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PERIODIC PROLATE SPHEROIDAL WAVELETS

Gilbert G. Walter � Department of Mathematics, University of Wisconsin,
Milwaukee, Wisconsin, USA

Xiaoping Shen � Department of Mathematics, Ohio University, Athens, Ohio, USA

� Prolate spheroidal wavelets (PS wavelets) were recently introduced by the authors. They were
based on the first prolate spheroidal wave function (PSWF) and had many desirable properties
lacking in other wavelets. In particular, the subspaces belonging to the associated multiresolution
analysis (MRA) were shown to be closed under differentiation and translation. In this paper,
we introduce periodic prolate spheroidal wavelets. These periodic wavelets are shown to possess
properties inherited from PS wavelets such as differentiation and translation. They have the
potential for applications in modeling periodic phenomena as an alternative to the usual periodic
wavelets as well as the Fourier basis.

Keywords Bandlimited signal; Paley-Wiener space; Periodic wavelets; Prolate
spheroidal wave functions; PS wavelets; Wavelets.

Mathematics Subject Classification Primary 42C40; Secondary 33E10, 42C05, 94A11,
94A12.

1. INTRODUCTION

The prolate spheroidal wave functions (PSWFs), ��n,�,�(t)�n∈Z , cons-
titute an orthonormal basis of the Paley-Wiener space of �-bandlimited
functions on the real line (functions whose Fourier transforms have
support on the interval [−�, �]). They are the eigenfunctions of an integral
operator with the sinc function, S(t) = sin �t/�t , as its kernel:∫ �

−�

�n,�,�(x)
1
T
S
(
t − x
T

)
dx = �n,�,��n,�,�(t), (1.1)

where T = �/�.
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954 G. G. Walter and X. Shen

Although they had long been known as solutions to a Sturm-Liouville
problem, they were shown by David Slepian and his collaborators at Bell
Lab to be the solutions of an energy concentration problem, which in turn
led to this integral equation. The problem, posed by Claude E. Shannon,
was to find the normalized (by L2 norm) �-bandlimited function that
possesses the maximum energy concentration on the interval [−�, �]. For
this reason, the PSWFs are called Slepian functions. The system carries
two parameters, the bandwidth � and the width of the time concentration
interval �. The product of these two parameters, denoted by c = ��, is
sometimes called Slepian bandwidth in the engineering community. The
properties of these PSWFs were extensively studied and reported in classic
papers ([4–9, 11]) during the 1960s.

Recently, there has been renewed interest in PSWFs in part because
of their sampling properties [14] as well as their multiscale properties
[13]. New applications such as numerical solutions to partial differential
equations and density estimations [1, 12] have arisen. Motivated by
their multiscale nature, a system of wavelets based on these PSWFs was
introduced in a earlier paper [13] (called PS wavelets for short). The
PS wavelets were constructed in a certain way to retain the energy
concentration property and were shown to have many desirable properties
lacking in other wavelet systems. In this article, we use these PS wavelets to
construct a new multiscale system—periodic PS wavelets. This system has
similar properties to those of the PS wavelets, which distinguish them from
other periodic systems, such as the Fourier system and periodic wavelets.

We organize this paper as follows. This section is followed by Section 2,
in which we recall some related properties of PS wavelets. Section 3 is
dedicated to the construction of the periodic PS wavelet basis. Some
interesting properties of these periodic PS wavelets, such as differentiation,
translation, and duality, are discussed in Section 4. Some numerical
examples are given in the last section to demonstrate properties of the
periodic PS wavelet system.

2. PS WAVELETS

Before constructing the periodic PS wavelets, we review the PS wavelets
[13]. A scaling function � = �0,�,� was first introduced, which is the �-
bandlimited function of norm 1 whose energy on [−�, �] is maximized.
The integer translates formed a Riesz basis of the space V0 ⊂ L2(R). This
space V0 turned out to be the Paley-Wiener space B� of �-bandlimited
functions no matter what the choice of �.

This space then becomes part of the family of nested subspaces of a
multiresolution analysis (MRA). The other spaces are obtained, as usual, by
dilations by factors of two and consist of the Paley-Wiener spaces Vm = B2m�.
Because they are entire functions, the bandlimited functions cannot have
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Periodic Prolate Spheroidal Wavelets 955

compact support in the time domain. If we denote the time concentration
index as

	(h, �) ≡
(∫ �

−�

h2(t)dt
)1/2

, h ∈ L2(R), ‖h‖L2(R) = 1

the PSWF for n = 0, �0,�,� is the one that possesses the maximum
concentration index 	 on [−�, �] possible. In fact, for � sufficiently
large, its energy can be made arbitrarily small outside of the interval
of concentration [−�, �]. For example, for � = 2, � = �, the total energy
outside of the interval is of the order 10−6. Hence, the PS wavelets are not
only superior as far as analytic properties are concerned but also similar to
compactly supported wavelets for most practical computations.

