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Slepian functions (Prolate Spheroidal Wave Functions) are obtained by maximizing
the energy of a �-bandlimited function (normalized with total energy 1) on a
prescribed interval �−�� ��� The solution to this problem leads to an eigenvalue
problem �f�t	 = ∫ �

−�

sin ��t − x	/��t − x	�f�x	dx, whose solutions, in turn, form an

orthogonal sequence 

n�. This sequence is a basis of the Paley-Wiener space B�

of �-bandlimited functions. For � = �� integer translates of the Slepian functions of
order 0, 

0�t − n	� form a Riesz basis of the same space. Furthermore, by using 
0
as a scaling function we can construct a wavelet theory based on them. Two methods
of density estimations thus naturally arise; one based on the orthogonal system


n� and the other on the scaling functions 

0�t − n	�. The former gives more
rapid convergence, while the latter avoids Gibbs phenomenon, is locally positive,
and allows the use of thresholding methods. Both approaches exhibit a strong
localization property.

Keywords Kernel density estimation; Probability density; Prolate spheroidal
wave functions; Slepian semi-wavelets; Wavelet.

Mathematics Subject Classification Primary 60E05, 62F10; Secondary 42A10,
42A15, 42C40.

1. Introduction and Notation

The continuous prolate spheroidal wave functions (PSWFs), or as we shall call them,
Slepian functions, because of a “lucky accident” (Slepian, 1983; Walter, 1992b),
were found to be quite useful for analog signal processing. However, the digital
revolution left them in the dust since they did not seem naturally adapted to discrete
analysis. Yet they have many desirable, even unique, properties that originally
made them useful and could lead to new statistical applications. The simplest such
involves non parametric density estimation and regression.
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688 Walter and Shen

In its simplest form, such density estimation begins with an i.i.d. sample
X1� X2� � � � � XN of the density f�x	. This is used to construct an approximation f̂h�x	
to f�x	 which converges to it in some way. Many methods have been proposed
for constructing such an estimator; the most widely used are kernel methods and
orthogonal series methods. Wavelet methods (for details of wavelet theory, see for
example, Daubechies, 1992; Walter and Shen, 2000) are a modification of the latter
in which a further step, that of thresholding, is added to reduce noise. The two
methods discussed in this work are based, respectively, on the Slepian functions
themselves and on a family of wavelets based on them.

These functions are closely related to the Shannon sampling theorem (Shannon,
1949) given by the formula

f�t	 =
�∑

n=−�
f�nT	

sin ��t − nT	

��t − nT	
� T = �/�� t ∈ R (1)

which holds for �-bandlimited signals with finite energy. This theorem has become
a well-known part of both the mathematical and engineering literature (Djokovic
and Vaidyanathan, 1997; Higgins, 1996; Vaidyanathan, 2001; Walter and Shen,
2003; and Zayed, 1993). It also falls naturally into a “wavelet” setting since the
sinc function appearing in (1), S�t	 = sin �t/�t, is a particular example of a “scaling
function” appearing in wavelet theory (Walter, 1992a).

The first Slepian function, which we denote by 
0����, is defined as the one having
the maximum energy concentration of a �-bandlimited function on the interval
�−�� �	; that is 
0���� is the function of total energy 1 (= �
0�����2) such that∫ �

−�
�f�t	�2dt

is maximized. Then, 
1���� is the function with the maximum energy concentration
among those functions orthogonal to 
0����, etc. By repeating this we get a sequence


n�����t	� which turns out to be an orthonormal basis of the space of �-bandlimited
functions on the real line. There are several other ways of characterizing them:

• as the eigenfunctions of an integral operator whose kernel is the sinc function
of (1): ∫ �

−�

n�����x	

1
T
S

(
t − x

T

)
dx = �n����
n�����t	� (2)

• as the eigenfunctions of a differential operator.

��2 − t2	
d2
n����

dt2
− 2t

d
n����

dt
− �2t2
n���� = �n����
n����� (3)

1.1. Some Properties of Slepian Functions

In addition to these basic properties, a number of others are derivable from them
(see Slepian, 1983 and references therein). We list a few of them which we use later
beginning with another integral equation over the real line∫ �

−�

n�����x	

1
T
S

(
t − x

T

)
dx = 
n�����t	� (4)
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Slepian Density Estimator 689

This leads to a dual orthogonality∫ �

−�

n�����x	
m�����x	dx = �n�����nm�∫ �

−�

n�����x	
m�����x	dx = �nm�

(5)

In fact, they constitute an orthogonal basis of L2�−�� �	, and an orthornormal basis
of the subspace B� of L2�−���	, the Paley–Wiener space of all �-bandlimited
functions. The latter gives rise to two discrete orthogonality conditions of
the form

T
�∑
n=0


n�����kT	
n�����mT	 = �mk�

(6)

