frequencies. 

Of the  two, estimates of coherence  and cross spectra have 
received the wider treatment [ 81, [ 781, [ 801, [ 1251, [ 1271, 
[1281,  [1471,  [1741,  [1941,  [1951,  [2411,  [2811,  [3281, 
[329]. Polyspectra  are treated in [46],  [53]-[55],  [59], 
[ 2831, [ 3401  with [41] being a good introduction; see also 
[ 1231, [ 3 121. Naive estimators of these functions (i.e., those 
corresponding to  the periodogram or simple use  of ensemble 
equations  for estimators)  are  typically  badly biased and depend 
strongly on data preprocessing and  the relative group delay 
between the various components involved in the estimate. 
Excepting the case where there are large amounts of data avail- 
able so that a  variant of  Welch’s [347]  method of overlapped 
segments can be used ([69],   [70],   [72]),  several complex 
ad hoc  frequency averages are used so that  coherence estimates 
are  usually  regarded with  extreme skepticism. Again, we claim 
that  the eigencoefficient approach gives a much more satis- 
factory answer than  the usual “frequency averaging” methods. 

For this  multivariate case we assume that  the  data consist of 
N contiguous samples taken  concurrently  on each of P series 
x m ( t )  f o r m  = 1 ,2 ,  . * * ,  P and t = 0, 1, * . * ,  N -  1.  Compo- 
nents of the spectral  density matrix, i.e., the  spectra  and cross- 
spectra between  the  different  component series, are  marked 
S,,(f). We denote  the  kth eigencoefficient of the  mth series 

Paralleling the development  in the univariate case, the eigen- 
byYm,k(f ). 

estimate of the cross-spectrum between series I  and  m is 

where the superscript “*” denotes complex  conjugate. Because 
the  different eigencoefficients of each series are  nearly uncor- 
related from each other, again under  the  assumption  that  the 
local variations in the  spectrum are not too extreme,  the esti- 
mated  squared  coherence 

(14.2) 

will have almost the same distribution as is usually assigned to 
squared  coherence  estimates for K independent replications 
of the pair of series. This distribution has  been extensively 
studiedin  [251,  [671-[72],  [125],  [2041, 12161. 

In  addition,  one may use composite  methods, so that if 
enough data are available to form T nearly independent sub- 
sets, then  one can form  the cross-spectral estimates 

where YJ,k(f 17) is the  kth eigencoefficient from  the  7th subset 
of the  Ith series. 

If the segments  are independent,  the statistics of the coherence 
function are the same as those normally  associated  with KT 
overlapped  segments. The variance of coherence  estimates is 
typically  worst for values of the  true coherence of about 0.36 
and may be approximated by 

1 K T - 2  
-+2- c -  . . 

and taking  T = 8 and K = 6 as typical values, the variance de- 
creases from 0.054 which would be obtained using conven- 
tional  approaches to  0.014.  If,  on  the  other  hand,  the seg- 
ments are not  independent  but are  considerably overlapped 
subsets of a single longer data  set,  then  the  improvement is 
not as dramatic.  This is because overlapping windows of the 
up’(N, W )  type  exhibit reasonable variance efficiencies if the 
overlap is large enough [ 324, sec. 3.31. 

When the  spectrum of the processes contains lines in  addi- 
tion  to background components,  the  interpretation of the 
usual coherence estimate becomes much more difficult, partic- 
ularly if the power  in the line component is commensurate 
with that in the local background spectrum. These  difficulties 
arise simply because the  two  components may have, and  often 
do have, independent physical origins. Thus cases commonly 
occur where both  the background noise process and  the line 
components are independently  coherent,  but, because their 
cross-spectra have different phases, their sum appears inco- 
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herent.  The facility of the eigenspectrum approach to estimate 
the complex  amplitudes of the line components,  and to sep- 
arate  them  from  the background, gives a solution  to this 
problem. 

The  frequency-dependent means  are  estimated for each series 
by  the  method used in  the section or. harmonic analysis 

K - 1  

k=O 

and  tested  for significance individually. If the  component 
exists in both series with high probability, it is reasonable to 
claim a coherent mean at  that  frequency; see [ 2181, [ 2191. 
Removing mean components  found to be significant in  either 
or  both series leaves the dispersion components 

h 

from which cross-spectra and coherences may be computed as 
above. In  frequency regions where the complex mean has 
been estimated and the mean-value function  subtracted  there 
are two fewer degrees of freedom  than initially  existed. 