We recall the following properties proved in [10] and [13].

Proposition 2.1. Let �(t) = �0,�,�(t) be a �-bandlimited PSWF with concen-
tration interval [−�, �]; then ��(t − k)� is a Riesz basis of B�. The PS mother
wavelet, in turn, is given by


(t) := cos
(
3�
2
t
)
�0,�/2,�/2(t), (2.1)

which is orthogonal to all integer translates of �(t). The translates of the mother
wavelet form a Riesz basis of the orthogonal complement of V0 in V1.

As usual, we denote the wavelet subspace by W0 = span�
(t − n)� with
its dilations denoted by Wm = span�2

m
2 
(2mt − k)�, m ∈ Z .

In most of the standard wavelets, the derivatives of the scaling function
do not belong to the space V0, nor for that matter, to any of the
subspaces Vm . The exceptions are the Meyer wavelets, which do not have
compact support, but even in this case the derivatives do not belong to V0.
Furthermore, none of the scaling functions with compact support belong
to C∞, so that they cannot be differentiated arbitrarily often [2].

For any wavelet system, the translation of an f ∈ V0 by an integer is again
in V0, but if it is translated by some other real number, it no longer belongs
to V0. In fact, in most cases, it no longer belongs to any of the subspaces
Vm . This, of course, becomes a problem when there are measurements
based on an independent variable without a natural zero, for example if
the independent variable is time. In fact, we have the following [10]:

Proposition 2.2. Let �(t) = �0,�,�(t) be the PS scaling function. Then

(i) �(k) ∈ V0, for k = 0, 1, � � � ;
(ii) �(t − �) ∈ V0 for any � ∈ R; and
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956 G. G. Walter and X. Shen

(iii) if f ∈ V0 has the expansion

f (t) =
∞∑

n=−∞
	n�(t − n)

then f ′ ∈ V0 and

f ′(t) =
∞∑

n=−∞
an�(t − n); (2.2)

where an = ∑
j �=n

(−1)j−n

j−n 	j ;
(iv) moreover, if � is not an integer, then

f (t − �) =
∞∑

n=−∞
bn�(t − n), (2.3)

where bn = ∑∞
j=−∞ 	j S(n − j − �).

Formula (2.2) indicates that differentiation can be reduced to a simple
algebraic operation (discrete convolution) just as with Fourier series.
The same is true for translations. Other operations such as dilation and

FIGURE 1 A pair of PS scaling function and its associated mother wavelet (� = 1). Top: time
domain. Bottom: frequency domain.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
D

av
is

] 
at

 0
9:

59
 2

5 
Se

pt
em

be
r 

20
15

 



Periodic Prolate Spheroidal Wavelets 957

convolution were also shown to have simple expression in terms of the
coefficients. Figure 1 shows the PS scaling function and its associated
mother wavelet in both time and frequency domains.

3. PERIODIC PS WAVELETS

The scaling function of the PS wavelets was defined as the first
PSWF �0,�,�(t), the one with maximum concentration on [−�, �] among
normalized �-bandlimited functions. We use it also to define the periodic
scaling functions; many of the calculations are based on the Fourier
transform of the PSWF given by

�̂0,�,�() = A�,��0,�,�

(
�

�

)
��(), (3.1)

where A�,� =
√

2��
��0,�,�

, �0,�,� is the first (largest) eigenvalue of the associated
integral operator (1.1), and ��() is the characteristic function of the
interval [−�, �]. Just as with the PS wavelets, we restrict ourselves to � = �
in the periodic case. The Fourier integral theorem inverts the Fourier
transform and enables us to express � = �0,�,� as

�(t) = 1
2�

∫ �

−�

�̂()e it d

and hence

�(t − n) = 1
2�

∫ �

−�

�̂()e it e−ind.

This then is the nth Fourier series coefficient of �̂()e it from which we
deduce that

∞∑
n=−∞

�(t − n)e in = �̂()e it

where the convergence of the series is uniform for ||≤ � − �. This follows
from the fact that the right-hand side is continuous and differentiable on
this interval.