T
�∑

k=−�

n�����kT	
m�����kT	 = �mn�

They lead to a series formula for a �-bandlimited function (as well as the usual
orthogonal series expansion)

f�t	 =
�∑
n=0

bn
n�����t	

where

bn =
�∑

k=−�
Tf�kT	
n�����kT	�

The Fourier transform has support on �−�� �	 and is given by


̂n������	 = �−1	n
√

2��
��n����


n����

(
��

�

)
����	� (7)

A Slepian function and its Fourier transform is shown in Figure 1.
These formulae can be used to find the relation between these functions at

different scales. By a straightforward change of scale in the integral Eq. (2),
we find that


n����1�x	 =
√
�
n������x	� (8)

These Slepian functions cannot, however, be used as orthogonal series density
estimators on �−���	 since they are not a complete basis of L2�−���	.
Nonetheless, by using a modification of the usual approach in which the series
approximation is preceded by a filtering operation, we will be able to get such
an orthogonal series estimator. This will enable us to use some of their unique
properties in Sec. 3.
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690 Walter and Shen
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Figure 1. The Slepian function, 
0���1�x	 and its Fourier transform 
̂0���1��	.

1.2. A Multiresolution Analysis

We can also use the expression (8) to get a relation between, say, � and
2�-bandlimited Slepian functions. We can express the former as (Walter and Shen,
2003)


n�����t	 =
�∑
k=0

hn�k
k�2����t	 (9)

where

hn�k =
1
2

�∑
p=−�


n�����p/2	
k�2����p/2	� (10)

This may be considered as one form of a dilation equation, which relates the various
subspaces in a multiresolution analysis (MRA) which appears in wavelet theory. In
fact, the Paley–Wiener spaces constitute such an MRA 
Vm�� where Vm = B2m�� the
space of 2m�-bandlimited functions.

Proposition 1. Let f ∈ V0 with Slepian series in V0 given by

f�t	 =
�∑
k=0

a0
k
k�����t	
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Slepian Density Estimator 691

and with Slepian series in V1 given by

f�t	 =
�∑
k=0

a1
k
k�2����t	�

then the coefficients are related by

a0
n =

�∑
k=0

hn�ka
1
k (11)

where the hn�k are given by (10) and

a1
k =

�∑
n=0

hn�ka
0
n� (12)

The formulae in this proposition extend to other scales as well, but they only
work if our function belongs to the space Vm at the coarsest scale. If we wish to
emulate the decomposition and reconstruction algorithms of wavelet theory, we
need to find an associated basis of the orthogonal complement of V0 in V1� This is
an interesting but not too difficult undertaking and will be touched on below.

In the remainder of this subsection we change our notation slightly to avoid
so many subscripts. We shall use the notation 
m

n for the Slepian function with
bandwidth � = 2m� and fixed concentration interval �−�� �	


m
n �t	 �= 
n�2m����t	� (13)

These 

m
n �

�
n=0 constitute an orthonormal basis of Vm which in turn have the usual

properties of an MRA:

1. · · · ⊆ Vm ⊆ Vm+1 ⊆ · · · ⊆ L2�R	

2.
⋃

Vm = L2�R	,
3.

⋂
Vm = 
0�.

The dilation equation relating the various scales is based on (8)


m
n �t	 =

�∑
k=0

hm
n�k


m+1
k �t	 (14)

where the coefficients are given by Walter and Shen (2002)

hm
n�k =

∫ �

−�

m
n �t	


m+1
k �t	dt

=
�∑

j=−�
2−m−1
m

n �2
−m−1j	
m+1

k �2−m−1j	� (15)

The next step is to find a basis of the space consisting of the orthogonal
complement of Vm in Vm+1� which we denote by Wm. Let �

m
n be given by

�m
2n�t	 �=

(
cos

3�
2
2mt

)

m−1
n �t	�

(16)
�m

2n+1�t	 �=
(
sin

3�
2
2mt

)

m−1
n �t	�
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692 Walter and Shen

which, on taking the Fourier transform becomes

�̂m
2n��	 = 2−1

[

̂m−1
n

(
�− 3�

2
2m

)
+ 
̂m−1

n

(
�+ 3�

2
2m

)]
�

(17)

�̂m
2n+1��	 = �2i	−1

[

̂m−1
n

(
�− 3�

2
2m

)
− 
̂m−1

n

(
�+ 3�

2
2m

)]
�

The first three Slepian functions and their associated “wavelets” are shown in
Figure 2.

Proposition 2. Let �m
n be given by (16), let Wm = V⊥

m ∩ Vm+1; then 
�m
n �

�
n=0 is an

orthonormal basis of Wm and 
�m
n �

�
n=0��m=−� is an orthornormal basis of L2�R	�

We omit the proof which is based on the convergence properties of the Slepian
functions.