A .  Coherence Estimates  with Highly Colored  Spectra 
In addition to dependencies  induced by undetected line 

components in the processes under  study, coherence estimates 
will become biased in regions where the background spectra 
are changing rapidly. Using the same methods as in Section IV, 
one may show that  the correlation  between the eigencoeffi- 
cients y m , i ( f )  and Y n , k ( f )  is given by 

c $ , i ) ( f )  = g { Y m , i ( f )  * Yn*,k(f)) 

112 
- - Jll2 Uj( t  - f)uk(t - f ) s m , n ( f )  df 

which, if S m , , ( f )  departs radically from a constant in the 
interval (f - W, f + W), may  be significant. Because the eigen- 
coefficients associated with a given series may be highly cor- 
related with each other, simple estimates such as (14.2), appro- 
priate for  spectra nearly white near f ,  may be misleading. Thus 
when there are  enough independent replications, we consider 
the canonical  correlations between  the  two sets of eigencoef- 
ficients.  These  are  defined in  terms of the  roots of the general 
matrix eigenvalue problem 

(Cn,mCil,mCm,n - 7 c n : n ) ~  = 0 
where the largest of the eigenvalues, 7, gives the closest associ- 
ation  between  the  two  series;see [88] ,  [ 1611,  [231],  [354]. 

B. -Examples of Coherence  and  Polyspectra  Estimates 
1)  Example 1 :  We consider  a bivariate case of the process 

studied in Section VI with emphasis on  the region of the cen- 
tral  “bump.”  In this  region, the  continuous part of  the spec- 
trum is characterized by  the  terms 

x,,l(t) = p l ( t )   + p 2 ( t )  COS ( a c t )  + p 3 ( t )  sin (act) 

and a  second series containing similar terms 

xc,2 ( t )  = P&) - p 3 ( t )  COS (w, t )  + p 2  ( t )  sin (act) 

where p , ( t )  through p4( t )  are independent  stationary processes 
having identical  autocovariance functions R,(T).  With this 

definition  both x c , l ( t )  and xc,2(r) are stationary  and have 
autocovariance functions 

R ,  (7 )  = Rp(7)(1 + cos ( ~ ~ 7 ) ) .  

In  addition,  they are jointly stationary  with lagged cross cor- 
relation 

~ ~ ~ ( 7 )  = &{x,, l( t)xc,2(t  + 7)) = R p ( 7 )  sin ( ~ ~ 7 ) .  

The  common  spectrum of ( t )  and xc,2(t )  is simply given 
by  the  frequency translated sum 

SAf) = S,(f) + S,(f- f c )  + S,(f+f,) 
and the cross spectrum by 

i 
S,,(f) = 5 (Sp(f- f,) - S,(f+f,)) 

and  it follows that  the  coherence  in  the  central  “bump” is high. 
We take x l ( t )  to be the series defined  in Section VI, that is 

x l ( t )  is ( t )  plus the  two  line  components,  and also define 
an  additional series x 2 ( t )  given by 

x2(t) = xc ,2( t )  + 2.4 COS (wit) + 2.6 sin (w2t ) .  

Using the  two series, xl(t)  andx2(t) ,  and  computing  the co- 
herence directly using (14.2)  without consideration of the  line 
components gives the results shown in Fig. 27.  Coherence is 
evident around 0.2 and  0.38 cycles, but  between 0.22 and 0.36 
the values obtained  do  not show the close relation  between  the 
two series. The low values obtained are a  result of cancela- 
tions between the  continuum  and line components as they 
have different phase relationships. 