3.1. The Periodic PS Scaling Function

We follow the standard procedure for the periodization of wavelets [15]
and define the first periodic PS scaling function by

�
p
0,0(t) :=

∞∑
n=−∞

�(20t − n − 0),
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958 G. G. Walter and X. Shen

which from the discussion above converges to the constant �̂(0)e i0t =
�̂(0). Thus the first scaling function �

p
0,0(t) = A�,��0,�,�(0) is a constant

(or trigonometric polynomial of degree 0).
The second one (at level m = 1) is defined by

�
p
1,0(t) :=

∑
n

�(21(t − n) − 0), (3.2)

which uses the fact that

�(2t − 2n) = 1
2�

∫ �

−�

�̂()e i2t e−i2n d

= 1
2�

∫ 2�

−2�
�̂(�/2)e i�t e−i�n d�/2

= 1
2�

∫ �

−�

�̂(�/2)e i�t e−i�n d�/2 + 1
2�

∫ 3�

�

�̂(�/2)e i�t e−i�n d�/2

+ 1
2�

∫ −�

−3�
�̂(�/2)e i�t e−i�n d�/2

= 1
2�

∫ �

−�

{
1
2
��̂(�/2)e i�t + �̂(�/2 + �)e i�t e i2�t

+ �̂(�/2 − �)e i�t e−i2�t �

}
e−i�n d�,

that is, that �(2t − 2n) is the Fourier coefficient of the function in brackets
in the integral. (Note that the integrals in the second and third lines are
equivalent, as �̂ has support on [−�, �]). Thus the defining series (2.2)
converges to the average of the left and right-hand values at � = 0. Hence
it is a trigonometric polynomial of degree 1 given by the expression

�
p
1,0(t) = ��̂(0) + �̂(�−)e i2�t/2 + �̂(�+)e−i2�t/2�/2

= 2−2A�,���(−�)e−2�it + 2�(0) + �(�)e2�it�. (3.3)

The third periodic scaling function is at the same level and is obtained by
a translation;

�
p
1,1(t) := �

p
1,0(t − 1/2)

= 2−2A�,�� − �(−�)e−2�it + 2�(0) − �(�)e2�it�. (3.4)
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Periodic Prolate Spheroidal Wavelets 959

Because � is an even function, these functions can be expressed as

�
p
1,0(t) = 2−1A�,���(0) + �(�) cos 2�t�,

�
p
1,1(t) = 2−1A�,���(0) − �(�) cos 2�t�.

In general, we define the 2mth periodic PS scaling function to be

�
p
m,0(t) =

∑
n

�[2m(t − n)], (3.5)

which again is a Fourier series of a function evaluated at  = 0.
This gives us, after calculations similar to those above, the general

expression for m > 0

�
p
m,0(t) = A�,�

2m+1

{
�(−�)e2�i2

m−1t + 2
2m−1−1∑

k=−2m−1+1

�

(
k�
2m−1

)
e2�ikt

+�(�)e−2�i2m−1t

}
,

a trigonometric polynomial of degree 2m−1. The translates by j2−m give us
the other functions at the same scale

�
p
m,j(t) = A�,�

2m+1

{
�(−�)e2�i2

m−1(t− j
2m ) + 2

2m−1−1∑
k=−2m−1+1

�

(
k�
2m−1

)
e2�ik(t−

j
2m )

+�(�)e−2�i2m−1(t− j
2m )

}
,

m = 1, � � � ; j = 0, � � � , 2m − 1. (3.6)

The terms in the expression (3.6) can be written more concisely as

�
p
m,j(t) =

2m−1∑
k=−2m−1

cm,j ,ke2�ikt , m = 0, 1, � � � ; j = 0, � � � , 2m − 1.

where

cm,j ,k = A�,�

2m


1
2
�(�)e±�ji , k = ∓2m−1,

�

(
k�
2m−1

)
e2�

kj
2m i , k = −2m−1 + 1, � � � , 2m−1 − 1
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960 G. G. Walter and X. Shen

are the Fourier coefficients obtained from (3.6) for m > 0, or from the first
expression for m = 0. Notice that because � is real and even, we have

cm,j ,k = cm,j ,−k , and cm,−j ,k = cm,j ,k .

The series (3.6) can also be rewritten in real form as

�
p
m,j(t) = am,j ,0

2
+

2m−1∑
k=1

[am,j ,k cos(2�kt) + bm,j ,k sin(2�kt)]

where am,j ,0 = 2cm,j ,0, am,j ,k = 2Re(cm,j ,k), and bm,j ,k = 2Im(cm,j ,k). More
precisely, we have,

am,j ,k =


A�,�

2m−1
�

(
k�
2m

)
cos

(
kj

2m−1
�

)
, k = 0, � � � , 2m−1 − 1,

A�,�

2m
�(�) cos(�j), k = 2m−1,

and

bm,j ,k =


A�,�

2m−1
�

(
k�
2m

)
sin
(

kj
2m−1

�

)
, k = 1, � � � , 2m−1 − 1,

0, k = 2m−1.