Just as in the case of wavelets, we can express any Vm as an orthogonal direct
sum

Vm = Vk ⊕Wk ⊕ · · · ⊕Wm−1� k < m�

 3  2  1 0 1 2 3
 1

 0. 5

0

0.5

1
ph0
ph1
ph3

 3  2  1 0 1 2 3
 0. 6

 0. 4

 0. 2

0

0.2

0.4

0.6

0.8
psi0
psi1
psi2

Figure 2. The first three consecutive scaling functions (top) and associated wavelets for PS
wavelet (bottom).
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Slepian Density Estimator 693

and by taking limits

�⊕
k=−�

Wk = L2 �R	 �

The approximation of a function in L2 �R	 by an element of Vm is given by the
expansion

fm =
�∑
k=0


f� 
m
k �
m

k � (18)

the projection onto Vm� The projection onto Wm is given by

gm =
�∑
k=0


f� �m
k ��m

k � (19)

We can express the approximation in Vm as the sum:

fm = fk + gk + gk+1 + · · · + gm−1�

This is the same sort of expression encountered in wavelet theory and makes
it possible to use nonlinear threshold methods for these Slepian functions as well.
The procedure, if it works, would involve ignoring the coefficients 
f� �m

k � below a
certain threshold and then reconstructing each gm from the remaining coefficients.

2. Prolate Spheroidal Wavelets

Prolate spheroidal wavelets (PS wavelets) were introduced in Walter and Shen
(2004) with a scaling function based on the Slepian function 
0�����t	, whose
bandwidth � = �, but with any concentration interval �−�� �	. Then the following
was shown to hold.

Proposition 3. Let ��t	 = 
0�����t	 be a �-bandlimited PSWF with concentration
interval �−�� �	� then 
��t − n	� is a Riesz basis of B�.

Note that we have changed notation from one form of the Greek letter “phi” to
another in going from the Slepian functions to the scaling functions. Later we shall
introduce another index to confuse the issue even more. This basis 
��t − n	� is not
orthogonal as are most of the standard scaling function bases, but Riesz bases share
many of the properties of orthogonal bases. In fact, they constitute a biorthogonal
family with the dual basis whose elements �̃�t	 are defined in terms of the Fourier
transform as

ˆ̃���	 �= �̂��	∑
k ��̂��− 2�k	�2 � (20)

Since in this case, �̂��	 has compact support on �−�� ��� and since it is positive
there, this series converges and the quotient is non negative as well.
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694 Walter and Shen

In the construction of wavelets, one usually begins with a scaling function ��

whose integer translates are a Riesz basis of a space V0 which in our case is again
the Paley–Wiener space B� of �-bandlimited functions no matter what the choice
of �� The MRA 
Vm� is exactly as in the last section, but now we have a different
basis. In the usual wavelet theory, the basis of Vm is taken to be 
��2mt − n	�� which
also works for this case. However, we wish to preserve the concentration interval
�−�� �	 at all scales and hence will use a different basis for Vm, 

0�2m����t − n2−m	�

consisting of translates of a Slepian function with bandwidth �2m and concentration
interval �−�� �	� We shall call the elements of this new basis semi-scaling functions
to distinguish them from the standard scaling function which are independent of
scale. This still leads to dilation equations whose coefficients change slightly with
scale in contrast to the usual case in which they do not.

The mother wavelet is usually given by another dilation equation, but in
our case we shall also modify this definition and shall use one related to the
maximization problem associated with the Slepian functions.

Definition 1. The Slepian mother semi-wavelet at the scale m is given by

�m�t	 �= cos�3�2m−1t	
0�2m−1����t	� (21)

where the Slepian father semi-wavelet (scaling function) at scale m is denoted by

�m�t	 �= 
0�2m����t	� (22)

for m = 0�±1�±2� � � � .

These semi-wavelets �m�t	 are orthogonal to each other for different scales,
but at a fixed scale their translates give a Riesz basis of their closed linear span.
Wm, which is composed of all continuous functions whose Fourier transforms have
support in �−2m+1��−2m�� ∪ �2m�� 2m+1��. Figure 3 shows the first three consecutive
scaling functions (top) and associated mother wavelets (bottom) for Slepian
semi-wavelets.

These definitions enable us to make the usual wavelet types of approximation,
both linear and nonlinear. The importance of these prolate spheroidal wavelets
for density estimation arises from their positivity and convergence properties. The
scaling function is positive on the interval of concentration �−�� �� but is small
outside this interval. It is an entire function of exponential type and thus is
quite smooth. The associated approximation kernel is also locally positive which
avoids Gibbs phenomenon, while at the same time leading to a satisfactory rate of
convergence of the approximation. Details will be found in Sec. 4.

3. Density Estimation with Slepian Functions

Density estimation with Slepian functions is formally similar to traditional methods
of density estimation. However, it has a number of unique properties not shared by
other methods. We take, as usual, a sample of a density f�x	, X1� X2� � � � � XN and
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Slepian Density Estimator 695
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Figure 3. The first three consecutive scaling functions (top) and associated mother wavelets
(bottom) for PS semi-wavelets.

use it to try to estimate f�x). Two of the standard procedures are kernel estimators
and orthogonal series estimators. Both begin with the empiric distribution given by

f ∗�x	 = 1
N

N∑
i=1

��x − Xi	� (23)

where � is the generalized function which has a point mass at 0. This is then
smoothed by means of an integral operator to get the estimator

f̄ �x	 �=
∫

k�x� y	f ∗�y	dy� (24)

If k�x� y	 = Kh�x − y	, where Kh�x	 = 1/hK�x/h	 and K is itself a density function,
we get the kernel estimator. On the other hand, if k�x� y	 = ∑m

n=0 �n�x	�n�y	, where

�n� is a complete orthonormal system, then (24) is the standard orthogonal
series estimator. The estimator given by the Slepian functions is a combination of
these two.