In Fig. 28 the  data have been reprocessed using both  the 
estimated first and  second  moments,  and  the  improvement is 
dramatic.  In this figure, the solid curve shows the estimated 
coherence  between the  continuous parts of the process. Note 
that  the estimated coherence is high where expected,  and 
reasonably  low  in the regions  between the  bands where  only 
uncorrelated noise exists. In  addition,  the  apparently signifi- 
cant “spike” near the  band edge at f =  0.07 is an example of 
spurious correlation. Recall that, in  this  example, the  two 
low-frequency components are independent,  the  apparent 
coherence is a  result of the  correlation induced  within  each set 
of eigencoefficients by  the rapidly changing spectra. The 
dashed curve is an  estimate of the  “f i i t  moment coherence” 
and is simply the  product of the cumulative distribution  func- 
tions  for  the  two F tests considered independently. Again, the 
only highly significant values occur at  the  two line  frequencies. 

2 )  Example 2:  Now consider  a similar pair of series where 
the  definition of the  second series is changed to 

x 3 ( t )  = p 4 ( t )  + p 3 ( t )  cos (wet) + p 2 ( t )  sin ( a c t )  

the only  difference between  the x , , ~  and x3 series being the 
sign of the p 3 ( t )  term. Consider the problem of estimating 
the dependencies between ~ , , ~ ( t )  and x3( t ) .  Clearly both 
series contain frequency-translated copies of the basic p 2 ( t )  
and p 3 ( t )  sequences and so are not  independent;  the difference 
between this  example and  the previous one is that  in  the x 3 ( t )  
sequence the  frequency  components in the  band  about w, have 
been reversed. As such  the  coherence, as commonly  defiied, 
vanishes. This is shown in Fig. 29 where  only the  spurious 
correlations  at  the  band edges and a residue at  the carrier fre- 
quency have moderately significant values. 

The problem in  this  example is that, while as before,  and 
x3 are individually stationary  but are  now not jointly station- 
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Fig. 27.  The  estimated  magnitude-squared  coherence  for two processes 
of the  type described  in  Section VI. and  computed  directly  by (14.1). 
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Fig. 28. An  estimate of the  magnitudeaquared  coherence  applied  to 
the  same  data as used  in Fig. 27 but  with  estimation  and  removal of 
line  components  before  use of (14.1). Here the  estimated  coherence 
between 0.2 and 0.4 cycle is close to   the  t rue value. The dashed  line 
shows  the  probability  of  simultaneous lie components.  Note  that 
here both line  and  continuum  components  are  found  to be coherent 
as opposed to  the  cancelation  effects  observed  in Fig. 27. In both 
cases, the peak at  0.1 cycle is an  artifact  induced  by  the  discontinuity 
in the  spectrum. 
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Fig. 29. A  second  example  where  simple  coherence  estimates fail. In 
this case the  frequency  components  in  the 0.2 to 0.4 cycle band  of 
one  series  have  been reversed and  the  result  appears  incoherent. 

ary, having as lagged cross covariance 

& { x ~ , ~  ( r ) x 3 ( t  + 7)) = ~ ~ ( 7 )  sin (wc(2t + 7)). 
When analyzing data, however, one does not  know  the theo- 
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Fig. 30. A  generalized coherence  estimation  procedure  applied to   the  
data used t o  generate Fig. 29 .  In  this  figure,  the  region  above  the  main 
diagonal  shows  frequency-reversed  coherences, the region  below the 
diagonal  shows  coherences  between  frequency-translated  coherences. 
Note  that  the  strong  coherence missed by  the  simple  estimate is 
shown  by  the  band  with slope -1 in  the  upper  triangle. 

retical covariance structure  and,  therefore, we assume that 
short series of processes x ~ , ~  ( t )  and x3 ( t )  are available and are 
to be analyzed. We also note:  first, processes of the  type used 
in these  examples  are common in engineering practice (see any 
recent issue of the IEEE TRANSACTIONS ON COMMUNICA- 
TIONS for examples),  and also occur  naturally because of 
doppler  shifts,  etc.;  second,  that  the processes are  only jointly 
nonstationary implies that  the  condition will probably not be 
noticed unless large amounts of data are available; third,  the 
change in  model  specification is so apparently insignificant 
that  any practical technique should be robust against it. 