Thus we have finally

�
p
m,j(t) = A�,�

2m

{
�(0) +

2m−1∑
k=1

�(2−mk�) cos(21−m�jk) cos(2�kt)

+
2m−1−1∑
k=1

�(2−mk�) sin(21−m�jk) sin(2�kt)
}
. (3.7)

This gives us the usual multiresolution decomposition of L2(0, 1), that
is, a nested sequence of subspaces V p

m , with the property that

1. V p
0 ⊂ V p

1 ⊂ · · · ⊂ V p
m ⊂ · · · ⊂ L2(0, 1),

2.
⋃∞

m=0 V
p
m is dense in L2(0, 1).

This follows from the fact that V p
m is composed of trigonometric

polynomials of degree ≤2m−1. Moreover, because the 2m functions
��

p
m,j�

2m−1
j=0 are linearly independent and have the form (3.7), V p

m contains
the trigonometric functions cos(2�kt) for 0 ≤ k ≤ 2m−1 and sin(2�kt)
for 0 < k < 2m−1 as well. Because there are exactly 2m of these linearly
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Periodic Prolate Spheroidal Wavelets 961

independent functions, they form an alternate basis of V p
m , which therefore

contains, in particular, all trigonometric polynomials of degree <2m−1.
Hence

⋃∞
m=0 V

p
m contains all trigonometric polynomials, which therefore is

dense in L2(0, 1).
Figure 2 shows the periodic PS scaling function �

p
m,0(t) � = 1, m = 2

and its translates �p
m,j(t), j = 0, 1, 2, 3, . Even at this relatively coarse scale,

the localization is evident. This is even more evident in Figure 3 which
shows the periodic PS scaling function �

p
m,0(t), at level m = 1, 2, 3 and 4.

The parameter � serves as a “tuning parameter;” it controls how
compact the scaling function is in the time domain while keeping the
“bandwidth” in frequency domain fixed. This is an unique property that
provides flexibility for different applications in electrical engineering, such
as filtration, classification, denoising, and so forth. Figure 4 demonstrates
this property. Both scaling functions have the same “bandwidth” � but
different time concentration indices. Notice the improved time localization
as � increases.

Remark 3.1. Many of the formulas involving these prolate spheroidal
functions are related to the sinc function as we have seen. This function
is itself a scaling function, and we can find the associated periodic scaling

FIGURE 2 The periodic PS scaling function �
p
m,0(t) for � = 1, m = 2 and its translates �

p
m,j (t),

j = 0, 1, 2, 3.
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962 G. G. Walter and X. Shen

FIGURE 3 The periodic PS scaling functions �
p
m,0(t), m = 1, 2, 3, 4, � = 1.

function and mother wavelet. The periodic extension at scale m is

spm,0(t) =
∞∑

n=−∞
S [2m(t − n)],

which, because the Fourier transform of S is the characteristic function
of the interval [−�, �], may be represented by the trigonometric
polynomial

spm,0(t) = 2−1−m

e2�i2m−1t + 2
2m−1−1∑

k=−2m−1+1

e2�ikt + e−2�i2m−1t


= 2−m

2−1 +
2m−1−1∑
k=1

cos(2�kt) + 2−1 cos(2m�t)


= sin(2m�t)

2m+1 tan(�t)
.

This is the modified Dirichlet kernel D∗
2m−1(2�t) of Fourier series theory

([16], p. 50]). It is very close to our scaling function �
p
m,0(t) for small values
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Periodic Prolate Spheroidal Wavelets 963

FIGURE 4 The (nonperiodic) PS scaling functions �(t) (top) and the periodic PS scaling functions
�
p
1,0(t) (middle, m = 1, bottom m = 2), � = 1

2 , 1, 2.

of � but has poor time localization compared with our scaling function for
larger values of �.

3.2. Periodic PS Wavelets

We now turn our attention to the PS mother wavelet, which we shall
use to define the periodic PS wavelets. It was defined in [13] as:


(t) := �0,�/2,�/2(t) cos
(
3�
2
t
)


̂() = 1
2

{
�̂0,�/2,�/2( − 3�

2
) + �̂0,�/2,�/2( + 3�

2
)

}
.

By using formula (2.3), we have


̂() = 1
2
A�/2,�/2

{
�0,�/2,�/2

[
�

�

(
 − 3�

2

)]
�[�,2�]()

+�0,�/2,�/2

[
�

�

(
 + 3�

2

)]
�[−2�,−�]()�, (3.8)

where 
̂ now has its support on [−2�,−�] ∪ [�, 2�].
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964 G. G. Walter and X. Shen

The first periodic PS wavelet is given formally by



p
0,0(t) =

∞∑
n=−∞


(t − n),

where we may again proceed as in the last subsection and use the fact that

(t − n) is the nth Fourier coefficient of a particular function. Indeed, by
the Fourier integral theorem, we have


(t − n) = 1
2�

∫ 2�

�


̂()e it e−in d + 1
2�

∫ −�

−2�

̂()e it e−in d

= 1
2�

∫ �

0

̂( + �)e i(+�)t e−i(+�)n d +

+ 1
2�

∫ 0

−�


̂( − �)e i(−�)t e−i(−�)n d.