Since the Slepian functions have two parameters, �, the bandwidth and �, which
gives the concentration interval, we must first choose them. The former will vary
with the size of the sample and thus requires only an initial choice. The latter would
normally be clear from the type of data or we could choose it from the sample in
an obvious way. Rather than allowing � to take on all real values we shall restrict
it to discrete values of the form � = 2m�, where m is an integer.
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696 Walter and Shen

Definition 2. Let X1� X2� � � � � XN be an i.i.d. sample of a density f�x	� x ∈ R; let {
n�

be a orthonormal Slepian system with bandwidth parameter � and concentration
parameter �� 
n�x	 = 
n�����x	. The Slepian estimator of the density f�x	 is given by

f̄k�����N �x	 �=
1
N

k∑
n=0

N∑
i=1


n�x	
n�Xi	� (25)

Hidden in this formula is the smoothing kernel estimator of the form (24)
which gives us a projection onto the subspace of L2�R	 consisting of �-bandlimited
functions, i.e., the Paley–Wiener space B�. The kernel is just the sinc function

k�t� x	 = 1
T
S
( t − x

T

)
=

�∑
n=0


n�t	
n�x	� T = �/�� (26)

The series on the right side of (25) would, in the case of a complete system, converge
to the Dirac delta ��t − x	� but in our case the system is not complete in L2�R	.
The estimator in the definition is then obtained by truncating this series, making it
not much different than linear wavelet estimators which also involve a projection
followed the truncation of a series.

The bias of the estimator (25) is just the error in the expansion of the function f

in terms of this orthonormal system 

n����� plus the error in the projection onto B�,

E�f #
k�����N �x	− f�x		 =

�∑
n=k+1


n�����x	

n����� f� +
∫ �

−�
1
T
S

(
t − x

T

)
f�t	dt − f�x	� (27)

If � now is taken to be 2m�� then the error in the projection has been shown (Walter
and Shen, 2004, Lemma 9), to satisfy

�f − fm�2� ≤ �−1−2�2m�1−2�	

2�2�− 1	
�f�2� (28)

for f ∈ H�� the Sobolev space for � > 1/2 and fm�t	 =
∫
2mS�2m�t − x		f�x	dx.

Thus, it remains only to calculate a bound on the tail of the series,

�∑
n=k+1


n�����x	

n����� f��

We shall be interested in the behavior of this series when it is restricted to the
interval �−�� �	, and therefore consider the square integral of this tail over that
interval. It is

∫ �

−�

∣∣∣∣ �∑
n=k+1


n�����x	

n����� f�
∣∣∣∣2dx =

�∑
n=k+1

�

n����� f��2
∫ �

−�
�
n�����x	�2dx

=
�∑

n=k+1

�n�����

n����� f��2
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Slepian Density Estimator 697

because of the orthogonality of the 
n���� on the interval �−�� �	. Here the �n���� are
the eigenvalues of the integral operator (2) which are positive but decay very rapidly
to 0 monotonically. Thus we obtain the error on the tail to be

∫ �

−�

∣∣∣∣ �∑
n=k+1


n�����x	

n����� f�
∣∣∣∣2dx ≤ �k+1�����f�2� (29)

This gives us the following.

Proposition 4. Let X1� X2� � � � � XN be an i.i.d. sample of a density f ∈ H� for � > 1/2�
with the support of f ⊂ �−�� ��� then the asymptotic bias of the estimator f̄k�m�x	 given
by (25) for � = 2m� satisfies{ ∫ �

−�
�E�f̄k�m�x	− f�x		�2dx

}1/2

≤ √
�k+1�f� +

√
��−1−2�2m�1−2�	

�2�− 1	
�f���

for k = 0� 1� � � � , and m ∈ R.

The first term can be ignored for k large, since �k converges to 0 very rapidly;
in fact, �k < � for k > 2��/�+ � 1

�2
log 1−�

�
+ 10	 log���	 (Xiao et al., 2000). Thus,

for � = 10−10 and � = 2m�� for example, we need at most 2m+1�+m� 10
�2
log 10+ 10	

log�2��	 in the series (See Table 1).
The variance expression is also easy to calculate. We find that

∫ �

−�
E��f #

k�m�x		�2dx =
∫ �

−�
E

∣∣∣∣ 1N k∑
n=0

N∑
i=1


n�x	
n�Xi	

∣∣∣∣2dx
= 1

N

k∑
n=0

�n

∫ �

−�
�
n�t	�2f�t	dt ≤

1
N

∫ �

−�

k∑
n=0

�
n�t	�2f�t	dt

≤ 2m/N

since the eigenvalues are all less than 1 and the expansion coefficients of the
reproducing kernel 2mS�2m�t − x		 are exactly 
n�t	. The inequality therefore comes