We thus propose  a  “second-order  bispectrum”  in which the 
normal  rules governing the possible frequency combinations  in 
polyspectra of stationary series are  ignored. Thus to examine 
the  structural relationship between  the processes at  two fre- 
quencies, f and f’, we propose an estimate of the forward cross 
spectrum 

and  the reverse cross spectrum 

The  “forward” estimate refers to  the case where only  a  fre- 
quency translation has occurred while the “reverse” applies 
to  the case in which  a  band of frequencies  has  been reversed 
as well  as translated. The  notation ? n , k ( f )  refers to  the  kth 
eigencoefficient from  the  nth series normalized  by 

k = o  

where, as earlier, the d k ’ s  are the  solution weights. 

squared  coherence as 
By analogy with  the  stationary case we define the magnitude- 

which is the sum of the squared reverse coherence  and the 
squared forward  coherence  and so may exceed 1. 

Fig. 30 is a contour  plot of the squared cross-coherence func- 
tion showing the reverse term above the diagonal and  the 
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forward  term below the main diagonal. Observe that, in the 
square  defining the band edges on  the  two frequencies, there is 
a well-defined and significant structure clearly showing the fre- 
quency reversal in  the  band. 

XV. SUMMARY AND CONCLUSIONS 
In this  paper we have attempted  to present  a different ap- 

proach to  the problems of spectrum  estimations  from  those 
currently fashionable. Thus instead of modeling the series in 
terms of rational polynomials, as is done  in ARMA approaches, 
we have used the eigenfunctions of the  finite  Fourier trans- 
form to find  approximate  solutions of the integral equation 
defining the limits of our knowledge  in the  frequency  domain. 
This approach has  yielded  considerable new information.  First, 
the use of data windows is seen to be justifiable in  that  ones 
used previously approximate  the first term in the series expan- 
sion  used  here. Second,  stable estimates  are obtained  without 
the usual decrease in resolution.  Third, a method  for combin- 
ing the basic high-resolution  estimate in a  free-parameter 
expansion was demonstrated. This  estimate was then  shown 
to produce eigenvalues reasonably close to  the  true values. In 
addition, using the sample  eigenfunctions to expand  the pro- 
cess  gave high values of the log-likelihood function.  Fourth, 
because the  estimate can be used to separate moments of the 
effective  spectral representation, it provides a distinction 
between  spectrum and harmonic analysis and new techniques 

tended to fit into  the larger framework of robust prewhitening, 
etc.,  mentioned  in  the  Introduction. 

Finally,  the  methods we have presented are still new, many 
of them appearing here  for  the  first time. As such, I make no 
claim that  they are optimal  and  many  are, in fact, heuristic. 
They are  presented  in the  hope of suggesting some new ap- 
proaches to  difficult  problems. 

APPENDIX 
COMPUTATION OF SPHEROIDAL WAVE FUNCTIONS 

When N is large, it becomes inconvenient  both  from storage 
and precision  viewpoints to directly solve the  Toeplitz  matrix 
equation.  In  such cases it is simpler to proceed as follows: 

1)  In  [306, sec. 2.61, Slepian gives asymptotic expressions 
for  both  the discrete  prolate  spheroidal wave functions  and 
sequences  in terms of the  continuous-time prolate  spheroidal 
wave functions i)k(c, x) 

where c = NnW and  the  prolate spheroidal wave functions sat- 
isfy the integral equation 

for dealing with mixed  spectra.  Some  applications to multi- 2) Convert the integral equation to an algebraic eigenvalue 
variate processes were discussed. equation by use of a Gauss-Legendre quadrature  formula. (See 

these techniques are not suited for all applications [ 51 , [ 3 181 for  an  introduction to these procedures.) To  do 
any more than is any  other  method. In problems  where there this we a point formula so that  the integral equation 
is sufficient additional a priori information  to permit specific becomes 
techniques to be  developed,  a method optimized for a specific 
problem  should always outperform a general technique using 
less Q priori information  about  that problem. The  extra com- 
putations required will probably  exclude the  techniques de- 
scribed  here  in those cases where the biggest problem is too 
much data  and  statistical  efficiency is irrelevant.  Similarly, 
the difference equations  for  the discrete prolate  spheroidal 
sequences have not been exploited so that  the  technique  cannot 
yet  be applied  in problems having severe real-time constraints. 
Also, the calculations  are easier on a large computer. However, 
those  with  too  little  data,  the range of the  spectrum large, little 
information  about  the process, and statistical  efficiency essen- 
tial may find  the  additional  computations worthwhile. In such 
cases, it is reasonable to assume that, as with most  statistical 
techniques, it will be impossible to verify that  the  conditions 
assumed in this  paper,  i.e., stationarity, etc.,  are met.  Indeed, 
since stationarity and  line  spectra are at best  convenient fic- 
tions, these conditions will almost  certainly no? be  satisfied 
by  real data  and  one must always question  the validity of the 
results; see [ 3391. My impression is that, if the  data are not 
too  far  from Gaussian and  stationary,  the  method works well. 
The reasons for this  are as follows.  First, normality has been 
assumed only for  the variance expressions, so that these may 
be  expected to break down as the  data become less Gaussian in 
nature.  Second,  the  orthogonal  increment  properties of d Z ( f )  
implied by  strict  stationarity  are most important  in  the adap- 
tive  weighting of Section V. If one chooses simply to minimize 
the squared error  for a  particular  sample, d Z ( f )  may  be re- 
placed by  an  ordinary  Fourier transform. 