By observing that 
̂( + �) = 0 on the interval [−�, 0] and 
̂( − �) = 0
on the interval [0, �], we have


(t − n) = 1
2�

∫ �

−�

�
̂( + �)e i(+�)t + 
̂( − �)e i(−�)t�e−i(+�)n d

= 1
2�

∫ 2�

0
�
̂()e it + 
̂( − 2�)e i(−2�)t�e−in d.

The periodic extension of the function in brackets in the last integral has
jump discontinuities at 0, �, and 2�. Its Fourier series (on [0, 2�]) converges
to the average of the left and right values of this periodic extension at these
discontinuities. In particular at  = 0, it converges to average of the right-
hand value at 0 and the left-hand value at 2�. That is,



p
0,0(t) =

∞∑
n=−∞


(t − n)

= �
̂[(2�)−]e i2�t + 
̂(0+)e i(−2�)t�/2

Notice that the expression for 

p
0,0(t) is a linear combination of e i2�t and

e−i2�t , each of which belongs to V p
1 and is orthogonal to V p

0 .
In general, then, in analogy to the periodic scaling function definition,

we define the periodic PS wavelet to be



p
m,j(t) =

∞∑
n=−∞


(2m(t − n) − j), m = 0, 1, � � � ; j = 0, � � � , 2m − 1.
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Periodic Prolate Spheroidal Wavelets 965

This, again, is a translate of 
p
m,0, given by 
p

m,j(t) = 

p
m,0(t − j2−m) and


(2m(t − n)) = 1
2�

∫ 2�

0
�
̂()e i2

m t + 
̂( − 2�)e i(−2�)2m t�e−i2mn d

= 1
2�

∫ 2m+1�

0
�
̂(2−m)e it

+ 
̂(2−m − 2�)e i(t−2�2m t)�2−me−in d

= 1
2�

2m−1∑
k=0

∫ (k+1)2�

k2�
�
̂(2−m)e it

+ 
̂(2−m − 2�)e i(t−2�2m t)�2−me−in d

= 1
2�

2m−1∑
k=0

∫ (k+1)2�

k2�
H (m, t ,)e−in d

= 1
2�

∫ 2�

0

2m−1∑
k=0

H (m, t , + 2�k)e−in d.

Hence 
p
m,0(t) = ∑

n 
(2
m(t − n)) is the Fourier series of

∑2m−1
k=0 H (m, t , +

2�k) at  = 0. Because the latter is a piecewise continuous and
differentiable function, the series is convergent to the average of the left-
and right-hand values of the periodic extension at  = 0,



p
m,0(t) =

2m−2∑
k=1

H (m, t , 2�k) + �
̂(2�−)e i�2
m+1t + 
̂(−2�+)e−i�2m+1t�2−(m+1)

and similarly for 
p
m,j(t).

Thus we have, in general, by using the expression for H (m, t ,) and
the formula (2.1) again, an expression involving the PS wavelet functions



p
m,j(t) = A �

2 ,
�
2
2−m−1

∑
1≤|k|<2m

�0,�/2,�/2

(
k�
2m

)
cos

3�k�
2m

e2�ik(t−2−m j)

+A �
2 ,

�
2
2−m�0,�/2,�/2(�) cos(2m2�t)

= A �
2 ,

�
2
2−m

[ 2m−1∑
k=1

�0,�/2,�/2

(
k�
2m

)
cos

3�k�
2m

cos 2�k
(
t − j

2m

)

+�0,�/2,�/2(�) cos(2m2�t)
]

(3.9)
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966 G. G. Walter and X. Shen

a trigonometric polynomial of degree 2m . For computational purpose, we
can use the change of parameter formula (see [13]):

�0,�,�(x) = √
1/a�0,a�,�/a(x/a), (3.10)

to get

�0,�/2,�/2(t) = √
2�0,�/4,�(2t) =

√
2
�
�0, ��4 ,1

(
2t
�

)
.

Formula (3.8) can be rewritten as:



p
m,j(t) =

√
2
�
A �

2 ,
�
2
2−m

[ 2m−1∑
k=1

�0, ��4 ,1

(
k

2m−1

)
cos

3�k�
2m

cos 2�k
(
t − j

2m

)

+�0, ��4 ,1(2) cos(2m2�t)
]
. (3.11)

Figure 5 shows the periodic PS mother wavelet together with its
translates at level m = 2 as well as the periodic PS scaling function. Figure 6
shows the PS mother wavelets generated from Slepian functions with fixed
bandwidth � = � but different time parameter �. It can also be observed

FIGURE 5 Periodic PS mother wavelets 
p
2,j (t) and the PS scaling function (dotted line) �

p
2,0, � = 1.
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Periodic Prolate Spheroidal Wavelets 967

FIGURE 6 Periodic PS mother wavelets 
p
2,0(t) (solid line), with associated scaling functions (dashed

line) �
p
2,0, � = 1/2 (top), and � = 1 (bottom).

that 

p
m,j(t) has average zero and is orthogonal to its associated scaling

function �
p
m,0(t).