Table 1
The relation between band width of the Slepian function 
0���1�x	

and the number of its “non zero” eigenvalues

Bandwidth ��	 c = 2�� No. of �k >10−4 �0

0.15915 1�00000 4 0�57258
0.63662 2�00000 5 0�88056
0.50000 3�14159 6 0�98105
0.63694 4�00000 7 0�99589
1.11408 7�00000 10 0�99999
1.27329 8�00000 11 1�00000
1.59154 10�0000 12 1�00000
3.92699 24�6740 23 1�00000
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698 Walter and Shen

from Bessel’s inequality

k∑
n=0

�
n�t	�2 ≤
∫ �

−�
�2mS�2m�t − x		�2dx = 2m�

Thus we have a bound on the integrated mean square error,

MISE ≤ 2m/N + C1 + C22
m�1/2−�	� (30)

where C1 can be made arbitrarily small by choosing k sufficiently large, and the
whole expression can be made small by balancing as usual the first and last terms.

This is not too different than many other estimators. However, there are other
properties of the Slepian functions that may confer an advantage. In particular,
there is the sampling property in (6). Let us assume that m is taken so large that the
sample values are approximately dyadic rational numbers, i.e., each can be expressed
as Xi = 2−mNi� where Ni is an integer. If x has same form, then the estimator is
approximately

f #�x	 = 1
N

k∑
n=0

N∑
i=1


n�x	
n�Xi	

= 2−m

N

k∑
n=0

N∑
i=1


n�2
−mp	
n�2

−mNi	

≈ 1
N

N∑
i=1

�n�p− Ni	 =
#�Ni = p	

N

which is exactly the histogram. Hence the estimator can be considered a
smoothed histogram (very smoothed) composed of entire functions.

This is particularly useful when applied to the non parametric regression
estimator

r#�x	 =
∫
yf #�x� y	dy

f #�x	
�

Thus, the estimator becomes

r#�x	 ≈
∑N

i=1 ��p− Ni	Yi∑N
i=1 ��p− Ni	

=
∑

Ni=p Yi

#�Ni = p	
� x = p2−m�

4. Slepian Semi-Wavelets in Density Estimation

The Slepian semi-wavelets with scaling function �m�x	 (see (22)) at scale m can be
used to define a linear wavelet estimator of a density in the usual way for wavelets
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Slepian Density Estimator 699

in spite of the fact they are not orthogonal. This requires only that a weight be
incorporated into the definition to get a proper approximation kernel, which is

Km�x� t	 =
∑
n

�m�x − n2−m	�m�t − n2−m	

2m��̂m�0	�2
� (31)

The linear semi-wavelet estimator is

f l
m�x	 �=

1
N

N∑
k=1

Km�x�Xi	 (32)

which can also be expressed as

f l
m�x	 =

∑
n

�m�x − n2−m	
N∑
i=1

1
N

�m�Xi − n2−m	

2m��̂m�0	�2
�

and can be shown to be integrated mean square consistent as m → �.
That it is asymptotically unbiased follows from a result in Walter and Shen

(2004), where it was shown that the series

f s
m�x	 =

∑
n

�m�x − n2−m	f�n2−m	

2m�̂m�0	

converges to f�x	 in the sense of L2 provided that f ∈ Hp� a Sobolev space, for
p > 2� Hence we need only show that Ef l

m�x	− f s
m�x	 converges to 0 in the sense of

L2 to show the estimator is asymptotically unbiased. This difference is

Ef l
m�x	− f s

m�x	

= ∑
n

�m�x − n2−m	

2m�̂m�0	

{ ∫ f�t	�m�t − n2−m	

�̂m�0	
dt − f�n2−m	

}

= ∑
n

�m�x − n2−m	

2m�̂m�0	

{
1
2�

∫ f̂ ��	�̂m��	e
in2−m�

�̂m�0	
− f̂ ��	ein2

−m�d�

}

= ∑
n

�m�x − n2−m	

2m�̂m�0	

{
1
2�

∫ 2m�

−2m�
f̂ ��	ein2

−m�

(
�̂m��	

�̂m�0	
− 1

)
d�

− 1
2�

( ∫ �

2m�
+
∫ −2m�

−�

)
f̂ ��	ein2

−m�d�

}
� (33)

Thus we need an estimate of �̂m��	

�̂m�0	
− 1 on the interval �−2m�� 2m��� But we have

from the formula for the Fourier transform that �̂m��	

�̂m�0	
= 
̂0�2m�����	


̂0�2m����0	
= 
0�2m������/2

m�	


0�2m����0	

on this interval and since the Slepian function is entire, it can be differentiated
infinitely often. The first derivative at 0 is zero while the second satisfies,
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700 Walter and Shen

by (3) �2

′′
0�2m����0	 = �0
0�2m����0	� Therefore we have

�̂m��	

�̂m�0	
− 1 = O���/2m�	2	 as m → ��

Thus the first integral in (33) may be expressed as

∣∣∣∣ ∫ 2m�

−2m�
f̂ ��	ein2

−m�

(
�̂m��	

�̂m�0	
− 1

)
d�

∣∣∣∣2
≤ 2−4mC

∫ 2m�

−2m�

ˆ�f��	�2��2 + 1	pd�
∫ 2m�

−2m�

(
��	4

��2 + 1	p

)
d�

≤ C ′2−3m

since p > 2� The last integral in (33) also satisfies the same sort of inequality. This
gives us the convergence to 0 as m → � of (33).