Again, we emphasize that  the  method discussed in  this  paper 
is no? a complete spectrum  estimation  procedure but is in- 

where the xi’s and wj’s are the abcissas and weights of the 
quadrature rule. Note  that  there is a  PORT routine [ 1151, 
d g q m l l ,  available to directly compute abcissas and quadrature 
points  for a given J.  If  we define  a  modified  eigenfunction 

* k ( j )  = fi $k(c,  x j )  

and  symmetric kernel 

sin c ( x m  - X i )  

n ( X m  - x i )  
K ( m , j )  = d e  

and evaluate (A2)  at  the  quadrature abcissas, the result is a 
symmetric algebraic eigenvalue problem 

J 

j = 1  

As typically  only  a few eigenvalues are needed,  the EISPACK 
procedures of [ 3 10, sec. 2.1.131 are very  convenient. 

3)  The discrete prolate spheroidal  sequences may now  be 
interpolated  at  the N points required  by using the kernel. 
Substituting  in  (A2) gives 

hk(c)*k(m) = K(m, j ) * k ( i ) .  (A31 

sinc (g- 1 - x ;  I 
J - 1  n 1,- 1 - X j J  
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where g k  is a normalization  factor chosen so that 

n=o 

This procedure works well because the error of a J-point 
Gaussian quadrature rule can be  bounded in terms of the  2Jth 
derivative of the  integrand f 

and in  this  problem the  functions involved are all entire. Using 
Fourier integral representations  for  both  the kernel and eigen- 
functions, it may  be shown  that 

Consequently,  the  error due to the Gaussian quadrature pro- 
cedure decreases very  rapidly with J. 

In  opposition to this  rapidly decreasing quadrature  error is 
the  roundoff  error in the algebraic eigenvalue procedure  which 
increases with J but whose detailed  characteristics  depend 
both  on  the floating-point  hardware used and the  implementa- 
tion of the  routine. Taking s t o  be the  number of bits  in  the 
floating  point mantissa [ 44, ch. 61, gives 

for a  relative rms error  bound  on  computing all the eigenvalues 
of a symmetric  matrix using Jacobi’s method.  For small J the 
dominant  error  term is proportional to J3I2 but, when J be- 
comes large, the  error increases exponentially.  Note carefully, 
however, that this formula is given only as an example  and 
that  the accuracy of numerical routines depends on  many 
factors besides basic machine precision so that this formula is 
not valid for  other eigenvalue procedures and  not even for 
other  implementations of Jacobi’s method. Also, when the 
matrices involved are stored  in single precision, it is common 
to  accumulate sums  in double precision so that  the effective 
precision is increased somewhat. Details are available in [3521. 

The  total  error,  therefore, consists of two  terms:  the quadra- 
ture  error, which decreases with J ;  and the numerical error, 
which increases with J .  Thus  for a given value of c,  there is 
an  “optimum” J .  Directly  finding  this  minimum gives for 
c = 4 n  and ~ = 2 - ~ ~ ,  J Z  18,  and  for ~ = 2 - ” ’ , J Z 3 5 .  How- 
ever, since we are usually interested  in  only a few of the largest 
eigenvalues, and  the  matrix is very structured, when using the 
EISPACK routines  mentioned above, use of a somewhat larger 
J is advisable. 
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