These wavelets, for fixed m, span a subspace W p
m , which is orthogonal

to V p
m and in fact V p

m+1 = V p
m ⊕ W p

m , just as for wavelets on the entire real
line. This leads to the fact that L2(0, 1) can be expressed as an orthogonal
direct sum:

L2(0, 1) = V p
0

∞⊕
m=0

W p
m .

4. PROPERTIES OF THE PERIODIC PS WAVELET SYSTEM

4.1. Dual Basis

Because the periodic PS scaling functions ��p
m,j� are not orthogonal, we

need to introduce a dual basis in order to find the expansion coefficients.
To get this dual basis, we look for a sequence of functions in V p

m , ��̃p
m,k(t)�

such that 〈
�

p
m,j , �̃p

m,k

〉 = �jk . (4.1)
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968 G. G. Walter and X. Shen

The case where m = 0 is obvious because we have only one term and hence
�̃p

0,0 = 1/c0,0,0. For m = 1, we get something more typical of the general
case. We suppose

�̃p
1,j(t) = a1,0,j + a1,1,j cos 2�t

then the inner product becomes

〈
�

p
1,j , �̃p

1,n

〉 = ∫ 1

0
2−1A�,���(0) + (−1)j�(�) cos 2�t��a1,0,n + a1,1,n cos 2�t�dt

= 2−1A�,���(0)a1,0,n + (−1)j�(�)a1,1,n/2� = �j ,n .

We now substitute the values

2−1A�,��(0) = 1
2

√
2�
�0,�,�

�(0) = �0,

2−1A�,��(�)/2 = 1
4

√
2�
�0,�,�

�(�) = �1.

This gives us the matrix equation[
�0 �1
�0 −�1

]
D = I ,

where D = [a1,k,n]. We may further write the first matrix as[
�0 �1.
�0 −�1.

]
=
[
�0 0
0 �1.

] [
1 1
1 −1

]
,

each of which is easy to invert. Hence we have

DT = 1
2

[
1 1
1 −1

] [
1/�0 0
0 1/�1.

]
= 1

2

[
1/�0 1/�0
1/�1 −1/�1

]
,

and the dual mother wavelets are given by[
�̃p

1,0(t)

�̃p
1,1(t)

]
= DT

[
1

cos 2�t

]
or

�̃p
1,0(t) = 1/2�0 + 1/2�1 cos 2�t

�̃p
1,1(t) = 1/2�0 − 1/2�1 cos 2�t .
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Periodic Prolate Spheroidal Wavelets 969

The procedure we have followed here works in general; we have

�̃p
m,j(t) = a0,m,j +

2m−1∑
k=1

ak,m,j cos(2�kt) +
2m−1−1∑
k=1

bk,m,j sin(2�kt)

=
2m−1−1∑

k=−2m−1+1

dm,j ,ke2�ikt + d2m−1,m,j cos(2
m�t). (4.2)

which satisfies a similar but more complex equation. The calculations are
straightforward and need only be done once at the mth scale. Rather than
the trigonometric form, we use the exponential form of the Fourier series
to find �̃p

m,j(t). It is

�
p
m,j(t) = A�,�

2m+1

{
�(−�)e2�i2

m−1(t− j
2m )

+ 2
2m−1−1∑

k=−2m−1+1

�

(
k�
2m

)
e2�ik(t−

j
2m ) + �(�)e−2�i2m−1(t− j

2m )

}

=
2m−1−1∑

k=−2m−1+1

�m,ke2
1−m�ikj e2�ikt + �2m−1(−1)j cos 2m�t , (4.3)

where

�m,k = A�,�

2m
�

(
k�
2m

)
.

Again, we must find a matrix D such that

��m,ke2
1−m�ikj �D = I .

Now we may factor the first matrix into

��m,ke2
1−m�ikj � =


�−2m−1+1 0 · · · 0

0 �−2m−1+2 · · · 0
· · · · · · · · · · · ·
0 0 · · · �2m−1



×


1 w1−2m−1 · · · w(1−2m−1)(2m−1)

1 w2−2m−1 · · · w(2−2m−1)(2m−1)

· · · · · · · · · · · ·
1 w2m−1 · · · w2m−1(2m−1)

 = �F ,
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970 G. G. Walter and X. Shen

where w = e2
1−m�i and use the fact that

FF ∗ = �e2
1−m�ikj ��e−21−m�ijk� = 2mI

to conclude that

D = 2−mF ∗�−1.