The variance can similarly be shown to be dominated by a constant multiple of
2m � /N , which enables us to get the desired mean squared consistency.

Proposition 5. Let f ∈ Hp for p > 2; let f l
m be the estimator given by (32). Then the

IMSE of f l
m converges to 0 as m → �.

This is estimator is very similar to the usual kernel estimators used in density
estimation except for the change of scale. We consider some other properties of this
kernel Km�x� t	 given by (31). We can convert the semi-scaling function series into
a series involving the standard Slepian functions and then use their properties to
study this kernel.

Lemma 1. The kernel Km�x� t	 given by (31) is a positive definite convolution kernel
satisfying Km�x� t	 = Km�x − t� 0	 > 0 for �x − t� ≤ 1/2m+1.

Since, by the definition and by an application of (8)

�m�x	 = 
0�2m����x	 = 2m/2
0���2m��2
mx	�

it follows that

Km�x� t	 =
∑
n


0���2m��2
mx − n	
0���2m��2

mt − n	

2−m�
̂0���2m���0	�2

But since the Fourier transform of 
0���2m� has support on �−�� ��, by the
Fourier integral theorem we have


0���2m��2
mx − n	 = 1

2�

∫

̂0���2m���	e

i��2mx−n	d��
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Slepian Density Estimator 701

i.e., 
0���2m��2
mx − n	 is the Fourier series coefficient of f�x��	 = 
̂0���2m���	e

i�2mx

and hence by Parseval’s formula,

Km�x� t	 =
∑
n


0���2m��2
mx − n	
0���2m��2

mt − n	

2−m�
̂0���2m��0	�2

= 2m

2��
̂0���2m��0	�2
∫ �

−�
f�x��	f�t� �	d�

= 2m

2��
̂0���2m��0	�2
∫ �

−�
�
̂0���2m���	�2ei�2m�x−t	d�

= Km�x − t� 0	� (34)

Since �
̂0���2m���	�2 is an even function, it follows that the exponential function can
be replace by the cosine from which the second conclusion follows. The fact that
it is positive definite follows from Bochner’s theorem and the fact that the Fourier
transform is non-negative.

The kernel is actually positive on a larger interval than that given by the
proposition. Indeed, Figure 4 shows the kernel on the square �−4� 4�× �−4� 4��
while Figure 5 shows the kernel as one variable function at level m = 0� The kernel
is computed by using a truncated version of (34):

K�x� 0	 ≈
5∑

n=0


0���1�n	
0���1�x + n		+
5∑

n=1


0���1�n	�
0���1�x − n	�

Some function values for the Slepian function 
0���1at integers are listed in
Table 2, which shows the truncation for (34) is reasonable. From Figure 5 we
observe that the first zero crossing for 
0���1 occurs at x = 1�34, while for the kernel
it occurs at x = 3�09 approximately. Table 3 gives some extreme values for the
(approximated) kernel.

Figure 6 shows the comparison among the Slepian semi-wavelet kernel, and the
other three popular positive kernels—the Epanechnikov kernel and the Biweight
kernel (top) and the Gaussian kernel (middle). The bottom panel gives a detailed
looking outside of the concentration interval. The Epanechnikov kernel and

Table 2
Slepian function 
0���1 at integers

n 
0���1�n	 n 
0���1�n	

0 0�936577 6 −0�003456
1 0�224680 7 0�002533
2 −0�033684 8 −0�001936
3 0�014224 9 0�001528
4 −0�007868 10 −0�001237
5 0�004997
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702 Walter and Shen

Table 3
Minimum of the kernel

x min
K�x� 0	� sign

[−3�6, 3.6] −0�0145 −
[−3�5, 3.5] −0�0142 −
[−3�4, 3.4] −0�0125 −
[−3�3, 3.3] −0�0094 −
[−3�2, 3.2] −0�0052 −
[−3�1, 3.1] −2�9689e-4 −
[−3�0, 3.0] 0�0125 +

Biweight kernel are given by

Ke�t	 =


3

4
√
5
�1− 1

5
t2	� �t� < √

5

0 otherwise

and

Kb�t	 =

15
16

�1− t2	2� �t� < 1

0 otherwise

Figure 4. The kernel of the Slepian semi-wavelets at level m = 0� � = �� � = 1.
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Slepian Density Estimator 703

 4  3  2  1 0 1 2 3 4
 0. 5

0

0.5

1

1.5
sigma=pi
sigma=2pi

 4  3  2  1 0 1 2 3 4
 0. 2

0

0.2

0.4

0.6

0.8

1

1.2
sigma=pi
sigma=2pi

Scaling functions (bottom) and the Kernels for Slepian semi wavelets (top)  

Figure 5. The Slepian semi-wavelet kernel (top) and associated scaling functions (bottom),
as 1-d functions on the interval �−4� 4�� � = �� � = 1.

respectively. Notice that all three are positive kernels and the first two kernels are
compactly supported.

In order to study the behavior of 
0 = 
0���� outside of the interval �−�� ��� we
first use the fact that the L2 norm is given by∫

�t�>�
�
0�t	�2dt =

∫ �

−�
�
0�t	�2dt −

∫ �

−�
�
0�t	�2dt

= 1− �20 = ��

As we have seen, � is quite small provided � is relatively large. For �� equal to 2,
� = 0�0006� and is much smaller for larger values. Since 
0 vanishes at infinity, we
have, for x ≥ ��


2
0�x	 = −2

∫ �

x

0�t	


′
0�t	dt ≤ 2

{ ∫ �

x

2
0�t	dt

}1/2{ ∫ �

x

′2
0 �t	dt

}1/2

by Schwarz’s inequality. The first integral on the right is dominated by �� while the
second integral satisfies∫ �

x

′2
0 �t	dt ≤

∫ �

−�

′2
0 �t	dt =

1
2�

∫ �

�
�i�
̂0��	�2d�

≤ �

2

∫ �

�
�
̂0��	�2d� = �2

∫ �

−�

2
0�t	dt = �2�
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704 Walter and Shen

 2  1. 5  1  0. 5 0 0.5 1 1.5 2
0

0.25

0.5

0.75

1
Slepian
Epanechnikov
Biweighted

 3  2  1 0 1 2 3
0

0.2

0.4

0.6

0.8
Slepian
Gaussian

Figure 6. The Slepian semi-wavelet kernel compared to the Epanechnikov kernel and the
Biweight kernel (top), and to the Gaussian kernel (middle). The figure in the bottom shows
the detailed look of the two kernels in the middle panel.

By combining these two inequalities we obtain the following:

Lemma 2. Let �x� ≥ �, then �
0�����x	�2 ≤ 2�
√
�. �
0�2m����x	�2 ≤ 2

√
��/2	2m� =√

��2m+1�

Thus we have shown that not only is the energy outside of the interval ��� ��
small, the function 
0���� is also uniformly small. This gives further justification for
truncating the series used to define Km�x� t	 in (31). Notice that the shape of the
kernel is very similar to that of the Gaussian kernel. The difference is that it is an
entire function of exponential type and decays like 1/x as x → �. Thus it can be
used to better estimate densities with longer tails. But since it is negligible outside
of a finite interval, it is also suitable for densities with compact support.

The chief advantage however, is in the fact that it is a wavelet estimator and
hence one can use thresholding methods to remove noise and to get an efficient
representation.

5. Examples

In this section, we illustrate how the Slepian semi-wavelet kernel density estimators
are used to estimate the density functions of univariate data. The results are
compared to those for standard wavelet estimators.
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Slepian Density Estimator 705

Table 4
Eruption lengths (in minutes) of 107 eruptions of Old Faithful Geyser

1.73 4.08 4.25 1.83 3.72 4.37 3.92 2.33 3.33 4.18 4.50
4.60 4.62 4.50 3.43 1.85 4.70 3.20 4.57 3.73 4.58 1.80
4.08 2.25 4.20 4.93 3.78 1.68 4.58 3.58 1.67 3.50 3.70
3.83 3.43 4.42 3.50 4.13 1.75 3.50 3.70 4.63 4.62 2.50
3.73 4.00 4.65 3.77 1.90 4.35 3.80 4.25 1.83 4.03 2.27
4.83 4.40 4.12 1.83 4.73 1.77 3.80 3.58 2.03 1.97 2.93
4.33 4.10 1.88 4.50 1.85 4.25 1.80 3.67 2.72 4.60 4.63
4.43 3.10 1.82 4.00 2.00 4.10 1.95 1.90 4.03 4.00 4.00
3.92 4.00 4.07 3.52 3.95 4.05 1.77 4.13 1.73 3.75 1.97
2.93 3.93 4.33 1.67 3.68 1.90 4.28 4.53

We consider three examples:

Example 1. Density estimate of the Old Faithful geyser data. The data for the
eruption lengths (in minutes) of 107 eruptions of Old Faithful geyser can be found
in Table 4. Both this data set and the data set in next example can be found in
Silverman (1986, p. 8). Figure 7 shows the data set and its histogram estimate.