Hence, the dual function will be

�̃
p
m,j(t) = 2−m

2m−1−1∑
k=−2m−1+1

1
�m,k

e−21−m�ikj e2�ikt + 2−m

�m,2m−1
(−1)j cos 2m�t . (4.4)

Notice that because �m,k = �m,−k , we also have

�̃
p
m,j(t) = 2−m

{
1
�0

+ 2
2m−1−1∑
k=1

1
�m,k

cos
k�
2m−1

(2mt − j) + 1
�m,2m−1

(−1)j cos 2m�t
}
.

(4.5)

The dual function at different resolution m is shown in Figure 6.
We now return to the problem of finding the derivatives of an

element of V p
m .

4.2. Differentiation

It was shown in [10] that the PS scaling function � = �0,�,� had
derivatives of all orders belonging to the space spanned by its translates,
that is,

�(k)(t) =
∑
n

ak
n�(t − n) ∈ Vm .

This was also true of translations by an arbitrary real number.
This is not an approximation as with other wavelets systems, but is

exact. We shall see that similar results hold for our periodic PS scaling
function expansions. In fact, it is even more obvious in this case because
�

p
m,j is a finite order trigonometric polynomial given by (3.6). Furthermore,

because V p
m contains all trigonometric polynomials of degree <2m−1and is

contained in the space of all trigonometric polynomials of degree ≤2m−1, it
follows that all derivatives and real transactions of functions in V p

m belong
to the space V p

m+1. In fact, because of the special form of the �
p
m,j , they

belong to V p
m for even derivatives. The coefficients of the Fourier series can

be found as well and are as follows.
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Periodic Prolate Spheroidal Wavelets 971

Proposition 4.1. Let f ∈ V p
m with scaling function expansion

∑2m−1
k=0 ak�

p
m,k(t).

Then

(i) f (k) ∈ V p
m+1 and is given by

f (k)(t) =
2m−1∑
j=0

aj�
p(k)
m,j (t) =

2m−1∑
j=0

aj
2m−1∑

n=−2m−1

(2�in)kcm,j ,ne2�itn

=
2m−1−1∑

n=−2m−1+1

{
(2�in)k

2m−1∑
j=0

aj cm,j ,n

}
e2�itn

+
2m−1∑
j=0

aj
{
cm,j ,2m−1(2�i2m−1)ke2�it2

m−1

+ cm,j ,−2m−1(−2�i2m−1)ke−2�it2m−1
}
;

also, if k = 2q is even, the last term and hence all of the terms of f (2q) belong
to V p

m . Furthermore,
(ii) the translation by a real number 	, f (· − 	) ∈ V p

m+1 and is given by

f (t − 	) =
2m−1∑
j=0

aj�
p
m,j(t − 	) =

2m−1∑
j=0

aj
2m−1∑

n=−2m−1

e−2�i	ncm,j ,ne2�itn .

However, rather than a Fourier series expansion, we would like the
derivative and translation expressed in terms of the scaling function
expansion. In order to do this, we have to invert the Fourier coefficient
matrix of the scaling functions. This would be easy if our scaling functions
were orthogonal with respect to translations, but they are not. Rather, we
must use the dual scaling function basis to get the expansion coefficients.

First, we consider f (2q) = �
p(2q)
m,k (t); then

�
p(2q)
m,k (t) = 2−m

2m−1∑
p=0

{ 2m−1∑
n=−2m−1+1

−1(2�in)2q cm,k,ndm,p,n

}
�

p
m,p(t)

= 2−m
2m−1∑
p=0

{ 2m−1−1∑
n=−2m−1+1

(2�in)2q e2�i2
−mn(p−k)

+ (−1)q(2m�)2q cos(p − k)�
}
�

p
m,p(t) (4.6)
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972 G. G. Walter and X. Shen

because the �m,k and �m,k cancel each other. This gives us the following:

Proposition 4.2. Let f ∈ V p
m with scaling function expansion

∑2m−1
k=0 ak�

p
m,k(t),

then f (2q) ∈ V p
m and is given by

f (2q)(t) =
2m−1∑
k=0

ak�
p(2q)
m,k (t)

=
2m−1∑

p=−2m−1+1

{ 2m−1∑
n=−2m−1+1

(2�in)2q

×
2m−1∑
k=0

ak2−me2�i2
−mn(p−k)(−1)q(2mp)2q cos(p − k)

}
�

p
m,p(t).

For odd derivatives, the cosine in the last expression must be replaced
by the sine, and a similar result holds.