10 20 30 40 50 60 70 80 90 100

2

2.5

3

3.5

4

4.5

1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

Figure 7. The eruption length (in minutes) of the Old Faithful geyser at Yellow Stone
National Park (top) and its histogram estimator (bottom).
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706 Walter and Shen

0 2 4 6 8

0

0.5

0.77978

-0.0785363

Pmm ( )s

80 s

0 2 4 6 8
0

0.5

0.685953

0

Pmm ( )s

80 s

Figure 8. Density estimate for the Old Faithful geyser data using estimators associated with
reproducing kernels for 4
 (top), and using 8
 (bottom), window width 0.25 (m = 2	�

Figure 8 shows two estimates associated with Daubechies 4 and 8 wavelets (Walter
and Shen, 1999). Figure 9 shows the Slepian semi-wavelet estimates. The left column
is for the window width = 0�5 (m = 1) and the right column is for the window
width = 0�25 (m = 2). The two rows correspond to different values of �. We should
point out in Figure 9 that the estimators may take negative values, these are very
small; indeed, the minimum values for the density estimates are shown in the
Table 5. By adjusting the parameter � in the density estimator, the negative values
can be reduced significantly (compared to Figure 8).

Example 2. Density estimate for suicide study data. The data for the lengths of
treatment spells (in days) of 86 control patients in suicide study can be found in
Table 6. Figure 10 shows the data set and its histogram estimator. The Slepian
semi-wavelet estimator with different window width m = 0�25 (left column) and 0�5
(right column) and concentration � = 1 (top row) and � = 2 (bottom row) are shown
in Figure 11. The results show that the Slepian semi-wavelet estimators can pick up
the tail very well.

Example 3. Density estimate for INTEL CORP (NasdaqNM: INTC) stock closing
price (close price adjusted for dividends and splits). While this is not necessarily
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Slepian Density Estimator 707
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Figure 9. Density estimate for the Old Faithful geyser data by using the Slepian semi
wavelet kernel, window width 0�5 (left column) and window width 0�25 (right column).

IID data, it is reasonably close (as can be attested to by anyone who has tried to
predict its price). Figure 12 shows the data set (top) and its histogram (bottom).
The Slepian semi-wavelet estimator with different window width m = 0�25 (left
column) and 0�5 (right column) and concentration � = 1 (top row) and � = 2
(bottom row) are shown in Figure 13. The data source is from http://finance.
yahoo.com/.

6. Conclusions

In this work we have introduced two types of density estimators, one an
orthogonal series estimator based on Slepian functions and the other a wavelet
type estimator based on Slepian wavelets. The former converges rapidly to the

Table 5
The minimum values of the estimator

Window Width 0.5 0.25

� = 1 −�199156572e-1 −�251416005e-1
� = 2 −�883816073e-5 −�199120488e-5
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708 Walter and Shen

Table 6
Lengths of treatment spells (in days) of 86 control patients in suicide study

1 14 76 17 18 32 54 82 103 153 311
1 93 49 31 21 34 56 83 111 163 314
1 144 31 49 21 35 56 84 112 167 322
5 30 93 79 22 36 62 84 119 175 369
7 40 14 103 25 37 63 84 122 228 415
8 75 737 147 27 38 65 90 123 231 573
8 740 256 257 27 39 65 91 126 235 609
13 242 134 256 30 39 67 92 129

density whenever it is sufficiently smooth, but may take negative values and have
excessive oscillations arising from Gibbs phenomenon. The latter may not converge
as rapidly, but has only negligible negative values and avoids Gibbs phenomenon.
Both methods require fewer computations than do other methods because of the
unique properties of the Slepian functions. The estimators based on them are
entire functions of exponential type, but nonetheless do have a strong localization
property.

If we compare these methods to traditional methods we find that all
continuous orthogonal series methods, including wavelet methods, give rise to Gibbs
phenomenon and may have negative values and thus share the shortcomings of
the first estimator without its computational advantages. The kernel estimators
with positive kernels do avoid the excessive oscillations and negativity, but are not
wavelet estimators and thus cannot take advantage of their data reduction and
thresholding properties.

The examples show that the negative values can occur for the standard wavelet
kernel density estimators, while the values for the Slepian semi-wavelet estimators
can be adapted to be practically non negative. The latter are also seem to be
smoother than the former. The results of the suicide study (in Figures 10 and 11)
also show that the Slepian semi-wavelet estimator can pick up densities with long
tails. This is contrast to other to estimators which sometimes “eat” the tails of long-
tailed random variables.

Table 7
Summary statistics for intel closing price

Min 13�16
1st Qu 17�37
Mean 23�17
Median 19�56
3rd Qu 29�94
Max 35�55
Total N 252
Std dev. 6�95
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Figure 10. The suicide study data (in days) (top) and its histogram estimator (bottom).
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Figure 11. Density estimate for the suicide study data by using the Slepian semi wavelet
kernel, window width 0�5, and window width 0�25.
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Figure 12. The intel stock closing price (top) and its histogram estimator (bottom).
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Figure 13. Density estimate for the data set of intel stock closing price by using the Slepian
semi wavelet kernel, window width 0�5 (left column), and window width 0�25 (right column).
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