Everything we have done for V p
m can be applied to the subspaces

W p
m because they are also finite dimensional subspaces that have a basis

consisting of trigonometric functions. Even derivatives again belong to this
space, but the expression for odd derivatives is more complicated because
the W p

m are not nested.
The calculations involving the derivative can be immediately extended

to translation as well and can then be used to get a result similar
to Proposition 4.1 involving the coefficients of the scaling functions
expansion.

5. NUMERICAL EXAMPLES

In this section, we present a few numerical examples to demonstrate
the properties of periodic PS wavelets introduced in previous sections.
Because the purpose is to illustrate analytical properties by graphs, all
computations were performed on MATLAB (Version 6.1.0.450, Release
12.1) on an IBM ThinkPad with Intel Pentium III Mobile with 1133MHz
CPU and 32Mb RAM memory. It should be also pointed out that the
parameter � is chosen as 1 for the purpose of simplicity only. It can
be tuned to make the scaling function and the wavelet as compact
as needed.

Example 5.1. In this example, we consider the sawtooth function f (t),
t ∈ R as the periodic extension of the function defined on [0, 1] by:

f (t) =
{
2t , 0 < t < 1/2,
−2(t − 1), 1/2 < t < 1.

(5.1)
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Periodic Prolate Spheroidal Wavelets 973

FIGURE 7 Top row: The sawtooth function, its Fourier series, and the associated error function.
Bottom row: The sawtooth function, its periodic PS scaling function series, and the associated error
function. Both series truncated to 24 terms.

The Fourier series of f is given by

f (t) ∼ 1
2

+
∞∑
n=1

−4
�2(2n − 1)2

cos 2(2n − 1)�t

The function f , its Fourier series expansion (truncated to 24 terms), and
absolute error are shown in the top row of Fig. 7.

To expand the function f at the mth scale, we write

fm(t) =
2m−1∑
k=0

am,k�
p
m,k(t),

where am,k = ∫ 1
0 f (t)�̃p

m,k(t)dt . The triangular function, its PS series
expansion (truncated to 24 terms), and the absolute error are shown
in the bottom row of Fig. 7. We observe that there is very little
difference in the approximations except at the finest scale. This is because
both approximations are projections onto a subspace of trigonometric
polynomials of the same degree. The latter differs in that the highest order
has a special form.
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974 G. G. Walter and X. Shen

Example 5.2 (Function with Jump Discontinuity). In this example, we
consider the periodic square wave h(t) = h(t + 1), defined on interval
[0, 1] as with its Fourier series is given by,

h(t) =


−1, 0 < t < 1/2,
0, t = 0,
1, 1/2 < t < 1,

(5.2)

h(t) =
∞∑
n=1

−4
�(2n − 1)

sin 2(2n − 1)�t (5.3)

The square wave function, its Fourier series expansion (truncated to
26 terms), and absolute error are shown in the top row of Fig. 8. Similar
to Example 5.1, we illustrate the PS series expansion and its error function
in the bottom row of Fig. 8. We observe that both the Fourier series and
the PS series show the well-known Gibbs phenomenon around the jump
discontinuity at t = 1

2 as expected. However, one can reduce the Gibbs
phenomenon considerably by using a hybrid series as in [13].

FIGURE 8 Top row: The square wave function, its Fourier series, and the associated error function.
Bottom row: The square wave function, its PS wavelet series, and the associated error function. Both
series truncated to 26 terms.
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Periodic Prolate Spheroidal Wavelets 975

6. CONCLUSIONS

We have shown that for this new family of periodic wavelets, even order
differentiation and translation can be carried in the subspaces V p

m and
furthermore have formulae given in closed form. Hence, computations
involving these two operations are strictly algebraic operations on the
expansion coefficients. Because the prolate spheroidal scaling functions
are non-negative in the interval of concentration and are negligible outside
of it, so are these periodized functions.

Because these periodic PS wavelets are trigonometric polynomials, their
expansions can be obtained by rearranging the Fourier series of a given
function. Thus one might ask, why not just use the Fourier series itself as an
approximation? The answer is that the wavelets have a multiscale structure
that is useful in constructing filter banks. They also have a much stronger
localization property than the Fourier series and thus pick up irregularities
in the signal much better, provided the coefficients are chosen properly.
Also, the matrices arising from the wavelet approximation will be well
conditioned because of this localization. Gibbs phenomenon can also be
reduced to a certain extent by using the hybrid series studied in [13]. This
is not seen in the examples because the biorthogonal expansion is used
rather than the hybrid series. We should also like to point out the potential
for flexibility of the parameterized system; we are free to choose � to give
us whatever degree of localization we want. We will discuss the convergence
and other properties, as well as their applications, in a future work.
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